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Abstract

Zero-shot learning (ZSL) aims to transfer knowledge

from observed classes to the unseen classes, based on the

assumption that both the seen and unseen classes share

a common semantic space, among which attributes enjoy

a great popularity. However, few works study whether

the human-designed semantic attributes are discriminative

enough to recognize different classes. Moreover, attributes

are often correlated with each other, which makes it less de-

sirable to learn each attribute independently. In this paper,

we propose to learn a latent attribute space, which is not

only discriminative but also semantic-preserving, to perfor-

m the ZSL task. Specifically, a dictionary learning frame-

work is exploited to connect the latent attribute space with

attribute space and similarity space. Extensive experiments

on four benchmark datasets show the effectiveness of the

proposed approach.

1. Introduction

Visual recognition has made tremendous progress in the

past few years with the rapid growing of data scales and

progressing of classification methods. However, traditional

approaches to visual recognition are mainly based on su-

pervised learning, which needs large numbers of labeled

samples to obtain a high performance classification model.

It is well known that collecting large scale of labeled sam-

ples is difficult, especially when the required labels are fine-

grained, which hinders further development of visual recog-

nition. It is therefore important and desirable to develop

recognition systems that can recognize categories with few

or no labeled samples, thus ZSL approaches attract more

and more attentions in the past few years.

Inspired by the ability of humans to recognize unseen ob-

jects, ZSL aims to recognize categories that have never been

seen before [17, 9]. A general assumption for ZSL is that

both the seen and unseen classes share a common semantic

space, where the samples and class prototypes are project-

ed, to perform the recognition task. In terms of different

mid-level representations exploited in the learning process,

current ZSL approaches can be categorized into four group-

s. The first group is attribute-based methods, which use

attributes to build up the relationships between the seen

and unseen classes [17, 9, 43, 13]. For example, attributes,

such as black and furry, are shared among different animals.

The cross-category property of attributes makes it possible

to transfer knowledge from the seen classes to the unseen

classes. The second group is text-based approaches, which

automatically mine the relationships of different classes via

ample text corpus [7, 10, 3, 30]. These approaches reduce

the human labor for defining attributes, thus ZSL can be

applied to large scale settings. The third one is based on

class similarity, which directly mines the similarities be-

tween the seen and unseen classes to bridge up their rela-

tionships [23, 22, 24, 44]. The similarities may be derived

from the hierarchical category structure or from the seman-

tic descriptions of each class. The last group is to combine

different mid-level representations to learn more robust

relationships [11, 12, 19, 15]. These works build upon a

common idea that different mid-level representations will

catch complementary information of the data, which can be

used to reduce the domain difference between the seen and

unseen classes.

In this paper, we focus on the attribute-based approach.

Traditional process for such methods mainly focuses on

how to learn the semantic embeddings or what strategy

to utilize to perform the recognition task. However, there

are three aspects which are merely considered in previous

works, as is shown in Figure 1. First, whether the human-

designed semantic attributes are discriminative enough to

recognize different classes. Second, whether it is reason-

able to learn each attribute independently since attributes

4223



furry
hoof

quadruped

orange

stripe

tail

Attribute Latent Attribute

V. S

Not 

Discriminative

Large 

Variations

Attribute 

Correlation

orange + furry

orange + furry + quadruped

orange + stripe

black

hoof + stripe

hoof + furry

hoof + black

eye

Figure 1. Motivations for learning latent attributes. At-

tributes in red font are not discriminative. Attributes with

rectangle have large variations. Attributes connected by the

double arrow are correlated with each other.

are often correlated with each other. Third, the variations

within each attribute may be quite large making it difficult

to learn the attribute classifiers. For the first aspect, [43]

proposes to learn discriminative category-level attributes.

However, these attributes are learned on fixed categories

and do not care semantic meanings. When new classes ap-

pear, the class-level representations have to be relearned.

For the second aspect, [14] incorporates the attribute rela-

tionships into the learning process. However, such relation-

ships are human-defined and they are usually too complex

in real world to define beforehand. For the third aspect,

[15] utilizes domain adaptation approaches to finetune the

attribute models. However, the target domain samples are

mandatory for such models.

In order to tackle the problems described above simulta-

neously, we propose to learn latent attributes. Specifically,

the proposed method automatically explores discriminative

combinations of different attributes, where each combina-

tion is viewed as a latent attribute. On the one hand, the

latent attributes are required to be discriminative enough,

thus to classify different classes more reliably. On the oth-

er hand, the latent attributes should be semantic-preserving,

thus to enable building up the relationships between differ-

ent classes. Moreover, the attribute correlations are also im-

plicitly considered in latent attributes. For example, furry

often correlates with black and white, thus it is not favor-

able to learn furry alone. In contrast, our latent attributes

have the ability to find the combination of furry + black and

furry + white, thus the variation within each latent attribute

becomes smaller than that within each attribute.

To learn the latent attribute space for performing ZSL

task, we exploit dictionary learning framework to directly

model the latent attribute space, where the images can be

reconstructed by some latent attribute dictionary items. In

order to preserve the semantic information, a linear trans-

formation is utilized to build up the relationships between

attributes and latent attributes, thus the latent attributes can

be viewed as different combinations of attributes. More-

over, to make the latent attributes discriminative, seen class

classifiers are utilized to classify different classes, where

the probability outputs can be viewed as similarities to seen

classes. Thus we can transform the image representations

from the latent attribute space to the similarity space.

The rest of the paper is organised as follows: Section

2 discusses the related works. Section 3 describes the for-

mulation and optimization of our proposed latent attribute

dictionary (LAD) approach in detail. Section 4 extensive-

ly evaluates the proposed method on four benchmark ZSL

datasets. Section 5 gives concluding remarks.

2. Related Work

In this section, we briefly review the related works on

attributes and zero-shot learning.

2.1. Attributes

Attributes are general descriptions of images and have

drawn much attention in different computer vision tasks

in recent years, such as image description [9], image cap-

tioning [16], image retrieval [35] and image classification

[41, 21, 27]. Earlier works on attribute learning often con-

sider it as a binary classification problem and learn each

attribute independently [9]. Due to the fact that attributes

are often correlated with each other, [14] incorporates the

attribute relationships into the learning framework. More-

over, attributes are related to the categories, [21, 1] propose

to learn attributes and the class labels jointly. As deep learn-

ing becomes increasingly popular in recent years, [8] makes

an analysis about the relationship between visual attributes

and different layers of convolutional networks. In order to

make the attributes discriminative, [43, 29] exploit the dis-

criminative attributes to do the classification task. However,

these attributes do not have semantic meanings.

2.2. ZeroShot Learning

ZSL tackles the problem of recognizing the classes that

have never been seen before. With the growth of data scales

and the difficulty of image annotation, this application is

becoming increasingly popular in recent years. ZSL, first

proposed by [17] and [9] in parallel, is accomplished by

attributes, which utilizes the cross-category property of at-

tributes to build up the relationships between seen and un-

seen classes. Then other mid-level semantic descriptions

are proposed to tackle such problem, such as word vector

[7, 10, 3] and class similarity [23, 22, 24, 44].

An intuitive way to do zero-shot recognition is to train

different attribute classifiers and recognize an image by

the attribute prediction results and unseen class descriptions

[17, 9]. Considering the unreliability of the attribute clas-

sifiers, [13] proposes a random forest approach to make

more robust predictions and [41, 21, 40] model the rela-

tionships between attributes and classes to improve the at-

4224



tribute prediction results. To make use of the rich intrinsic

structure on the semantic manifold, [12] proposes seman-

tic manifold distance to recognize the unseen class sam-

ples. Another widely used approach is label embedding,

which projects the images and labels into a common se-

mantic space and performs the classification task via near-

est neighbor approach [1, 2, 26, 44, 19, 42]. In order to

expand ZSL to large-scale settings, [25, 10, 37, 3] use neu-

ral networks to learn more complicated non-linear embed-

dings. Some other works use transfer learning techniques

to transfer knowledge from seen classes to unseen classes

[33, 32, 31, 37, 24, 15]. Recently, [45] proposes to capture

the latent relationships between the seen and unseen classes

in the similarity space. [5] proposes to synthesize the un-

seen class classifier directly by sharing the representations

between the semantic space and feature space. [4] proposes

a metric learning approach to tackle the ZSL problem. [6]

expands the traditional ZSL problem to the generalized ZSL

problem, where the seen classes are also considered in the

test process.

Another popular assumption for ZSL is that the unseen-

class samples are available in the problem settings [11,

19, 15, 46]. To make use of the complementary informa-

tion among different semantic descriptions, [11] propos-

es a multi-view embedding approach, where graph models

are constructed using both the seen and unseen class sam-

ples to reduce the domain difference between seen and un-

seen classes. [19] proposes a semi-supervised framework

to learn the unseen classifiers directly where semantic in-

formation can be incorporated as side information. [15]

utilizes domain adaption approaches to tackle the domain

shift problem between seen and unseen classes. Inspired

by the clustering property of samples within one category,

[46] leverages the structured prediction approach to recog-

nize the unseen class samples. It is important to point out

that our approach is not in such settings.

3. Proposed Approach

We propose a latent attribute dictionary (LAD) learning

process for ZSL. There are some motivations to design the

objective function. First, the latent attributes should pre-

serve the semantic information, and thus are able to relate

the seen and unseen classes. Second, the representations

in the latent attribute space should be discriminative to rec-

ognize different classes. Based on these considerations, a

framework proposed for LAD is shown in Figure 2.

3.1. Problem Formulation

Suppose there are cs seen classes with ns labeled sam-

ples Φs = {Xs, As, Zs} and cu unseen classes with nu

unlabeled samples Φu = {Xu, Au, Zu}. Each sample

xi is represented as a d-dimensional feature vector. Then

we have Xs ∈ R
d×ns and Xu ∈ R

d×nu , where Xs =

Attribute Space

Latent Attribute Space

Similarity Space

cat

dog

horse

LA1 LA2 LA3

furry

quadruped

black

W U

Semantic Discriminative

Figure 2. The latent attribute dictionary learning framework

for ZSL. The proposed latent attribute space is connect-

ed with both the attribute space and the similarity space.

The attribute space makes the latent attributes semantic-

preserving and the similarity space makes the latent at-

tributes discriminative.

[x1, ...,xns
] and Xu = [x1, ...,xnu

]. Zs and Zu are the

class labels of the seen and unseen class samples. In zero-

shot recognition settings, the seen and unseen classes are

disjoint: Zs

⋂

Zu = Ø. As and Au are the m-dimensional

semantic representations (i.e. attribute annotations) of seen

and unseen class samples, where As ∈ R
m×ns and Au ∈

R
m×nu . The semantic information about the seen class

samples As is provided and that for the unseen class sam-

ples Au is unknown. Given the semantic descriptions of the

classes P ∈ R
m×(cs+cu), the goal of ZSL is to predict Zu.

3.2. Latent Attribute Dictionary Learning

The key issue to perform ZSL task is to find a common

space which can build up the relationship between seen and

unseen classes. Traditional approaches select the attribute

space to perform the recognition task. For example, [15]

proposes to learn the attribute dictionary directly as :

arg min
D,Ys

‖Xs −DYs‖
2
F , s.t. ||di||

2
2 ≤ 1, ∀i, (1)

where ‖.‖F denotes the Frobenius norm, di is the ith colum-

n of the learned dictionary D, and Ys is the reconstruction

coefficient. By forcing Ys to be As, the learned dictionary

are viewed as representations of the attributes. However,

this constraint is too strong. If we relax the semantic con-

straint and the objective function can be formulated as:

arg min
D,Ys

‖Xs −DYs‖
2
F + α ‖Ys −As‖

2
F ,

s.t. ||di||
2
2 ≤ 1, ∀i.

(2)

The second term in Eq. 2 encourages Ys to be similar to the

attribute representations As, thus to ensure that the learned

bases depict attribute dictionary items.

Although attributes are widely used in the recognition

task, there are two things that should be considered. First,

the user-defined attributes are not always the same impor-

tant for discrimination, thus it may be less desirable to learn
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each attribute directly. Second, there are correlations among

the attributes, thus it is not suitable to learn each attribute in-

dependently. To address such problems, we propose to learn

latent attributes. Specifically, we use dictionary learning

framework to model the latent attribute space directly. To

preserve the semantic information, a linear transformation

matrix W is utilized to build up the relationship between

latent attributes and attributes, as is shown in Figure 2:

arg min
D,Ys,W

‖Xs −DYs‖
2
F + α ‖Ys −WAs‖

2
F ,

s.t. ||di||
2
2 ≤ 1, ||wi||

2
2 ≤ 1, ∀i,

(3)

where wi is the ith column of W . It can be inferred from

Eq. 3 that the latent attributes can be viewed as linear com-

binations of the semantic attributes, which will implicitly

combine strongly correlated attributes.

In order to make more effective recognition task, the la-

tent attributes should be discriminative. In other words, we

want to find the most discriminative attribute combinations

to classify different categories. Thus we utilize the seen-

class classifiers to make the latent attributes more discrimi-

native. Specifically, a linear mapping U is learned from the

latent attribute space to the seen categories, as is shown in

Figure 2:

arg min
D,Ys,W,U

‖Xs −DYs‖
2
F + α ‖Ys −WAs‖

2
F

+ β ‖H − UYs‖
2
F ,

s.t. ||di||
2
2 ≤ 1, ||wi||

2
2 ≤ 1, ||ui||

2
2 ≤ 1, ∀i,

(4)

where H = [h1, h2, ..., hns
] ∈ R

cs×ns and hi =
[0... 0 1 0... 0]T is a one hot vector which shows the class

label of sample xi. Here the column vectors hi of H form

the similarity space R
cs , where each dimension represents

the similarity to one seen class. U can be viewed as seen-

class classifiers in the latent attribute space. The third term

in Eq. 4 aims to make the latent attribute representations dis-

criminative enough to classify different classes. It implicitly

pulls samples from the same class together and pushes those

from different classes away from each other.

In summary, the latent attributes learned by the pro-

posed method are not only discriminative to classify dif-

ferent classes but also semantic-preserving. As is shown

in Figure 2, the resulted latent attribute space is connected

with two kinds of semantic spaces. First, a linear transfor-

mation matrix W is utilized to connect the latent attribute

space with the semantic attribute space. Through this trans-

formation matrix, we can recover the attribute representa-

tions by the latent attributes, thus the latent attributes have

semantic meanings. Second, the category classifiers U in

the latent attribute space can be viewed as the connection

between latent attribute space and the similarity space. This

constraint encourages the latent attributes to be discrimina-

tive.

3.3. Optimization

It is obvious that Eq. 4 is not convex for D,Ys,W and U

simultaneously, but it is convex for each of them separate-

ly. We thus employ an alternating optimization method to

solve it. In particular, we alternate between the following

subproblems:

(1) Fix D,W,U and update the latent attribute represen-

tations Ys. The subproblem can be formulated as:

argmin
Ys

∥

∥

∥
X̃ − D̃Ys

∥

∥

∥

2

F
, (5)

where

X̃ =





Xs

αWAs

βH



 , D̃ =





Ds

αI

βU



 ,

and I is the identity matrix. Forcing the derivative of Eq. 5

to be 0 and the closed-form solution for Ys is

Ys = (D̃T D̃)−1D̃T X̃. (6)

(2) Fix Ys,W,U and update the latent attribute dictio-

nary D. The subproblem can be formulated as:

argmin
D

‖Xs −DYs‖
2
F , s.t. ||di||

2
2 ≤ 1. (7)

This problem can be optimized by the Lagrange dual. Thus

the analytical solution for Eq. 7 is

D = (XsY
T
s )(YsY

T
s + Λ)−1, (8)

where Λ is a diagonal matrix constructed by all the La-

grange dual variables.

(3) Fix D,Ys, U and update the embedding W . The sub-

problem can be formulated as:

argmin
W

‖Ys −WAs‖
2
F , s.t. ||wi||

2
2 ≤ 1. (9)

This problem can be solved in the same way as Eq. 7. The

analytical solution for W is

W = (YsA
T
s )(AsA

T
s + Λ)−1, (10)

where Λ is a diagonal matrix constructed by all the La-

grange dual variables.

(4) Fix D,Ys,W and update the embedding U . The sub-

problem can be formulated as:

argmin
U

‖H − UYs‖
2
F , s.t. ||ui||

2
2 ≤ 1. (11)

This problem can be solved in the same way as Eq. 7. The

analytical solution for U is

U = (HY T
s )(YsY

T
s + Λ)−1, (12)
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Algorithm 1 Latent Attribute Dictionary Learning for ZSL

Input: Xs, As, α, β

Output: D,Ys,W and U

1: Initialize D,W,U randomly.

2: while not converge do

3: Update Ys by Eq. 6.

4: Update D by Eq. 8.

5: Update W by Eq. 10.

6: Update U by Eq. 12.

7: end while

where Λ is a diagonal matrix constructed by all the La-

grange dual variables.

The complete algorithm is summarized in Algorithm 1.

In our experiments, the optimization process always con-

verges after tens of iterations, usually less than 50 1.

3.4. ZSL Recognition

Since our latent attribute space is associated with at-

tribute space and similarity space, we can perform ZSL in

multiple spaces.

Recognition in the latent attribute space. In order to

perform ZSL in the latent attribute space, we must obtain

the latent attribute representations of the test samples and

the unseen class prototypes. Given a test sample with its

feature vector xu, we obtain its latent attribute representa-

tion yu by

yu = min
yu

‖xu −Dyu‖
2
F + γ ‖yu‖

2
2 , (13)

where D is the latent attribute dictionary learned from the

training data. γ is a weight for regularization term. For

the unseen class prototypes, we project their attribute repre-

sentations to the latent attribute space by the transformation

matrix W . Then the distance between the test sample and

the unseen classes can be computed. In the end, we perfor-

m ZSL recognition by nearest neighbour approach using the

cosine distance.

Recognition in the similarity space. As is described

above, we can use U to transform the latent attribute repre-

sentations yu to the similarity space, where each dimension

represents the similarity to one seen class. Thus each im-

age can be denoted by a similarity vector h. Moreover, we

can also obtain the similarity representation of an unseen

class prototype by mapping the class attribute vectors to

histogram representations of seen class proportions, as sim-

ilarly done in [44]. Thus nearest neighbour approach can be

performed to classify a test sample to an unseen class.

Recognition in the attribute space. We can recover the

attribute representation of an image au by its latent attribute

1The source code of the proposed LAD approach is available at

http://vipl.ict.ac.cn/resources/codes.

representation yu:

au = min
au

‖yu −Wau‖
2
F + λ ‖au‖

2
2 . (14)

Thus the attributes of each image can be obtained. Then we

can classify a test image to an unseen class by the attribute

representations.

Combining multiple spaces. Since different spaces

may contain complementary information of an unseen class,

we can combine different spaces to perform the ZSL task.

In this paper, we simply concatenate different vector repre-

sentations of an image to form the final representation and

the same process is done for the unseen class prototype-

s. Then ZSL task can be performed by the same approach

proposed above.

3.5. Discussion

Difference from other works. Our approach is mainly

inspired by JLSE [45] and JSLA [29]. JLSE proposes the

latent similarity space to build up the relation between fea-

ture space and similarity space, while we utilize the similar-

ity space to make our latent attributes more discriminative.

JSLA proposes to learn user-defined attributes and discrim-

inative attributes separately, where background information

is also modeled. However, it is not designed for ZSL task

since background information can not be utilized in ZSL

settings. In contrast, we embark from the actual problems

that exist in ZSL task and merge the semantic and discrimi-

native information into the latent attributes aiming to make

more effective recognition.

Further improvements. The proposed approach is

based on linear models. It is well known that deep learn-

ing based nonlinear models would be more powerful. Thus

we use the deep network to extract the image representa-

tions and ensure favorable performance to a large extent. It

is believed that learning the semantic transformation direct-

ly through a deep model will help to boost the performance

and this remains a promising direction for our future work.

4. Experiments

In this section, we evaluate the proposed method on four

benchmark datasets and then analyze the effectiveness of

the method.

4.1. Datasets and Settings

Datasets. We perform experiments on four benchmark

ZSL datasets to verify the effectiveness of the proposed

method, i.e. aPascal & aYahoo (aP&Y) [9], Animal-

s with Attributes (AwA) [17], Caltech-UCSD Birds-200-

2011 (CUB-200) [39], and SUN Attribute (SUN-A) [28].

The statistics of these datasets are shown in Table 1. (a)

aP&Y consists of two attribute datasets: aPascal contain-

s 12,695 images and aYahoo has 2,644 images. A 64-D
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Table 1. Statistics of different datasets, where ‘b’ and ‘c’

stand for binary value and continuous value respectively.

Database Instance Attributes Seen/Unseen

aP&Y 15,339 64(c) 20 / 12

AwA 30,475 85(c) 40 / 10

CUB-200 11,788 312(b) 150 / 50

SUN-A 14,340 102(c) 707 / 10

attribute vector is provided for each image. There are 20

object classes for aPascal and 12 for aYahoo, which are dis-

joint. For ZSL task, the categories in aPascal dataset are

used as seen classes and those in aYahoo are used as un-

seen classes. (b) AwA is an animal dataset, which contains

50 animal categories, with 30,475 images. There are 85 at-

tributes annotated for each class. The standard split for ZSL

is to use 40 categories as seen classes and the other 10 cat-

egories as unseen classes. (c) CUB-200 is a bird dataset

for fine-grained recognition. It contains 200 classes with

11,788 images, where 312 binary attributes are provided for

each image. Following the same setting as [1], we take 150

categories as seen classes and the other 50 as unseen class-

es. (d) SUN-A is created for high-level scene understand-

ing and fine-grained scene recognition, which contains 717

classes with 14,340 images collected. There are 102 real-

valued attribute annotations for each image, which are pro-

duced by a voting process. Following [13], we select the

same 10 classes as unseen classes.

Parameter Settings. For all the datasets, we utilize

the 4096-dimension CNN feature vectors extracted by the

imagenet-vgg-verydeep-19 pre-trained model [36]. We use

the multi-class accuracy as the evaluation metric. The dic-

tionary size for AwA is chosen as 300 and those for the

other three datasets are 500 to 800. Other parameters α and

β are obtained using five-fold cross-validation. γ and λ can

also be tuned and we set them to be 1 for simplicity. More

details can be found in the supplementary material.

4.2. Effectiveness of the Proposed Framework

The proposed latent attribute space is associated with the

attribute space and the similarity space, which makes it not

only semantic-preserving but also discriminative enough to

classify different classes. To demonstrate the effectiveness

of each component, we compare five different approach-

es and the results on aP&Y are shown in Figure 3. (1)

Recognition in the attribute space (A) merely, by learning

the attribute dictionary directly, as is proposed in Eq. 2. (2)

Recognition in the similarity space (S) merely, by remov-

ing the semantic constraint (i.e. the second term) in Eq. 4.

(3) Recognition in the latent attribute space but without dis-

criminative constraint (LA−), by removing the discrimina-

tive constraint (i.e. the third term) in Eq. 4. (4) Recognition

in the latent attribute space with discriminative constraint

(LA), as is proposed in Eq. 4. (5) Recognition by combin-

Approaches

A S LA- LA LAS

A
c
c
u

ra
c
y
(%

)

30

35

40

45

50

55

Figure 3. Comparisons of five approaches on aP&Y.

ing the latent attribute space and similarity space (LAS), as

is proposed in Section 3.4.

By comparing the performance of A, S and LA−, we can

infer that the latent attributes are more successful in the ZSL

task. Moreover, by imposing the discriminative constrain-

t in the objective function, the recognition accuracy im-

proves, as is shown by the performance of LA. Furthermore,

the combination of latent attributes and seen class similar-

ities also improves the final recognition performance, as is

shown by the result of LAS.

4.3. Benchmark Comparisons and Evaluations

In this part, we compare our method with several popular

approaches. Our settings are the same as those in [44]. Ta-

ble 2 shows results on four datasets, where the blank spaces

indicate that the corresponding methods were not tested on

the datasets in their original papers. Here, for our LAD

method, we report the results of two variants LA and LAS,

as described in Section 4.2. It is important to point out that

the first three approaches are in transductive ZSL settings,

where the information of unseen class samples are utilized,

while our approach and other competing methods are in tra-

ditional ZSL settings. From this table, we can see that our

approach achieves the best performance on three dataset-

s, which shows the effectiveness of the proposed method.

Note that ’*’ indicates that the approaches use different fea-

tures from ours, where [11, 15] use the OverFeat [34] fea-

tures and [2, 5, 6] use the GoogleNet [38] features.

From Table 2, we can see that great improvement is made

on CUB-200 dataset. It should be contributed by the good

reconstruction property of latent attribute dictionary. This

dataset is designed for fine-grained recognition, where the

sample variation is not very large. Thus the dictionaries

learned on the seen class samples can have a good recon-

struction of the unseen class samples. With the help of dis-

criminative property of latent attributes, the recognition per-

formance of unseen classes can be improved further. Our

result on AwA is slightly lower than that of JSLA [29]. The

reason may lie in the class-level attribute annotations, which

can not cover the variations of images within each class.
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Table 2. Comparisons with published results in multi-class

accuracy (%) for the task of zero-shot learning. ’*’ denotes

the features are different from ours. ’†’ denotes the data

split is different from ours.

Method aP&Y AwA CUB-200 SUN-A

TMV-HLP∗ [11] 80.50 47.90

UDA∗ [15] 75.60 40.60

SP-ZSR [46] 69.74 92.08 55.34 89.50

DAP [18] 38.16 57.23 72.00

ESZSL [26] 24.22 75.32 82.10

SJE∗ [2] 66.70 50.10

SSE-ReLU [44] 46.23 76.33 30.41 82.50

JLSE [45] 50.35 80.46 42.11 83.83

SynC∗ [5] 72.90 54.70† 62.70†

JSLA [29] 82.81 49.87

Chao et al.∗ [6] 73.40 54.40†

Bucher et al. [4] 53.15 77.32 43.29 84.41

LAD (LA) 51.13 80.49 56.36 83.50

LAD (LAS) 53.74 82.48 56.63 85.00

The reconstruction accuracy of dictionary may thus be in-

fluenced by the limited attribute representations.

4.4. SemanticPreserving Property

Different from previous approaches which learn discrim-

inative attributes with no semantic meanings [43], our latent

attributes are semantic-preserving. This can be reflected by

the following two aspects.

First, we can recover the attributes of images by their

latent attribute representations, as is shown in Eq. 14. In or-

der to test whether the recovered attributes are good or not,

we perform an attribute prediction task on AwA. Specifi-

cally, we binarize the attributes by the thresholds provid-

ed by the original dataset and measure the performance by

Area Under Curve(AUC). Figure 4 shows the attribute pre-

diction results of unseen classes. Blank spaces indicate that

there are no such attributes in the unseen classes. We can

figure out that most of the attributes recovered from the

latent attributes have relatively good performance, which

demonstrates the semantic-preserving property of the latent

attributes. The mean AUC of attributes recovered by our ap-

proach is 0.729, which is comparative to other attribute pre-

diction results [29]. Since the main purpose of our approach

is not attribute prediction, no further detailed comparison is

conducted.

Second, the latent attributes can be viewed as differen-

t combinations of attributes. To have an intuitive under-

standing of what the combinations are, we visualize some

latent attribute dictionaries. Specifically, given a latent at-

tribute dictionary item, we show the images which have the

largest and smallest correspondance over this item. Figure 5

shows the visualization results on AwA using the unseen

class samples. Besides, we also show the attributes with the

water costal ocean swims plains domestic meat brown

meatteeth meat stalker pads slow chewteeth vegetation group

forest brown hands furry hairless arctic spots white

quadrapedal ground walks spots bipedal hands forest blue

LA1

LA2

LA3

LA4

Figure 5. Latent attribute dictionary visualization on AwA

using the unseen class samples. ’LA’ is the latent attribute.

Green blocks show attributes with largest activations and

red ones show attributes with smallest activations. The first

three pictures are randomly selected from images which

have largest activations over the latent attribute and the last

three are selected from images with smallest activations.

largest and smallest activations over the latent attributes in

Figure 5. It can be observed that the images, which have

high correspondence over the latent attribute, are in accor-

dance with the attribute combinations. For example, seal

is highly correlated with attributes in the green blocks of

’LA1’ and has little relevance to those in red blocks. We

can figure out that a specific latent attribute may group some

highly correlated attributes, thus the variation within each

latent attribute becomes smaller. It is desirable that a la-

tent attribute should have strong activations only on a small

numbers of attributes. While we do not explicitly impose

such sparsity constraint, the combination coefficients are

found to be mostly sparse in our experimental study. Due

to limited space, detailed statistic results and analyses are

provided in the supplementary material.

4.5. Discriminative Property

From our objective function in Eq. 4, it can be seen

that a discriminative constraint is achieved by learning seen

class classifiers in the latent attribute space. The probabil-

ity outputs of seen-class classifiers for each image can be

viewed as a vector representation in the similarity space,

where each dimension represents the similarity to one seen

class. Figure 6 shows the top five most similar seen class-

es corresponding to some unseen class samples on aP&Y,

where the probability outputs are obtained by softmax func-

tion. It can be seen that most of the similarities are human

comprehensible. For example, wolf is most similar to cat

and jetski is most similar to motorbike.

In order to perform ZSL task, we also need the simi-

larity representations of unseen class prototypes. This can

be obtained by the approach proposed by [44], as is men-

tioned in Section 3.4. Figure 7 shows the similarities of un-

seen classes to the seen classes on aP&Y, where the values

are normalized. It can be inferred that most of the similar-
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Figure 4. Attribute prediction results on AwA with the measure of AUC.

Donkey_39

Dog: 0.808
Cat: 0.118
Car: 0.028
Cow: 0.023
Moterbike:  0.007

Jetski_11

Motorbike :      0.779
Boat :  0.218
Train: 0.002
Diningtable: 0.000
Horse:   0.000

Goat_322

Cat: 0.627
Cow: 0.197
Horse: 0.082
Person:   0.026
Car:            0.012

Wolf_868

Cat:   0.476
Cow: 0.214
Chair:               0.129        
Sheep: 0.065
Aeroplane:       0.028

Zebra_144

Cat: 0.765
Horse: 0.141
Cow:   0.039
Sheep:               0.018
Car: 0.015

Building_218

Bus:   0.515
Boat: 0.317
Horse:               0.049        
Motorbike:      0.024
Sofa:       0.023

Figure 6. Similarity representations of unseen class samples

on aP&Y. Top five similar classes are shown.
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Figure 7. Similarity representations of unseen class proto-

types on aP&Y. Each column shows the similarity of an

unseen class to the seen classes.

ities are also in accordance with human knowledge. Since

the similarities grasp some information of unseen classes,

we can also use such semantic information to perform ZSL

task. However, due to the fact that there are only limited

numbers of seen classes, some similarities are not that com-

prehensible, such as the similarity representation of bag.

As mentioned above, in order to make the latent attribute

discriminative, we utilize seen-class classifiers to connect

the latent attribute space to the similarity space. To explore

whether the latent attributes are discriminative or not, we

visualize the unseen class samples in AwA by their latent

attribute representations learned by our approach. Specif-

ically, we use t-SNE [20] to project the learned latent at-

tribute representations of each unseen class sample to a 2-D

plane. Figure 8 shows the visualization results. We can see

that images of the same class are grouped together and those

Figure 8. Visualization of the unseen class samples on AwA

using their latent attribute representations. Each color rep-

resents a class and each point represents an image.

from different classes are separated, which indicates that the

latent attributes are discriminative for the recognition task.

It is also very interesting to find that visually similar class-

es have small distances. For example, the cluster of pigs

is near that of hippopotamuses and the cluster of humpback

whales is near that of seals. This again shows that the latent

attributes preserve the semantic information.

5. Conclusion

In this paper, we propose a novel ZSL approach which is

accomplished by latent attribute dictionary learning (LAD).

The proposed approach shows its effectiveness on four

datasets. We attribute the promising performance of LAD

to three aspects. First, the proposed latent attribute space

is connected with the attribute space, so it preserves the

semantic information. Thus it is possible to perform ZSL

task in the latent attribute space. Second, the latent attribute

space is connected with the similarity space. This makes

the latent attribute space discriminative to recognize differ-

ent categories. Third, the latent attributes can be viewed as

different combinations of semantic attributes, which implic-

itly deals with the attribute correlation problem.
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