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Abstract

This paper presents a novel method for quantitative and

objective diagnoses of Autism Spectrum Disorder (ASD) us-

ing eye tracking and deep neural networks. ASD is preva-

lent, with 1.5% of people in the US. The lack of clinical re-

sources for early diagnoses has been a long-lasting issue.

This work differentiates itself with three unique features:

first, the proposed approach is data-driven and free of as-

sumptions, important for new discoveries in understanding

ASD as well as other neurodevelopmental disorders. Sec-

ond, we concentrate our analyses on the differences in eye

movement patterns between healthy people and those with

ASD. An image selection method based on Fisher scores al-

lows feature learning with the most discriminative contents,

leading to efficient and accurate diagnoses. Third, we lever-

age the recent advances in deep neural networks for both

prediction and visualization. Experimental results show the

superior performance of our method in terms of multiple

evaluation metrics used in diagnostic tests.

1. Introduction

The ‘gold standard’ diagnostic process of neurodevel-

opmental disorders is expensive, subjective, and time-

consuming. Relying on a multidisciplinary team of neurol-

ogists, pediatricians, pathologists, and therapists, it usually

takes years of successive interviews and behavioral evalu-

ations that are susceptible to interpretive biases. For ex-

ample, Autism Spectrum Disorder (ASD) affects one in 68

people in the US [9]. Because of the prevalence of ASD

and the limited clinical resources, early diagnoses and in-

terventions are not widely accessible or applicable. High-

functioning people on the spectrum are usually overlooked

in their childhood. Therefore, quantitative and objective di-

agnostic tools have been in great need for decades, yet little

progress has been made.

Recently, we have witnessed the fast growth of two rel-

evant and important domains that could potentially revolu-

tionize the diagnosis of neurodevelopmental disorders – vi-

sual attention and artificial neural networks (DNNs). The
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Figure 1. An overview of our experimental and classification

paradigms. Subjects freely observe a selection of natural-scene

images, while their eye movements being recorded. Discrimina-

tive features encoding social and nonsocial information are ex-

tracted from a deep neural network of visual attention, and inte-

grated across images to predict the subjects’ ASD risk.

attention network is so pervasive in the brain that many

neurodevelopmental disorders are associated with atypical

attention towards visual stimuli [4]. However, current neu-

robehavioral studies of attention depend on contrived visual

stimuli and structured laboratory tasks targeting particular

hypotheses, which constrains the generalizability of these

studies.

To address the long-lasting issues in the diagnosis of

ASD, we propose to leverage the pervasiveness of visual at-

tention in the brain and the learning ability of DNNs. Driven

by DNNs, computational models of attention have shown

notable progress in recent years, encoding rich semantics

and predicting human attention remarkably well in complex

natural scenes. As ASD exhibits atypical gaze patterns to-

ward social stimuli [32, 13, 31], the capability of DNNs in

encoding high-level semantics and social contents is partic-

ularly suitable for identifying people with ASD.

Specifically, we propose a new diagnostic paradigm

with natural scene viewing. Subjects’ eye movements are

recorded and analyzed quantitatively with a DNN model.

With the goal of effective and efficient diagnoses, our

method selects the most discriminative images by ranking

their Fisher scores and learns the most discriminative fea-

tures by creating and analyzing a difference map of eye fix-
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ations. By using natural-scene stimuli and DNNs, the di-

agnostic process is completely data-driven and assumption-

free.

In summary, this paper carries three major contributions:

First, because of the generality of the free-viewing task,

the stimuli, and the data-driven model, our method is easily

applicable to most people on the spectrum and generalizable

to other neurodevelopmental disorders.

Second, selecting discriminative images and learning

discriminative features boost the accuracy of ASD diagno-

sis while reducing the amount of data and time needed for

the diagnosis.

Finally, our DNN-based model demonstrates superior

performances in classifying clinical populations. The DNN

visualization serves to enrich our understanding of the atyp-

ical attention in ASD.

2. Related Works

Machine learning methods have been applied to autism

studies with various modalities, such as quotient-based

ASD diagnostic tools [2], Magnetic Resonance Imaging

data [11], acoustic data of early language [25], and kine-

matic data [5]. However, most of these studies rely on hand-

crafted features and simplified linear models that often fail

to handle the complexity of human behaviors in less con-

trolled settings. Here we briefly review the most related

works using machine learning to analyze eye-tracking data

for autism research and diagnosis.

Eye movements encode rich information about the atten-

tion and oculomotor control of an individual, which could

help characterize ASD traits. Compared with standard di-

agnostic quotients, automatic and quantitative processing

of eye movements will potentially lead to more objective

and accessible diagnoses of ASD. Recently, Liu et al. [22]

analyzed the gaze patterns of children with ASD in a face

recognition task. They proposed a machine learning method

to classify 29 children with ASD and two groups of matched

controls. Despite their prominent accuracy, the face stimuli

and the structured recognition task are highly dependent on

the existing knowledge about ASD, limiting their generaliz-

ability to other clinical populations or young children who

may fail to understand or comply with the task instruction.

To classify clinical populations with a variety of neu-

rodevelopmental disorders (i.e., Attention Deficit Hyper-

activity Disorder, Fetal Alcohol Spectrum Disorder, and

Parkinson’s disease, note that this work did not study ASD

though), Tseng et al. [35] analyzed gaze patterns in watch-

ing short video clips. They combined gaze patterns with

features from a computational model of visual attention and

showed the advantages of incorporating attention-related

features in identifying specific disorders. Their attention

model only focused on early visual saliency, but it did not

take into account high-level semantics and social informa-

tion that could influence visual attention more significantly.

Our work is primarily inspired by the comprehensive

study of Wang et al. [38]. They quantified the visual at-

tention of high-functioning adults with ASD using a linear

Support Vector Machine (SVM) and three levels of features.

Feature weights were learned with recorded eye fixations

and used to quantify the different attentional preferences

between people with ASD and healthy controls. The main

limitation of this method is the handcrafted features and

the requirement of manual annotation on objects of interest.

Besides, Wang et al. [38] only studied the differences be-

tween groups, without classification of individual subjects.

Instead, to tackle these problems, our method automatically

extracts image features from natural scenes using deep neu-

ral networks (DNNs) and use these features to distinguish

people with ASD from healthy controls.

Deep neural networks are state-of-the-art architectures

in machine learning and have been extensively used in var-

ious computer vision tasks. With sufficient training data,

DNN models have overwhelmingly outperformed hand-

crafted features in visual recognition, detection, segmen-

tation, and so on. Deep visual attention networks have

also demonstrated effectiveness in predicting where humans

look [37, 18, 21, 14, 27, 20]. Some state-of-the-art mod-

els transfer the knowledge learned from object recognition

tasks to the problem of attention prediction [18] or use

saliency evaluation metrics as objectives [14, 20]. Differ-

ent from the related works that focused on predicting the

gaze distribution of one population, this study for the first

time develops a DNN model to predict the difference be-

tween two populations. Replacing the conventional fix-

ation ground truth with a probability map that highlights

between-group differences allows the DNN to learn dis-

criminative features that are salient to one group of people

but not the other.

3. Method

In this work, we utilize the rich DNN features learned

from a selection of discriminative images to classify the

group membership of an individual. Figure 2 demonstrates

an overview of our DNN-based method. The key com-

ponents of our method include eye-tracking data collec-

tion, selection of discriminative images, DNN-based feature

learning, and SVM-based classification.

3.1. Eye Tracking

Eye-tracking data were collected by Wang et al. [38]

from 20 high-functioning adults with ASD and 19 neurolog-

ically and psychiatrically healthy controls, in a free-viewing

task. Subjects had normal or corrected-to-normal visual

acuity. The two groups of subjects were matched on gen-

der, age, race, and education. The ASD group all met the
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Figure 2. Overview of the proposed feature learning and classification approach. (a) Discriminative image features are learned end-to-end

to predict the difference of fixation maps. (b) Features at fixated pixels are extracted and integrated across N trials to classify each eye’s

behavior with an SVM.

cutoff scores on the Autism Diagnostic Observation Sched-

ule (ADOS) [23] and the Autism Diagnostic Interview-

Revised (ADI-R) [24] or Social Communication Question-

naire (SCQ) when an informant was available.

Subjects observed 700 images from the OSIE [39]

database. With a large variety of objects in natural scenes,

these images had demonstrated advantages in understand-

ing different aspects of visual attention, from low-level fea-

ture contrasts to high-level semantics. In the eye-tracking

experiment, the images were shuffled and presented in con-

secutive experimental trials. Each trial began with a drift

correction when subjects fixate a dot at the center of a blank

screen and press a button to continue. Following the drift

correction, a target image was presented for three seconds.

Subjects were instructed to look at the image freely. Binoc-

ular eye movements were recorded at 300 Hz during the

image viewing, with a non-invasive infra-red remote To-

bii X300 eye tracker. The experiment was split into seven

recording sessions of 100 trials each, with short breaks and

re-calibrations between sessions. Subjects finished the ex-

periment within two hours.

We processed the raw eye-tracking data for further anal-

ysis. Fixations and saccades were detected from the raw

data with Cluster Fix [17] – a nonparametric fixation detec-

tion algorithm. We considered each saccade-fixation pair

as a temporal fixation stage of the visual scanning process.

For all trials, we discarded the data after the twelfth fixation

stage.

Note that eye-tracking precision can be affected by cal-

ibration errors, environmental conditions, binocular dispar-

ity and subjects’ performance. For example, in [38], the

average eye-tracking error was approximately 40 pixels for

ASD and 18 pixels for controls. Therefore, Wang et al. [38]

discarded the data of the less accurate eye. However, in this

work, we analyzed the data of both eyes, which prevented

the model overfitting to the dominant eye and improved its

robustness to eye-tracking errors. Further, in our experi-

ments, we classified two eyes of a subject as two separate

data samples. Thus, each eye was classified independently,

which would allow future subjects being tested even if only

monocular data were available.

3.2. Image Selection

The OSIE [39] database was originally designed for a

general study of visual attention but not specific to autism.

Since the number of experimental trials could directly de-

termine the cost of diagnostic tests, we selected a subset of

images from the original database that could best differen-

tiate the gaze patterns between people with ASD and con-

trols. We performed a feature selection based on the Fisher

score method [10] to find the most discriminative images.

Selecting a discriminative subset from the 700 natural-

scene images is an important component of our method. A

discriminative image should maximally reveal the statistical

difference between subjects from different groups while be-

ing minimally sensitive to intra-group variations. The fun-

damental idea of the Fisher score is to find a subset of fea-

tures that are most important for the classification of sub-

ject groups. The features are selected using the principle

that data points lying in the same class should be close to

each other and those lying in different classes should be far

from each other. Specifically, consider a feature vector x

representing the gaze pattern of an individual, with its j-th

dimension denoted as xj . Let (µj+, σ
2
j+) and (µj−, σ

2
j−)

denote the means and variances of xj across the ASD and

the control groups, respectively. The Fisher score of xj is

computed as

F (xj) =
(µj+ − µj−)

2

σ2
j+ + σ2

j−

. (1)
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To perform the image selection, a set of gaze features

were defined, describing subjects’ viewing behavior. At

each fixation stage, we computed three spatial features of

the fixation points (i.e., their horizontal and vertical posi-

tions, and distance to the screen center) and four oculomotor

features (i.e., fixation duration, saccade amplitude, saccade

duration, and saccade velocity). These feature vectors, con-

catenated over all fixation stages and images, represented

an individual’s viewing behavior in the eye-tracking exper-

iment. Fisher scores were then computed at all feature di-

mensions and averaged per image. We selected a subset of

images with the highest scores and performed feature learn-

ing and classification on the selected images only.

3.3. Learning Discriminative Features from the Dif­
ference of Fixation Maps

Learning-based models to predict human visual atten-

tion are typically optimized to differentiate salient and non-

salient elements in a scene. Their ground truth is a proba-

bility distribution of eye fixations, namely the fixation map.

Since our objective is to differentiate two clinical popula-

tions by what they fixated, our network is optimized upon

the difference of fixation (DoF) maps, highlighting the sub-

tle differences between two fixation maps. As demonstrated

in Figure 2a, higher values in the DoF maps indicate more

fixations of the ASD group, while lower ones indicate more

fixations of the control group.

Specifically, a fixation map is computed with an integra-

tion of all fixations of each population, by setting fixated

pixels to ones and those elsewhere to zeros. The two maps

are smoothed with a Gaussian kernel (bandwidth = 1◦) and

normalized by the sum. Let I+ and I− denote the final fix-

ation maps for the ASD and control groups, respectively.

The DoF map of an image can be computed as

D =
1

1 + e−I/σI

(2)

where I = I+ − I− is a pixel-wise subtraction of the two

maps, and σI represents the standard deviation of I .

As shown in Figure 2a, our network architecture follows

the design of the SALICON network [14], one of the state-

of-the-arts in image saliency prediction. It consists of two

parallel VGG-16 networks [33] to process the input image

at two different spatial resolutions. The fine-scale network

takes the original image as input, while the coarse-scale

input is the image downsampled by half. With the fully-

connected layers removed from the VGG-16, activations at

the last convolutional layers of the two networks are scaled

to the same size and concatenated. In our implementation, a

new convolutional layer is added, followed by a sigmoid ac-

tivation to predict the DoF map. The convolutional layer has

a kernel size of 1×1 without padding, indicating a weighted

linear combination. The model parameters are optimized

in an end-to-end back propagation with a pixel-wise cross-

entropy loss:

L(D, D̂) = −

1

n

∑

i

Di log(D̂i) + (1−Di) log(1− D̂i)

(3)

where the summation is over all n output pixels. The D

and D̂ are the predicted DoF map and the ground truth, re-

spectively. The Di and D̂i are their values at the i-th pixel.

The parameters of the VGG-16 layers are initialized to the

pre-trained parameters on the ImageNet [8]. The network is

then fine-tuned on the current database.

3.4. Classification

We extracted the learned DNN features at each fixation

position and integrated them across all experimental trials.

With these features, we trained a linear SVM to classify the

two populations.

Specifically, as shown in Figure 2b, we extracted the

DNN responses at the fixated positions from the 1024-

channel concatenated activation maps, which resulted in a

1024-dimensional feature vector at each fixation. Then, a

tanh function was applied to the extracted features to trans-

form the responses within [0, 1). For each eye movement

scanpath, we concatenated the feature vectors of all fixa-

tions in their temporal order, from the first fixation to the

last one, and appended zeros to the end if there were less

than twelve fixations. This allowed modeling the dynamic

change of attention across time. To reduce the dimension-

ality and control overfitting, we performed a local average

pooling over every two consecutive fixations (i.e., size=2,

stride=2). Finally, the features were averaged across all tri-

als to represent the overall attention patterns of each eye.

The SVM was trained with the extracted features, to find

a linear decision boundary with a maximum margin sepa-

rating the two populations. During the testing phase, the

learned SVM model made a classification for the group

membership of each eye’s fixation data with a correspond-

ing confidence score that allowed us to introduce a flexible

threshold to determine the final classification labels.

4. Experimental Results

In this section, we report the implementation details and

a comprehensive evaluation of the proposed method.

4.1. Implementation

Training and testing. The performance of the classi-

fication was assessed with a leave-one-subject-out cross-

validation. Leave-one-out cross-validation has been widely

used in machine learning because of its capability of re-

turning an almost unbiased estimate of the probability of

error [36]. Particularly in this study, as the binocular eye
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movements of each subject would be separately classified,

to test the 78 data points from 39 subjects in our database,

it was sufficient to perform 39 rounds of classification, each

test with two data points and train with the remaining 76.

The image selection, DNN and SVM parameters were all

decided by the cross-validation.

In each run of the cross-validation, a subset of 100 im-

ages was selected based on the ranking of their Fisher

scores. The DNN and the SVM classifier were trained and

tested on the selected 100 images. Such a small set of stim-

uli could significantly reduce the cost of the eye-tracking

experiment in clinical applications, because only the se-

lected images would be used for tests.

Our model was implemented in the Python language,

with the Caffe and Scikit-learn libraries. During the neural

network training, we fine-tuned the network with stochastic

gradient descent and a batch size of one image for a total of

10,000 iterations. The base learning rate was 10−6 and was

divided by 10 when the error plateaued. We used a weight

decay of 10−5 and a momentum of 0.9. No dropout was

used and no data augmentation was performed, following

the practice in [14]. To monitor convergence and overfit-

ting, the network was cross-validated after every 1,000 iter-

ations. It took approximately two hours to train the network

on a GTX Titan GPU. For the SVM classification, we used

an L2 regularization with the penalty parameter C = 1.

Evaluation metrics. We quantitatively measured the

performance of our proposed approach in terms of accu-

racy, specificity, and sensitivity. These metrics have been

widely used in almost all kinds of clinical evaluations. The

accuracy measures the rate of correctly classified samples in

both ASD and control groups. The sensitivity (i.e., true pos-

itive rate) and the specificity (i.e., true negative rate) mea-

sure the rates of correctly classified samples in the ASD and

in the control groups, respectively.

We also performed a Receiver Operating Characteris-

tic (ROC) analysis by introducing a flexible classification

threshold. Test samples with SVM confidence scores above

the threshold were given a positive ASD diagnosis. By

varying the threshold, we plotted the ROC curves of all the

true positive rates vs. false positive rates and computed the

area under the ROC curve (AUC) as a quantitative measure

of the classification performance.

4.2. Classification Performance

We present quantitative results of the proposed method in

Table 1. To investigate the effects of the proposed DNN fea-

tures, we trained and evaluated SVM classifiers using three

different sets of features, including (1) gaze features used in

image selection (see Section 3.2), (2) VGG-16 features be-

fore fine-tuning, and (3) VGG-16 features after fine-tuning.

To demonstrate the effect of the Fisher-score-based image

selection, we also compared the performances before and

No. of Images Acc. Sen. Spe. AUC

Gaze 700 0.81 0.83 0.79 0.85

100 0.86 0.93 0.79 0.88

VGG-16 700 0.85 0.83 0.87 0.89

100 0.83 0.83 0.84 0.85

VGG-16 700 0.85 0.83 0.87 0.89

(fine-tuned) 100 0.92 0.93 0.92 0.92

Table 1. A comparison of the classification performance on the full

database and the selected 100 images, using different sets of gaze

and DNN features.

after the image selection.

As reported in Table 1, fine-tuning the proposed network

on the selected images significantly improved the classifi-

cation accuracy. Further, image selection increased the sen-

sitivity of the gaze features by 10%, suggesting a reduced

data variance in the ASD group, making them more distin-

guishable from the controls. Besides, fine-tuning increased

the specificity by 8%, suggesting that the DNN encoded the

visual stimuli consistently fixated by the controls. To put it

another way, the controls could be better distinguished by

what they looked at, rather than how they shifted their gaze.

Interestingly, fine-tuning was only effective on the selected

images. It is very likely that only in the images with high

Fisher scores, the two groups of subjects attended to dif-

ferent image features that most effectively separated people

with ASD from healthy controls.

Since we are the first to use eye tracking in free-viewing

tasks for ASD diagnoses, no related work is directly compa-

rable. Though targeting different groups of subjects, Liu et

al. [22] is probably the most similar to our work in terms

of modality, experimental settings, and the number of sub-

jects. Overall, as shown in Table 2, our method reached

a remarkable classification performance, better than [22]

and a number of quotient-based diagnostic tools [12], in-

cluding ADOS, Child Autism Rating Scale (CARS), and

Autism Spectrum Disorder-Diagnostic for Children (ASD-

DC). Notably, our method only takes about 10 minutes of

eye tracking, comparable with [22] that requires perform-

ing a face recognition task, and the others taking 10 to

45 minutes each. With the free image viewing task, our

method demonstrates the feasibility and generalizability in

accurately identifying individuals with ASD.

Our performance is consistent with results from the tra-

ditional quotient-based methods for autism self-assessment.

We compared the confidence scores predicted by the SVM

with the clinical characteristics of the subjects. Binocular

predictions of the same subject were averaged. Due to the

absence of the ADOS and ADI-R evaluations for the con-

trols, we only compared the predictions with two quanti-

tative measurements of ASD traits in adults, the Autism
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Article Tool Acc. Sen. Spe. AUC

Falkmer et al. [12] CARS 0.81 0.82 0.80 —

ADOS 0.82 0.87 0.78 —

ASD-DC 0.84 0.88 0.81 —

Liu et al. [22] ET 0.89 0.93 0.86 0.89

Ours ET 0.92 0.93 0.92 0.92

Table 2. A quantitative comparison with the most related eye-

tracking (ET) study and current diagnostic tools.
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Figure 3. Classification confidence correlates strongly with the

subjects’ AQ and SRS scores but not IQ or age. Dashed lines

indicate the classification boundary at 0.5. Solid lines indicate the

optimal classification boundaries integrating our model prediction

and the quotient-based evaluation.

Spectrum Quotient (AQ) [1] and the Social Responsiveness

Scale-2 Adult Form Self Report (SRS). Both are widely rec-

ognized self-assessment tools for ASD in adults. As we ob-

served, the classification confidence scores were in strong

correlations with the subjects’ AQ (Pearson’s ρ = 0.53, p

= 0.0084) and SRS (Pearson’s ρ = 0.51, p = 0.0063), but

had no correlation with the subjects’ age (Pearson’s ρ = -

0.0035, p = 0.98) or their Full Scale Intelligence Quotient

scores (IQ; Pearson’s ρ = -0.15, p = 0.37). Our method also

showed a potential to complement the quotients, improving

the classification accuracy (see Figure 3).

4.3. Image Selection

Image selection has been shown effective on the classifi-

cation performance (see Table 1). Below, we further elabo-

rate its effects with detail analyses.

We first investigate the roles of the seven gaze features in

image selection. Figure 4 demonstrates the change of their
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Figure 4. Fisher scores of the gaze features over time, averaged

across images. Horizontal axes indicate the fixation order. Error

bands indicate the standard error of the mean.

Fisher scores across fixation stages. Here the feature scores

are averaged across images, but not within each of them.

We can observe that after image selection, the three spa-

tial features (i.e., horizontal and vertical positions, distance

to center) received more increments in their Fisher scores

compared with the four oculomotor features (i.e., fixation

duration, saccade amplitude, saccade duration, and saccade

velocity). Particularly, distance to center encodes the most

differential information, across all fixation stages. This ob-

servation confirms previous findings that people with ASD

had a stronger central preference in their eye fixations [38].

Moreover, despite the relatively low importance of the ocu-

lomotor features, they are shown to play important roles in

the early fixation stages, which may suggest the impaired

disengagement of attention that prevented people with ASD

from saccading away from their initial fixations [7].

We compare the Fisher score with classic saliency eval-

uation metrics: AUC [34], shuffled AUC (SAUC) [40],

linear correlation coefficients (CC) [26], information gain

(IG) [19, 20], Kullback-Leibler divergence (KL) [15],

normalized scanpath saliency (NSS) [29] and similarity

(SIM) [16]. These metrics have been commonly used in the

comparison of locations or distributions of eye fixations [3].

In general, the Fisher score agrees with all the compared

saliency metrics with significant correlations. However, it

has some key advantages over conventional saliency mea-

sures. Fisher scores not only measure the between-group

differences but also discounts the within-group variances.

Besides, in this work, oculomotor features were explicitly

included, which could not be measured by the other met-

rics. As a result, the proposed image selection method was

able to keep a high classification performance on a much

smaller set of images, while the other metrics failed (see

Figure 5).

Figure 6 demonstrates a qualitative comparison of im-

ages with high and low Fisher scores. Images with high
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Figure 5. Comparison of classification performances (AUC) across

different image selection methods. The Fisher scores are com-

puted using the gaze features introduced in Section 3.2, while the

others are location or distribution based saliency metrics.

Fisher scores (Figures 6a and 6b) have distinct differences

in their fixation maps between the two populations. Particu-

larly, the ASD group consistently fixated nonsocial stimuli

(i.e., food and chair) while controls fixated social stimuli

(i.e., faces and text). For images with low Fisher scores

(Figures 6c and 6d), the two fixation maps are highly sim-

ilar. Subtracting one with the other merely boosted eye-

tracking errors and random fixations in the background. We

also observed that images with higher Fisher scores tend

to attract more fixations (Pearson’s ρ = 0.11, p = 0.005),

and the fixations are less biased towards the image center

(Pearson’s ρ = 0.15, p < 0.001). As suggested by Wang et

al. [38], people with ASD tend to make fewer fixations with

stronger center preference, we believe such differences are

also reflected in the Fisher scores. Both qualitative and

quantitative evaluations show that the proposed image se-

lection plays an important role in our method by success-

fully preserving the most ASD-discriminative features.

In conclusion, our findings demonstrate that a small set

of natural-scene images could reliably identify individuals

with a complex and heterogeneous neurodevelopmental dis-

order. As a result, the diagnostic session can be conducted

in a feasible length of time, and the computational model

can be easily deployed in clinical or home environments.

4.4. Visualization of DNN Features

Fine-tuning a deep neural network of visual attention on

the DoF maps produced highly discriminative features that

significantly improved the SVM classification performance.

In the upcoming analyses, we visualize the learned features

and search for an interpretation of the features and their

roles in existing autism studies.

We investigate the importance of the learned features by

comparing their weights in the linear SVM classification.

The features with the highest and lowest weights (averaged

over fixations) are visualized in Figure 7. Features with pos-

itive and negative weights supported the classification be-

tween what people with ASD fixated and what the controls

did, respectively. To visualize the DNN features, for each

Figure 6. Example images with their Fisher scores. Fixation maps

of the ASD and control groups are superimposed on the images.

Their DoF maps are presented in gray scale.

feature channel, we present 128×128 image patches at six-

teen fixation points that produced the highest responses in

the corresponding neuron.

As shown in Figure 7, we observed an increased lower-

level saliency but decreased social attention in ASD. Peo-

ple with ASD were mostly distinguished by mid-level struc-

tures in a variety of nonsocial objects, e.g., edges, shapes,

and repetitive patterns (Figures 7a–7d). Though also looked

at faces, they shifted fixations towards hair and chin (Fig-

ures 7e and 7f), suggesting a tendency to avoid eye con-

tact [28, 6, 30]. In contrast, social features such as text,

signs, human faces, upper bodies, limbs, etc. (Figures 7g–

7l) identified controls. We also examined how the learned

features corresponded to the semantic attributes defined

by [39]. Notably, Figures 7g, 7i, and 7l represent neu-

rons most activated by fixations on the three social at-

tributes (i.e., text, face, and gazed) defined in the OISE

database [39]. These observations, though learned from nat-

ural scene images without any pre-assumptions, support the

nonsocial preference of ASD [32, 31].

Unlike most computer vision applications, in which

training and testing were performed on different images, our

problem is to test new subjects. Thus the same images were

used for training and testing, but with eye-tracking data of

different subjects. Despite this, we performed an interest-

ing experiment to check how the network would predict the

DoF maps of novel images. Such a network would have

far-reaching impact in a variety of real-world applications,

such as designing autism-liked books or posters. As shown

in Figure 8, the predicted difference maps well agree with
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