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Abstract

Spectral analysis of natural scenes can provide much

more detailed information about the scene than an ordinary

RGB camera. The richer information provided by hyper-

spectral images has been beneficial to numerous applica-

tions, such as understanding natural environmental changes

and classifying plants and soils in agriculture based on

their spectral properties. In this paper, we present an ef-

ficient manifold learning based method for accurately re-

constructing a hyperspectral image from a single RGB im-

age captured by a commercial camera with known spectral

response. By applying a nonlinear dimensionality reduc-

tion technique to a large set of natural spectra, we show

that the spectra of natural scenes lie on an intrinsically low

dimensional manifold. This allows us to map an RGB vec-

tor to its corresponding hyperspectral vector accurately via

our proposed novel manifold-based reconstruction pipeline.

Experiments using both synthesized RGB images using hy-

perspectral datasets and real world data demonstrate our

method outperforms the state-of-the-art.

1. Introduction

Spectral analysis of natural scenes can provide much

more detailed information about the scene than an ordinary

RGB camera. The richer information provided by hyper-

spectral imaging has been beneficial to numerous applica-

tions in agriculture and land health surveillance, such as un-

derstanding natural environmental changes and classifying

plants and soils based on their spectral properties. Most

general approaches to imaging the spectra of a scene cap-

ture narrowband hyperspectral image stacks at consecutive

wavelengths. A number of optical elements are required to

achieve this task, and commercially available hyperspectral

imaging cameras are often expensive and tend to suffer from

spatial, spectral, and temporal resolution issues.

The goal of this work is providing a cost-efficient so-

lution for hyperspectral imaging that can reconstruct the

spectra of a natural scene from a single RGB image cap-

tured by a camera with known spectral response. Obviously,

the transformation from RGB to spectra is a three-to-many

mapping and thus cannot be unambiguously determined un-

less some prior knowledge about the transformation is in-

troduced. Indeed, there is existing work that establishes

such priors. In the field of spectral reflectance recovery, re-

searchers have examined large sets of spectral reflectance

distributions and their corresponding RGB vectors in or-

der to learn how to map from RGB to spectra. Examples

include radial basis function (RBF) network mapping [23]

and constrained sparse coding [2]. More recently, Arad and

Shahar used a large sparse dictionary of spectra and cor-

responding RGB projections that could then be used as a

basis to map RGB vectors to spectra [3]. However, existing

approaches directly operate on the RGB space without ex-

plicitly exploring the data structure of spectral information,

thus requiring a large amount of data for training.

We propose a two-step manifold-based mapping and re-

construction pipeline to reconstruct the spectra from a sin-

gle RGB image. We start by investigating the intrinsic di-

mensionality of the spectra of natural scenes. By applying a

nonlinear dimensionality reduction technique to a large set

of natural spectra, we show that the spectra of natural scenes

lie on an intrinsically low dimensional manifold. Based on

the derived manifold, we learn an accurate nonlinear map-

ping from RGB to the 3D embedding. By doing so, we

reduce the problem of the three-to-many mapping (RGB to

spectrum) to a well-conditioned and compact three-to-three

mapping (RGB to 3D embedding of spectra). Compared to

previous proposed approaches that aim to solve the three-to-

many mapping directly, the three-to-three mapping allows

us to train a more accurate model. After mapping to the 3D

embedding, the original spectrum can be recovered using a

manifold-based reconstruction technique.
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Figure 1: Scene spectra are recovered from RGB observation through our proposed nonlinear manifold learning and recon-

struction technique based on pre-learned mapping between training RGB values and their corresponding 3D embedding.

Our major contributions are summarized as follows:

• This paper presents a cost-efficient solution for hyper-

spectral imaging that requires only a single RGB im-

age of a scene captured by a camera with known spec-

tral response.

• We investigate the intrinsic dimensionality of the spec-

tra of natural scenes by a nonlinear dimensionality re-

duction technique. We find that natural scene spectra

approximately reside in a 3D embedded space.

• We propose a two-step manifold-based mapping and

reconstruction pipeline that avoids solving the difficult

three-to-many mapping problem. Namely, we trans-

form any given RGB vector to a 3D point in the embed-

ding of natural spectra. From there, the corresponding

spectrum is recovered using a manifold-based recon-

struction technique.

2. Related Work

Hyperspectral imaging has proven beneficial to many ap-

plications in agriculture, remote sensing, medical diagno-

sis, and others. As a result, there is a large body of work

on hyperspectral imaging of scenes. Approaches such as

push broom scanning a spatial line or switching narrow

bandpass filters in front a grayscale camera [14] for each

wavelength of interest are in common use. However, these

imaging approaches are slow. In response to issues with

speed, snapshot hyperspectral cameras have been developed

[5, 10, 13, 27]. Despite the better speed, spectral resolution

is typically sacrificed. In addition, all hyperspectral cam-

eras usually have lower spatial resolution than typical RGB

cameras. Thus there have also been efforts at combining

hyperspectral and RGB cameras together [1, 6, 17, 12]. In

these setups, the RGB and hyperspectral camera are made

to share a common field-of-view. The spatial and spectral

information from both cameras are then combined to form

a high-spatial resolution, hyperspectral image. All the dif-

ferent kinds of hyperspectral camera setups have their own

pros and cons but a common drawback is that they are often

expensive and not as accessible.

Thus there have been attempts to use conventional RGB

cameras to capture the spectral information of a scene, in

particular, the spectral reflectance of scene points. One gen-

eral approach is to use active lighting [8, 15, 19, 24] by

taking advantage of the well-known statistical property that

spectral reflectance seen in natural scenes mostly exists in

a low-dimensional linear subspace of the high-dimensional

space of arbitrary spectral reflectance [9, 21, 25, 16, 22, 4].

In these approaches using active lighting, an RGB or

grayscale camera is used to capture multiple images of

a scene under controlled lighting. By carefully defining

the light spectra used and knowing the camera spectral re-

sponse, it is possible to recover the spectral reflectance of

surface points. However, this does not work in outdoor set-

tings or in a number of everyday situations where the illu-

mination cannot be controlled. Also, sometimes the lighting

condition of a given environment is of interest.

For more widespread applicability, passive imaging ap-

proaches are preferred. In addition, it would be good to

be able to capture hyperspectral images without any spe-

cialized equipment. Thus some researchers have proposed

approaches for reconstructing the hyperspectral image of

a scene from a single RGB image by learning a mapping

from RGB vectors to spectra using a large set of spec-

tral reflectance distributions and their corresponding RGBs.

Nguyen et al. proposed to learn the transformation from

white balanced RGB values to illumination-free reflectance
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spectra based on a radial basis function (RBF) network

mapping [23]. Antonio proposed to learn the prototype

set from the database based on a constrained sparse cod-

ing approach and use it for illumination-free spectral re-

covery [2]. More recently, Arad and Ben-Shahar created

a large database of natural scene hyperspectral images and

derived a sparse dictionary of hyperspectral signatures and

their RGB projections. The dictionary and correspond-

ing RGB projections could then be used as a basis to es-

timate the spectrum of any given RGB vector [3]. These

approaches tackled a difficult inverse problem involving a

three-to-many mapping, and thus priors needed to be estab-

lished for effective learning. This is typically accomplished

by using large amounts of training data.

Our method is different from previously proposed ones

in the sense that we avoid directly solving a three-to-many

mapping of the RGB vector to spectrum. Specifically, we

propose a two-step manifold-based mapping and recon-

struction pipeline by considering the intrinsic dimension-

ality of natural scene spectra. This leads to a formulation of

the problem where we can map an RGB vector to a spec-

trum as a well-conditioned three-to-three mapping (RGB to

3D embedded spectra). The original spectra can then be

recovered via low-dimensional manifold reconstruction.

3. Spectral Reconstruction of Natural Spectra

via Manifold-based Nonlinear Mapping

This paper focuses on recovering the spectra of outdoor

scenes under daylight illumination from a single RGB im-

age captured by a camera with known spectral response.

Fig. 1 shows the flow of our method for spectral reconstruc-

tion. Our method consists of training and testing stages,

which are indicated using black and red arrows, respectively

in the figure.

In the training stage, given a large set of natural spec-

tra, we first investigate the intrinsic dimensionality of nat-

ural scene spectra using a nonlinear dimensionality reduc-

tion technique (Sec. 3.1). Specifically, we show that the

spectra of natural scenes lie on an intrinsically low dimen-

sional manifold. At the same time, for each spectrum in the

database, a corresponding RGB vector is computed based

on the spectral responses of the RGB camera. Once the set

of RGB and spectrum pairs is prepared, a transformation

from RGB vectors to their corresponding three dimensional

embedded spectra is learned (Sec. 3.2).

In the testing stage, we can first transform an input

RGB vector into the three dimensional embedding using

the learned transformation. Once the RGB vector is trans-

formed into a 3D point in the embedding, the original spec-

trum is reconstructed from a manifold-based reconstruction

technique (Sec. 3.3). In the following, we describe each

step of our method in detail.

3.1. Analyzing Dimensionality of Natural Scene
Spectra

It has been widely examined and accepted that the re-

flectance spectra of natural objects lie in a low-dimensional

subspace or manifold [9, 21, 25, 16, 22, 4]. This leads us

to speculate that spectra of natural scenes are intrinsically

low-dimensional as well, since the radiance of a scene point

is a compound of the illumination and surface reflectance

[2, 23]. Specifically, by assuming that the scene point is

diffuse, its radiance i(λ) can be roughly expressed by

i(λ) = l(λ)r(λ), (1)

in which l(λ) and r(λ) denote the illumination and re-

flectance intensity at wavelength λ. By stacking all spectra

of a hyperspectral image into a matrix I , we obtain

I =





i1(λ1) · · · iM (λ1)
· · · · · · · · ·

i1(λN ) · · · iM (λN )





=





l(λ1) 0 0
0 · · · 0
0 0 l(λN )





︸ ︷︷ ︸

L





r1(λ1) · · · rM (λ1)
· · · · · · · · ·

r1(λN ) · · · rM (λN )





︸ ︷︷ ︸

R

,

(2)

in which M and N denote the number of pixels and the num-

ber of bands, respectively. From the viewpoint of linear al-

gebra, the rank of I should be no greater than that of R,

which is low-dimensional for natural reflectance materials.

For real natural scenes, the model in Equation 2 may

not hold accurately because of complex surface reflectance

properties. Therefore, we follow a widely used criterion

[26], the residual variance of dimensionality reduction,

to determine the intrinsic dimensionality of natural scene

spectra. At first, Isometric Feature Mapping (Isomap) [26],

a nonlinear dimensionality reduction method, was applied

on the natural scene spectra to embed them into a low di-

mensional space. Isomap estimates the intrinsic geome-

try of a data manifold by examining a neighborhood graph

of the data points constructed in high-dimensional space.

This neighborhood graph is used for computing pairwise

geodesic distances between two points measured over the

manifold. Once a matrix containing the geodesic distances

between all data points is obtained, classical MDS is ap-

plied to this matrix to find a low-dimensional embedding

of the data points such that the estimated intrinsic geome-

try is best preserved through dimensionality reduction. By

following the procedure of [26], we calculate the residual

variance 1−R2(Dm, Dgt), where Dm is the matrix of Eu-

clidean distances of the low dimensional embedding, while

Dgt is the graph distance matrix of the input data. R is the

standard correlation coefficient between Dm and Dgt. The

intrinsic degrees of freedom is then observed at the ”elbow”
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(a) 100 spectra (b) 3000 spectra

Figure 2: The residual variance of Isomap on representative

spectra from [3]. (a) 100 representative spectra from [3], (b)

3000 representative spectra from [3].

where the curves of residual variance stop decreasing sig-

nificantly with the added dimensions as illustrated in Fig.

2. We refer to Tenenbaum et al. [26] for details.

With this criterion, we conducted a dimensionality anal-

ysis of spectra of natural scenes on the natural hyperspec-

tral image database1 provided by Arad and Ben-Shahar [3],

which is the largest spectral database for natural scenes

available today. In Fig. 2, we report the residual variance on

(a) 100 main representative spectra picked up by k-means

from [3] and (b) another 3000 representative spectra collec-

tion from [3]. This figure shows that Isomap detects the di-

mensionality as three where the residual variance is almost

zero on both 100 representative spectra and 3000 spectra.

This observation echoes the existing research on the spar-

sity of natural scenes. However, it worth noting that the

spectral sampling resolution of this dataset is 10 nm, which

has left out finer spectral details.

3.2. Conversion from RGB to 3D Embedding of
Scene Spectra

After finding the low dimensional embedding of natural

scene spectra, a mapping f is learned between RGB vectors

and their corresponding 3D embedded natural scene spectra

as: f : R3 → R
3. Through experimental validation, we

employ the compact neural network (a radial basis function

with 10 hidden neurons) to learn a nonlinear transformation

f between RGB vectors and their corresponding 3D embed-

ded spectra. We used the Levenberg-Marquardt training al-

gorithm [18, 11], which minimizes the following equation:

β̂ = argmin
β

m∑

i=1

[yi − f(pi, β)]
2, (3)

where each p, y ∈ R
3 is a pair of RGB vector and corre-

sponding 3D embedded spectrum in the training set, and β

is the parameter to be found for the model f(p, β) to fit the

training pairs (pi, yi), so that the sum of the squares of the

deviations is minimized.

1http://icvl.cs.bgu.ac.il/hyperspectral/

3.3. Spectra Reconstruction from 3D Embedding

The main focus of dimensionality reduction techniques

is how to efficiently reduce the dimensionality of high di-

mensional inputs by revealing meaningful structure hidden

in the data. Many nonlinear dimensionality reduction tech-

niques thus rarely consider the inverse problem of recon-

structing original data from the derived low dimensional

embeddings. In order to reconstruct original spectra from

its 3D embedding, we employ a dictionary learning based

technique [29] that learns dictionary pairs for high and low

dimensional spaces and uses their relationship for recon-

struction of high dimensional data from a point in the em-

bedding.

Let xi ∈ R
N×1 denote a high dimensional spectrum

and g(xi) = yi ∈ R
3×1 denote the 3D embedding of

the spectrum. Then we wish to find a high dimensional

dictionary DH = [d1, · · · , dK ] and coding scalars ci =
[c1i, c2i, · · · , cKi]

T such that these two functions are mini-

mized2:

M∑

i=1

∣
∣
∣

∣
∣
∣g(xi)−

K∑

j=1

cjig(dj)
∣
∣
∣

∣
∣
∣

2

,

M∑

i=1

∣
∣
∣

∣
∣
∣xi −

K∑

j=1

cjidj

∣
∣
∣

∣
∣
∣

2

(4)

for all M spectra in our training dataset. By doing so, we

are essentially finding a common coding between the 3D

embedding and high dimensional space of the spectra. Then

given the estimated coding C = [c1, c2, · · · , cM ] and all

embeddings Y = {y1, · · · , yM}, we can determine the 3D

embedding dictionary DL by:

min
DL

||Y −DLC||2F . (5)

For a new point in the low dimensional space yt, we can

compute its coding CT over the low dimensional dictionary

DL. Then the high dimensional data of yT can be recon-

structed as xT = DHcT .

4. Experiment Results

In this section, we evaluate our manifold based map-

ping on both public hyperspectral datasets [3, 28, 7] and

real world images. The dataset in [3] comprises of 200 im-

ages, which is by far the most comprehensive natural hyper-

spectral database. Similarly, the Harvard Outdoor Dataset

[7] consists of 50 outdoor images in daylight illumination.

Though our method is based on low dimension assumptions

about natural spectra, the comparison on the indoor dataset

CAVE [28], which has 64 images of indoor scenarios, is

also conducted. The three datasets cover complex scenar-

ios including various materials, multiple illuminations and

shadows. We use the learned mapping to recover the spectra

2See [29] for details.
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Datasets [3] Harvard [7] CAVE [28]

Our 3.60± 1.23 6.77± 3.43 13.41± 10.94
[23] 16.31± 4.05 22.27± 8.51 16.17± 19.61
[3] 6.54± 1.71 19.30± 6.86 25.36± 20.59

Table 1: The average and variance of NRMSD (%) of re-

construction on the hyperspectral databases [3, 7, 28].

of simulated and real RGB images. We quantitatively com-

pare our method with [23] and [3]. To further validate the

robustness of our method, we also evaluate the performance

under different parameter settings.

4.1. Training Data and Parameter Settings

In default, for each database, we randomly split half of

the images as training set and the rest for testing. To avoid

over-fitting, we also report the performance on a smaller

training set in Section 4.3. Since some of these images con-

tain large dark background areas, naive acquisition of our

hyperspectral training set by randomly sampling these im-

ages is likely to produce a biased result where the genuine

hyperspectral information is severely underrepresented. To

resolve this issue, we randomly pick 1000 spectra from each

image in the training set, and use the K-means algorithm

[20] to collect the most dominant W spectra for the training

set. We set W to be 100 in all our experiments.

The camera spectral response function we used here to

synthesize RGB values is from the Canon 5D Mark II. A

radial basis function neural network with 10 hidden neu-

rons is used to map the RGB values to the embedding of

dimensionality of 3 unless explicitly stated otherwise. To

verify the quantitative accuracy for spectral reflectance re-

construction, we use the normalized root mean square de-

viation (NRMSD) as our metric, calculated by ǫ
r(x) =

√∑
λ
(r(λ,x)−rgt(λ,x))2

N r̄(x) , where r(λ, x) and rgt(λ, x) are the

reconstructed and actual spectral reflectances of the pixel x,

r̄(x) is the average value across wavelengths for spectrum

x. N is the number of bands in the pixel. NRMSD normal-

izes each ground truth spectrum to avoid bias toward strong

signals.

4.2. Evaluation on Hyperspectral Datasets

We first compare the spectra reconstruction performance

on the three aforementioned hyperspectral image databases

[3, 28, 7]. The trained nonlinear mapping is used to recover

hyperspectral images from the RGB images in the testing

sets. In Table 1, we present the quantitative comparison of

our method, [23] and [3] for the whole testing sets. This ta-

ble shows our method outperforms the alternatives in terms

of spectra reconstruction accuracy. We note that, though

CAVE is an indoor dataset that does not strictly follow our

assumptions about natural spectra, our method still manages

to achieve superior performance over alternative methods.

We also present Fig. 3, which shows the recovered spectra

for three randomly selected pixels from three test images.

We can see that the performance of our method is consis-

tently better than that of [23] and [3].

To examine the spatial consistency of the recovered hy-

perspectral images, we also present some images at seven

different wavelengths as exemplary images in Fig. 4. We

can observe that the recovered images from our method are

consistently accurate across the wavelength axis, irrespec-

tive of the scene materials. Our method performs particu-

larly well on the 460nm and 500nm bands where the alter-

natives often encounter much error. We also note that the

performance of all methods deteriorate at the 420nm band.

The reason is that the camera response is very weak at the

blue end, and the inaccuracy in mapping has a critical influ-

ence on the recovery results.

In Fig. 5, we also show the typical scenarios where

our method gives best and worse performance in terms of

NMRSD between the reconstructed spectra and the ground

truth. Our method works best in the scenarios where arti-

ficial materials such as buildings occupy much of the im-

age. It might be due to the fact that artificial materials

have similar chemical compositions and thus exhibit sim-

ilar spectra. In contrast, our performance fails when the

image is over/under exposed, like in the first image of the

second row. Natural objects such as plants also present

challenges. However, especially among challenging scenar-

ios, our method consistently generates better reconstruction

compared to the alternatives.

4.3. Analysis on Parameter Sensitivities

To demonstrate the robustness of our algorithm, we also

analyze the sensitivity of our method to the size of the train-

ing set, the manifold dimensionality and the swap of cam-

era response functions. When trained with only 60 im-

ages in [3], our method still achieves a satisfactory average

NMRSD 4.18%, compared to 3.60% that is trained with 100

images as reported in Section 4.2.

As analyzed in Section 3.1, we observed that the dimen-

sionality of three is sufficient in representing the natural

spectra. To evaluate this observation in our system, we cal-

culate the reconstruction errors on [3], when mapping the

RGB values to the embedding of dimensionality of 4 and 5,

rather than 3 used in all other experiments. We found that

the average NRMSD increases as the dimensionality goes

up, which is 3.60% for 3 dimensions, 3.94% for 4 dimen-

sions and 4.01% for 5 dimensions. Adding more dimen-

sions seems to be detrimental to accuracy, because it might

introduce noises into the RGB to spectrum learning process.

Our experiments also show the robustness over various

camera spectral response functions. For the dataset [3], the
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bguCAMP 0514-1711 1 Lehavim 0910-1627 2 nachal 0823-1118 3 1

Figure 3: Experiment results on three testing images in the hyperspectral database [3]. The spectral distributions for three

randomly selected pixels from each test image are shown in every column.

average NRMSD of our method is 4.42% on the NikonD90

and 3.94% on the Olympus EPL2. To further demonstrate

the robustness against swapping camera response functions,

we also train the model with one camera and then recon-

struct the hyperspectral data from RGB images simulated

by another camera from the dataset [3]. We find the perfor-

mance between some pairs from the same camera manufac-

turer, such as Canon20D and Canon5D Mark II, is still rea-

sonable, with an average NRMSD of 7.87%. However, for

the pair between different manufacturers such as Canon1D

Mark III and Nikon D90, it will deteriorate to 13.9%.

4.4. Real Images

We also use a commercial Nikon D4S camera to cap-

ture some images of outdoor scenes (see Fig. 6 (a,b) for

examples). To alleviate the influence of camera nonlinear

intensity response and unexpected image compression, we

use instead the RAW files and convert them into RGB im-

ages. The camera spectral response function is provided

by the sensor maker. For this specific response function,

we learn a nonlinear mapping again by using the aforemen-

tioned training set, and use it to recover spectra from RGB

values. Fig. 6(c) show the recovered spectra for the four

color patches from our method, [23] and [3]. We can see

that our method works better than the others, which veri-

fies again the benefits in accounting for the intrinsic dimen-

sions of natural spectra. We also note that, compared with

the synthetic experiments, the performance of three meth-

ods slightly degrades. This might be attributed to the error

in the camera spectral response function.
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Figure 4: Sample results from the hyperspectral database [3].
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P
er

fo
rm

an
ce

NRMSD

Our 2.02% 2.52% 2.54% 2.69% 2.78%
[23] 19.06% 11.79% 18.78% 13.08% 17.84%
[3] 3.81% 6.22% 3.70% 5.29% 6.30%

W
o

rs
t

P
er

fo
rm

an
ce

NRMSD

Our 8.74% 7.30% 7.25% 6.28% 6.16%
[23] 19.73% 13.42% 44.06% 21.18% 12.61%
[3] 9.16% 8.22% 14.08% 9.51% 6.97%

Figure 5: The scenarios where our method works best and worst. The comparison of corresponding average NRMSD is also

provided.

(a) RGB image (b) Camera response
Patch #1 Patch #2 Patch #3 Patch #4

(c) Comparison between our method, [23] and [3]

Figure 6: Experiment results of real-world scenario using a commercial Nikon D4S camera. (a) The RGB image of the scene

with a color checker board. (b) The camera spectral response function provided by the maker. (c) Recovered spectra from

our method, [23] and [3] for the four color patches indicated in (a).

5. Conclusion

We have explored the intrinsic dimensionality of the

spectral space of natural scenes and found that a low dimen-

sional embedding by Isomap is enough, to a large extent, to

account for the spectral variance. This has allowed us to

train a neural network based nonlinear mapping between

the RGB color space and the three-dimensional embedding,

by using only a small amount of representative data in an

efficient manner. Experiments using synthetic images and

real world data have verified the effectiveness of our non-

linear mapping based method for spectral super-resolution,

as well as its advantages over existing approaches.

In this paper, we have concentrated primarily on the

spectra of natural scenes, which is relevant to consumer

RGB device based spectral imaging of outdoor objects un-

der daylight illumination. The illumination spectra for in-

door illuminants are more complex. An extensive evalua-

tion of our spectral recovery method for indoor scenes de-

serves to be conducted in our future work.

Acknowledgement

The majority of this paper was finished when Yan Jia

was visiting National Institute of Informatics (NII), Japan,

funded by the NII MOU Internship Program. This work

was supported in part by JSPS KAKENHI Grant Number

JP15H05918 and JP16K16095.

4712



References

[1] N. Akhtar, F. Shafait, and A. Mian. Hierarchical beta process

with gaussian process prior for hyperspectral image super

resolution. In Proc. of European Conference on Computer

Vision (ECCV), pages 103–120, Oct. 2016. 2

[2] R. K. Antonio. Single image spectral reconstruction for mul-

timedia applications. In the 23rd ACM International Confer-

ence on Multimedia, pages 251–260, 2015. 1, 3

[3] B. Arad and O. Ben-Shahar. Sparse recovery of hyperspec-

tral signal from natural rgb images. In Proc. of European

Conference on Computer Vision (ECCV), pages 19–214, Oct.

2016. 1, 3, 4, 5, 6, 7, 8
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