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Figure 1: Clustering results from Hannah and Her Sisters. Each unique color shows a particular cluster. It can be seen

that most individuals appear with a consistent color, indicating successful clustering.

Abstract
We present an end-to-end system for detecting and clus-

tering faces by identity in full-length movies. Unlike works

that start with a predefined set of detected faces, we con-

sider the end-to-end problem of detection and clustering

together. We make three separate contributions. First,

we combine a state-of-the-art face detector with a generic

tracker to extract high quality face tracklets. We then in-

troduce a novel clustering method, motivated by the classic

graph theory results of Erdős and Rényi. It is based on the

observations that large clusters can be fully connected by

joining just a small fraction of their point pairs, while just

a single connection between two different people can lead

to poor clustering results. This suggests clustering using a

verification system with very few false positives but perhaps

moderate recall. We introduce a novel verification method,

rank-1 counts verification, that has this property, and use

it in a link-based clustering scheme. Finally, we define a

novel end-to-end detection and clustering evaluation metric

allowing us to assess the accuracy of the entire end-to-end

system. We present state-of-the-art results on multiple video

data sets and also on standard face databases.
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1. Introduction

The problem of identifying face images in video and

clustering them together by identity is a natural precursor to

high impact applications such as video understanding and

analysis. This general problem area was popularized in the

paper “Hello! My name is...Buffy” [9], which used text

captions and face analysis to name people in each frame of

a full-length video. In this work, we use only raw video

(with no captions), and group faces by identity rather than

naming the characters. In addition, unlike face clustering

methods that start with detected faces, we include detection

as part of the problem. This means we must deal with false

positives and false negatives, both algorithmically, and in

our evaluation method. We make three contributions:

• A new approach to combining high-quality face de-

tection [15] and generic tracking [31] to improve both

precision and recall of our video face detection.

• A new method, Erdős-Rényi clustering, for large-scale

clustering of images and video tracklets. We argue

that effective large-scale face clustering requires face

verification with fewer false positives, and we intro-

duce rank-1 counts verification, showing that it indeed

achieves better true positive rates in low false positive

regimes. Rank-1 counts verification, used with simple

link-based clustering, achieves high quality clustering

results on three separate video data sets.

• A principled evaluation for the end-to-end problem of

face detection and clustering in videos; until now there

has been no clear way to evaluate the quality of such an
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Figure 2: Overview of approach. Given a movie, our approach generates tracklets (Sec. 3) and then does Erdős-Rényi

Clustering and FAD verification between all tracklet pairs. (Sec. 4) Our final output is detections with unique character Ids.

end-to-end system, but only to evaluate its individual

parts (detection and clustering).

We structure the paper as follows. In Section 2 we dis-

cuss related work. In Section 3, we describe the first phase

of our system, in which we use a face detector and generic

tracker to extract face tracklets. In Section 4, we introduce

Erdős-Rényi clustering and rank-1 counts verification. Sec-

tions 5 and 6 present experiments and discussions.

2. Related Work

In this section, we first discuss face tracking and then the

problem of naming TV (or movie) characters. We can di-

vide the character-naming work into two categories: fully

unsupervised and with some supervision. We then discuss

prior work using reference images. Related work on clus-

tering is covered in Section 5.2.

Recent work on robust face tracking [36, 29, 24] has

gradually expanded the length of face tracklets, starting

from face detection results. Ozerov et al. [24] merge re-

sults from different detectors by clustering based on spatio-

temporal similarity. Clusters are then merged, interpolated,

and smoothed for face tracklet creation. Similarly, Roth et

al. [29] generate low-level tracklets by merging detection

results, form high-level tracklets by linking low-level track-

lets, and apply the Hungarian algorithm to form even longer

tracklets. Tapaswi et al. [36] improve on this [29] by remov-

ing false positive tracklets.

With the development of multi-face tracking techniques,

the problem of naming TV characters1 has been also widely

studied [35, 13, 9, 2, 39, 40, 37]. Given precomputed face

tracklets, the goal is to assign a name or an ID to a group

of face tracklets with the same identity. Wu et al. [39, 40]

iteratively cluster face tracklets and link clusters into longer

tracks in a bootstrapping manner. Tapaswi et al. [37] train

classifiers to find thresholds for joining tracklets in two

stages: within a scene and across scenes. Similarly, we aim

to generate face clusters in a fully unsupervised manner.

1Another related problem is person re-identification [44, 18, 6] in

which the goal is to tell whether a person of interest seen in one cam-

era has been observed by another camera. Re-identification typically uses

the whole body on short time scales while naming TV characters focuses

on faces, but over a longer period of time.

Though solving this problem may yield a better result

for face tracking, some forms of supervision specific to

the video or characters in the test data can improve perfor-

mance. Tapaswi et al. [35] perform face recognition, cloth-

ing clustering and speaker identification, where face models

and speaker models are first trained on other videos con-

taining the same main characters as in the test set. In [9, 2],

subtitles and transcripts are used to obtain weak labels for

face tracks. More recently, Haurilet et al. [13] solve the

problem without transcripts by resolving name references

only in subtitles. Our approach is more broadly applicable

because it does not use subtitles, transcripts, or any other

supervision related to the identities in the test data, unlike

these other works [35, 13, 9, 2].

As in the proposed verification system, some existing

work [4, 12] uses reference images. For example, index

code methods [12] map each single image to a code based

upon a set of reference images, and then compare these

codes. On the other hand, our method compares the rel-

ative distance of two images with the distance of one of

the images to the reference set, which is different. In ad-

dition, we use the newly defined rank-1 counts, rather than

traditional Euclidean or Mahalanobis distance measures to

compare images [4, 12] for similarity measures.

3. Detection and tracking

Our goal is to take raw videos, with no captions or an-

notations, and to detect all faces and cluster them by iden-

tity. We start by describing our method for generating face

tracklets, or continuous sequences of the same face across

video frames. We wish to generate clean face tracklets that

contain face detections from just a single identity. Ideally,

exactly one tracklet should be generated for an identity from

the moment his/her face appears in a shot until the moment

it disappears or is completely occluded.

To achieve this, we first detect faces in each video frame

using the Faster R-CNN object detector [28], but retrained

on the WIDER face data set [41], as described by Jiang et

al. [15]. Even with this advanced detector, face detection

sometimes fails under challenging illumination or pose. In

videos, those faces can be detected before or after the chal-
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lenging circumstances by using a tracker that tracks both

forward and backward in time. We use the distribution

field tracker [31], a general object tracker that is not trained

specifically for faces. Unlike face detectors, the tracker’s

goal is to find in the next frame the object most similar to

the target in the current frame. The extra faces found by the

tracker compensate for missed detections (Fig. 2, bottom

of block 2). Tracking helps not only to catch false nega-

tives, but also to link faces of equivalent identity in different

frames.

One simple approach to combining a detector and tracker

is to run a tracker forward and backward in time from ev-

ery single face detection for some fixed number of frames,

producing a large number of “mini-tracks”. A Viterbi-style

algorithm [10, 5] can then be used to combine these mini-

tracks into longer sequences. This approach is computation-

ally expensive since the tracker is run many times on over-

lapping subsequences, producing heavily redundant mini-

tracks. To improve performance, we developed the fol-

lowing novel method for combining a detector and tracker.

Happily, it also improves precision and recall, since it takes

advantage of the tracker’s ability to form long face tracks of

a single identity.

The method starts by running the face detector in each

frame. When a face is first detected, a tracker is initialized

with that face. In subsequent frames, faces are again de-

tected. In addition, we examine each current tracklet to see

where it might be extended by the tracking algorithm in the

current frame. We then check the agreement between de-

tection and tracking results. We use the intersection over

union (IoU) between detections and tracking results with

threshold 0.3, and apply the Hungarian algorithm[16] to es-

tablish correspondences among multiple matches. If a de-

tection matches a tracking result, the detection is stored in

the current face sequence such that the tracker can search

in the next frame given the detection result. For the detec-

tions that have no matched tracking result, a new tracklet

is initiated. If there are tracking results that have no asso-

ciated detections, it means that either a) the tracker could

not find an appropriate area on the current frame, or b) the

tracking result is correct while the detector failed to find

the face. The algorithm postpones its decision about the

tracked region for the next α consecutive frames (α = 10).

If the face sequence has any matches with detections within

α frames, the algorithm will keep the tracking results. Oth-

erwise, it will remove the tracking-only results. The sec-

ond block of Fig. 2 summarizes our proposed face tracklet

generation algorithm and shows examples corrected by our

joint detection-tracking strategy. Next, we describe our ap-

proach to clustering based on low false positive verification.

4. Erdős-Rényi Clustering and Rank-1 Counts
Verification

In this section, we describe our approach to clustering

face images, or, in the case of videos, face tracklets. We

adopt the basic paradigm of linkage clustering, in which

each pair of points (either images or tracklets) is evaluated

for linking, and then clusters are formed among all points

connected by linked face pairs. We name our general ap-

proach to clustering Erdős-Rényi clustering since it is in-

spired by classic results in graph theory due to Erdős and

Rényi [7], as described next.

Consider a graph G with n vertices and probability p of

each possible edge being present. This is the Erdős-Rényi

random graph model [7]. The expected number of edges

is
(

n
2

)

p. One of the central results of this work is that, for

ǫ > 0 and n sufficiently large, if

p >
(1 + ǫ) lnn

n
, (1)

then the graph will almost surely be connected (there ex-

ists a path from each vertex to every other vertex). Fig. 3

shows this effect on different graph sizes, obtained through

simulation.
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Figure 3: Simulation of cluster connectedness as a function

of cluster size, N , and the probability p of connecting point

pairs. The figure shows that for various N (different colored

lines), the probability that the cluster is fully connected (on

the y-axis) goes up as more pairs are connected. For larger

graphs, a small probability of connected pairs still leads to

high probability that the graph will be fully connected.

Consider a clustering system in which links are made

between tracklets by a verifier (a face verification system),

whose job is to say whether a pair of tracklets is the “same”

person or two “different” people. While graphs obtained

in clustering problems are not uniformly random graphs,

the results of Erdős and Rényi suggest that this verifier can

have a fairly low recall (percentage of same links that are

connected) and still do a good job connecting large clus-

ters. In addition, false matches may connect large clusters

of different identities, dramatically hurting clustering per-

formance. This motivates us to build a verifier that focuses

on low false positives rather than high recall. In the next

section, we present our approach to building a verifier that

is designed to have good recall at low false positive rates,
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and hence is appropriate for clustering problems with large

clusters, like grouping cast members in movies.

4.1. Rank­1 counts for fewer false positives

Our method compares images by comparing their mul-

tidimensional feature vectors. More specifically, we count

the number of feature dimensions in which the two images

are closer in value than the first image is to any of a set

of reference images. We call this number the rank-1 count

similarity. Intuitively, two images whose feature values are

“very close” for many different dimensions are more likely

to be the same person. Here, an image is considered “very

close” to a second image in one dimension if it is closer to

the second image in that dimension than to any of the refer-

ence images.

More formally, to compare two images IA and IB , our

first step is to obtain feature vectors A and B for these im-

ages. We extract 4096-D feature vectors from the fc7 layer

of a standard pre-trained face recognition CNN [26]. In

addition to these two images, we use a fixed reference set

with G images (we typically set G = 50), and compute

CNN feature vectors for each of these reference images.2

Let the CNN feature vectors for the reference images be

R1, R2, ..., RG. We sample reference images from the TV

Human Interactions Dataset [27], since these are likely to

have a similar distribution to the images we want to cluster.

For each feature dimension i (of the 4096), we ask

whether

|Ai −Bi| < min
j

|Ai −R
j
i |.

That is, is the value in dimension i closer between A and B

than between A and all the reference images? If so, then we

say that the ith feature dimension is rank-1 between A and

B. The cumulative rank-1 counts feature R is simply the

number of rank-1 counts across all 4096 features:

R =
4096
∑

i=1

I

[

|Ai −Bi| < min
j

|Ai −R
j
i |

]

,

where I[·] is an indicator function which is 1 if the expres-

sion is true and 0 otherwise.

Taking inspiration from Barlow’s notion that the brain

takes special note of “suspicious coincidences” [1], each

rank-1 feature dimension can be considered a suspicious

coincidence. It provides some weak evidence that A and

B may be two images of the same person. On the other

hand, in comparing all 4096 feature dimensions, we expect

to obtain quite a large number of rank-1 feature dimensions

even if A and B are not the same person.

When two images and the reference set are selected ran-

domly from a large distribution of faces (in this case they

2The reference images may overlap in identity with the clustering set,

but we choose reference images so that there is no more than one occur-

rence of each person in the reference set.

are usually different people), the probability that A is closer

to B in a particular feature dimension than to any of the

reference images is just

1

G+ 1
.

Repeating this process 4096 times means that the expected

number of rank-1 counts is simply

E[R] =
4096

G+ 1
,

since expectations are linear (even in the presence of statisti-

cal dependencies among the feature dimensions). Note that

this calculation is a fairly tight upper bound on the expected

number of rank-1 features conditioned on the images being

of different identities, since most pairs of images in large

clustering problems are different, and conditioning on ”dif-

ferent” will tend reduce the expected rank-1 count. Now if

two images IA and IB have a large rank-1 count, it is likely

they represent the same person. The key question is how to

set the threshold on these counts to obtain the best verifica-

tion performance.

Recall that our goal, as guided by the Erdős-Rényi ran-

dom graph model, is to find a threshold on the rank-1

counts R so that we obtain very few false positives (declar-

ing two different faces to be “same”) while still achieving

good recall (a large number of same faces declared to be

“same”). Fig. 4 shows distributions of rank-1 counts for var-

ious subsets of image pairs from Labeled Faces in the Wild

(LFW) [14]. The red curve shows the distribution of rank-1

counts for mismatched pairs from all possible mismatched

pairs in the entire data set (not just the test sets). Notice

that the mean is exactly where we would expect with a

gallery size of 50, at 4096

51
≈ 80. The green curve shows the

distribution of rank-1 counts for the matched pairs, which

is clearly much higher. The challenge for clustering, of

course, is that we don’t have access to these distributions

since we don’t know which pairs are matched and which are

not. The yellow curve shows the rank-1 counts for all pairs

of images in LFW, which is nearly identical to the distribu-

tion of mismatched rank-1 counts, since the vast majority

of possibe pairs in all of LFW are mismatched. This is the

distribution to which the clustering algorithm has access.

If the 4,096 CNN features were statistically indepen-

dent (but not identically distributed), then the distribution

of rank-1 counts would be a binomial distribution (blue

curve). In this case, it would be easy to set a threshold on

the rank-1 counts to guarantee a small number of false posi-

tives, by simply setting the threshold to be near the right end

of the mismatched (red) distribution. However, the depen-

dencies among the CNN features prevent the mismatched

rank-1 counts distribution from being binomial, and so this

approach is not possible.
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Figure 4: LFW distribution of rank-1 counts. Each distribu-

tion is normalized to sum to 1.

Table 1: Verification performance comparisons on all pos-

sible LFW pairs. The proposed rank-1 counts gets much

higher recall at fixed FPRs.

FPR R
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R
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D
is

ta
n
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]

1E-9 0.0252 0.0068 0.0016 0.0086

1E-8 0.0342 0.0094 0.0017 0.0086

1E-7 0.0614 0.0330 0.0034 0.0086

1E-6 0.1872 0.1279 0.0175 0.0086

1E-5 0.3800 0.3154 0.0767 0.0427

1E-4 0.6096 0.5600 0.2388 0.2589

1E-3 0.8222 0.7952 0.5215 0.8719

1E-2 0.9490 0.9396 0.8204 0.9656

1E-1 0.9939 0.9915 0.9776 0.9861

4.2. Automatic determination of rank­1 count
threshold

Ideally, if we could obtain the rank-1 count distribution

of mismatched pairs of a test set, we could set the threshold

such that the number of false positives becomes very low.

However, it is not clear how to get the actual distribution of

rank-1 counts for mismatched pairs at test time.

Instead, we can estimate the shape of the mismatched

pair rank-1 count distribution using one distribution (LFW),

and use it to estimate the distribution of mismatched rank-1

counts for the test distribution. We do this by fitting the left

half of the LFW distribution to the left half of the clustering

distribution using scale and location parameters. The rea-

son we use the left half to fit the distribution is that this part

of the rank-1 counts distribution is almost exclusively influ-

ence by mismatched pairs. The right side of this matched

distribution then gives us an approximate way to threshold

the test distribution to obtain a certain false positive rate. It

is this method that we use to report the results in the left-

most column of Table 2.

A key property of our rank-1 counts verifier is that it

has good recall across a wide range of the low false pos-

itive regime. Thus, our method is relatively robust to the

setting of the rank-1 counts threshold. In order to show

that our rank-1 counts feature has good performance for the

types of verification problems used in clustering, we con-

struct a verification problem using all possible pairs of the

LFW database [14]. In this case, the number of mismatched

pairs (quadratic in N ) is much greater than the number of

matched pairs. As shown in Table 1, we observe that our

verifier has higher recall than three competing methods (all

of which use the same base CNN representation) at low

false positive rates.

Using rank-1 counts verification for tracklet cluster-

ing. In our face clustering application, we consider every

pair (I, J) of tracklets, calculate a value akin to the rank-1

count R, and join the tracklets if the threshold is exceeded.

In order to calculate an R value for tracklets, we sample a

random subset of 10 face images from each tracklet, com-

pute a rank-1 count R for each pair of images, and take the

maximum of the resulting R values.

4.3. Averaging over gallery sets

While our basic algorithm uses a fixed (but randomly se-

lected) reference gallery, the method is susceptible to the

case in which one of the gallery images happens to be sim-

ilar in appearance to a person with a large cluster, resulting

in a large number of false negatives. To mitigate this effect,

we implicitly average the rank-1 counts over an exponential

number of random galleries, as follows.

The idea is to sample random galleries of size g from a

larger super-gallery with G images; we used g = 50, G =
1000. We are interested rank-1 counts, in which image A’s

feature is closer to B than to any of the gallery of size g.

Suppose we know that among the 1000 super-gallery im-

ages, there are K (e.g., K = 3) that are closer to A than B

is. The probability that a random selection (with replace-

ment) of g images from the super-gallery would contain

none of the K closer images (and hence represent a rank-1

count) is

r(A,B) =

(

1.0−
K

G

)g

.

That is, r(A,B) is the probability of having a rank-1 count

with a random gallery, and using r(A,B) as the count is

equivalent to averaging over all possible random galleries.

In our final algorithm, we sum these probabilities rather

than the deterministic rank-1 counts.

4.4. Efficient implementation

For simplicity, we discuss the computational complexity

of our fixed gallery algorithm; the complexity of the average

gallery algorithm is similar. With F , G, and N indicating

the feature dimensionality, number of gallery images, and
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number of face tracklets to be clustered, the time complex-

ity of the naive rank-1 count algorithm is O(F ∗G ∗N2).
However, for each feature dimension, we can sort N test

image feature values and G gallery image feature values in

time O((N +G) log(N +G)). Then, for each value in test

image A, we find the closest gallery value, and increment

the rank-1 count for the test images that are closer to A. Let

Y be the average number of steps to find the closest gallery

value. This is typically much smaller than N . The time

complexity is then O(F ∗ [(N +G) log(N +G)+N ∗Y ]).

4.5. Clustering with do­not­link constraints

It is common in clustering applications to incorporate

constraints such as do-not-link or must-link, which specify

that certain pairs should be in separate clusters or the same

cluster, respectively [38, 32, 19, 17, 21]. They are also often

seen in the face clustering literature [3, 39, 40, 25, 37, 43].

These constraints can be either rigid, implying they must be

enforced [38, 32, 21, 25], or soft, meaning that violations

cause an increase in the loss function, but those violations

may be tolerated if other considerations are more important

in reducing the loss [19, 17, 39, 40, 43].

In this work, we assume that if two faces appear in the

same frame, they must be from different people, and hence

their face images obey a do-not-link constraint. Further-

more, we extend this hard constraint to the tracklets that

contain faces. If two tracklets have any overlap in time,

then the entire tracklets represent a do-not-link constraint.

We enforce these constraints on our clustering proce-

dure. Note that connecting all pairs below a certain dis-

similarity threshold followed by transitive closure is equiv-

alent to single-linkage agglomerative clustering with a join-

ing threshold. In agglomerative clustering, a pair of closest

clusters is found and joined at each iteration until there is a

single cluster left or a threshold met. A naı̈ve implementa-

tion will simply search and update the dissimilarity matrix

at each iteration, making the whole process O(n3) in time.

There are faster algorithms giving the optimal time com-

plexity O(n2) for single-linkage clustering [34, 22]. Many

of these algorithms incur a dissimilarity update at each iter-

ation, i.e. update d(i, k) = min(d(i, k), d(j, k)) after com-

bining cluster i and j (and using i as the cluster id of the

resulting cluster). If the pairs with do-not-link constraints

are initialized with +∞ dissimilarity, the aforementioned

update rule can be modified to incorporate the constraints

without affecting the time and space complexity:

d(i, k) =







min(d(i, k), d(j, k)) d(i, k) 6= +∞
AND d(j, k) 6= +∞

+∞ otherwise

5. Experiments

We evaluate our proposed approach on three video data

sets: the Big Bang Theory (BBT) Season 1 (s01), Episodes

(a) Rank-1 Count (b) Rank-Order Distance [45]

Figure 5: Visualization of the combined detection and clus-

tering metric for the first few minutes of the Hannah set.

1-6 (e01-e06) [2], Buffy the Vampire Slayer (Buffy) Sea-

son 5 (s05), Episodes 1-6 (e01-e06) [2], and Hannah and

Her Sisters (Hannah) [24]. Each episode of the BBT and

Buffy data set contains 5-8 and 11-17 characters respec-

tively, while Hannah has annotations for 235 characters.3

Buffy and Hannah have many occlusions which make the

face clustering problem more challenging. In addition to the

video data sets, we also evaluate our clustering algorithm on

LFW [14] which contains 5730 subjects.4

An end-to-end evaluation metric. There are many eval-

uation metrics used to independently evaluate detection,

tracking, and clustering. Previously, it has been difficult to

evaluate the relative performance of two end-to-end systems

because of the complex trade-offs between detection, track-

ing, and clustering performance. Some researchers have at-

tempted to overcome this problem by providing a reference

set of detections with suggested metrics [20], but this ap-

proach precludes optimizing complete system performance.

To support evaluation of the full video-to-identity pipeline,

in which false positives, false negatives, and clustering er-

rors are handled in a common framework, we introduce uni-

fied pairwise precision (UPP) and unified pairwise recall

(UPR) as follows.

Given a set of annotations, {a1, a2, ..., aA} and detec-

tions, {d1, d2, ..., dD}, we consider the union of three sets

of tuples: false positives resulting from unannotated face

detections {di, ∅}; valid face detections {di, aj}; and false

negatives resulting from unmatched annotations {∅, aj}.

Fig. 5 visualizes every possible pair of tuples ordered by

false positives, valid detections, and false negatives for the

first few minutes of the Hannah data set. Further, groups of

tuples have been ordered by identity to show blocks of iden-

tity to aid our understanding of the visualization, although

the order is inconsequential for the numerical analysis.

In Fig 5, the large blue region (and the regions it con-

tains) represents all pairs of annotated detections, where

we have valid detections corresponding to their best anno-

tation. In this region, white pairs are correctly clustered,

magenta pairs are the same individual but not clustered,

cyan pairs are clustered but not the same individual, and

3We removed garbage classes such as ‘unknown’ or ‘false positive’.
4All known ground truth errors are removed.
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Table 2: Clustering performance comparisons on various data sets. The leftmost shows our rank1count by setting a threshold

automatically. For the rest of the columns, we show f-scores using optimal (oracle-supplied) thresholds. For BBT and Buffy,

we show average scores over six episodes. The full table with individual episode results is given in Supp. Mat. Best viewed

in color (1st place, 2nd place, 3rd place).
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Video

BBT s01 [2] .7728 .7828 .7365 .7612 .6692 .6634 .1916 .2936 .6319 .2326 .1945

Buffy s05 [2] .5661 .6299 .3931 .5845 .2990 .5439 .1601 .1409 .5351 .1214 .1143

Hannah [24] .6436 .6813 .2581 .3620 .4123 .3955 .1886 .1230 .3344 .1240 .1052

Image LFW [14] .8532 .8943 .8498 .3735 .5989 .5812 .3197 .0117 .2538 .4520 .3133

blue pairs are not clustered pairs from different individuals.

The upper left portion of the matrix represents false posi-

tives with no corresponding annotation. The green pairs in

this region correspond to any false positive matching with

any valid detection. The lower right portion of the matrix

corresponds to the false negatives. The red pairs in this

region correspond to any missed clustered pairs resulting

from these missed detections. The ideal result would con-

tain blue and white pairs, with no green, red, cyan, or ma-

genta.

The unified pairwise precision (UPP) is the fraction of

pairs, {di, aj} within all clusters with matching identi-

ties, i.e., the number of white pairs divided by the num-

ber of white, cyan, and green pairs. UPP decreases if: two

matched detections in a cluster do not correspond to the

same individual; if a matched detection is clustered with

a false positive; for each false positive regardless of its clus-

tering; and for false positives clustered with valid detec-

tions. Similarly, the unified pairwise recall (UPR) is the

fraction of pairs within all identities that have been properly

clustered, i.e., the number of white pairs divided by number

of white, magenta, and red pairs. UPR decreases if: two

matched detections of the same identity are not clustered;

a matched detection should be matched but there is no cor-

responding detection; for each false negative; and for false

negative pairs that should be detected and clustered. The

only way to achieve perfect UPP and UPR is to detect every

face with no false positives and cluster all faces correctly.

At a glance, our visualization in Fig. 5 shows that our de-

tection produces few false negatives, many more false posi-

tives, and is less aggressive in clustering. Using this unified

metric, others can tune their own detection, tracking, and

clustering algorithms to optimize the unified performance

metrics. Note that for image matching without any detec-

tion failures, the UPP and UPR reduce to standard pairwise

precision and pairwise recall.

The UPP and UPR can be summarized with a single F-

measure (the weighted harmonic mean) providing a single,

unified performance measure for the entire process. It can

be α-weighted to alter the relative value of precision and

recall performance:

Fα =
1

α
UPP

+ 1−α
UPR

(2)

where α ∈ [0, 1]. α = 0.5 denotes a balanced F-measure.

5.1. Threshold for rank­1 counts

The leftmost column in Table 2 shows our clustering re-

sults when the threshold is set automatically by the valida-

tion set. We used LFW as a validation set for BBT, Buffy

and Hannah while Hannah was used for LFW. Note that the

proposed method is very competitive even when the thresh-

old is automatically set.

5.2. Comparisons

We can divide other clustering algorithms into two broad

categories–link-based clustering algorithms (like ours) that

use a different similarity function and clustering algorithms

that are not link-based (such as spectral clustering [33]).

Table 2 shows the comparisons to various distance func-

tions [4, 23, 45] with our link-based clustering algorithm.

L2 shows competitive performance in LFW while the per-

formance drops dramatically when a test set has large pose

variations. We also compare against a recent so-called

“template adaptation” method [4] which also requires a ref-

erence set. It takes 2nd and 3rd place on Buffy and BBT. In

addition, we compare to the rank-order method [45] in two

different ways: link-based clustering algorithms using their

rank-order distance, and rank-order distance based cluster-

ing.

In addition, we compare against several generic cluster-

ing algorithms (Affinity Propagation [11], DBSCAN [8],
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Clustering results from Buffy the Vampire Slayer. A failure example can be seen in frame (e), in which the main

character Buffy (otherwise in a purple box) in shown in a pink box.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Clustering results from the Big Bang Theory. A failure example can be seen in frame (d), in which the main

character Howard (otherwise in a magenta box) in shown in a gray box.

Spectral Clustering [33], Birch [42], KMeans [30]), where

L2 distance is used as pairwise metric. For algorithms that

can take as input the similarity matrix (Affinity Propagation,

DBSCAN, Spectral Clustering), do-not-link constraints are

applied by setting the distance between the corresponding

pairs to ∞. Note that this is just an approximation, and in

general does not guarantee the constraints in the final clus-

tering result (e.g. for single-linkage agglomerative cluster-

ing, a modified update rule is also needed in Section 4.5).

Note that all other settings (feature encoding, tracklet

generation) are common for all methods. In Table 2, except

for the leftmost column, we report the best F0.5 scores using

optimal (oracle-supplied) thresholds for (number of clus-

ters, distance). The link-based clustering algorithm with

rank-1 counts outperforms the state-of-the-art on all four

data sets in F0.5 score. Figures 6 and 7 show some cluster-

ing results on Buffy and BBT.

6. Discussion

We have presented a system for doing end-to-end clus-

tering in full length videos and movies. In addition to a

careful combination of detection and tracking, and a new

end-to-end evaluation metric, we have introduced a novel

approach to link-based clustering that we call Erdős-Rényi

clustering. We demonstrated a method for automatically es-

timating a good decision threshold for a verification method

based on rank-1 counts by estimating the underlying portion

of the rank-1 counts distribution due to mismatched pairs.

This decision threshold was shown to result in good re-

call at a low false-positive operating point. Such operating

points are critical for large clustering problems, since the

vast majority of pairs are from different clusters, and false

positive links that incorrectly join clusters can have a large

negative effect on clustering performance.

There are several things that could disrupt our algorithm:

a) if a high percentage of different pairs are highly similar

(e.g. family members), b) if only a small percentage of pairs

are different (e.g., one cluster contains 90% of the images),

and if same pairs lack lots of matching features (e.g., ev-

ery cluster is a pair of images of the same person under

extremely different conditions). Nevertheless, we showed

excellent results on 3 popular video data sets. Not only do

we dominate other methods when thresholds are optimized

for clustering, but we outperform other methods even when

our thresholds are picked automatically.
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