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Abstract

In visual question answering (VQA), an algorithm must

answer text-based questions about images. While multi-

ple datasets for VQA have been created since late 2014,

they all have flaws in both their content and the way al-

gorithms are evaluated on them. As a result, evaluation

scores are inflated and predominantly determined by an-

swering easier questions, making it difficult to compare dif-

ferent methods. In this paper, we analyze existing VQA al-

gorithms using a new dataset called the Task Driven Im-

age Understanding Challenge (TDIUC), which has over 1.6

million questions organized into 12 different categories. We

also introduce questions that are meaningless for a given

image to force a VQA system to reason about image con-

tent. We propose new evaluation schemes that compensate

for over-represented question-types and make it easier to

study the strengths and weaknesses of algorithms. We an-

alyze the performance of both baseline and state-of-the-art

VQA models, including multi-modal compact bilinear pool-

ing (MCB), neural module networks, and recurrent answer-

ing units. Our experiments establish how attention helps

certain categories more than others, determine which mod-

els work better than others, and explain how simple models

(e.g. MLP) can surpass more complex models (MCB) by

simply learning to answer large, easy question categories.

1. Introduction

In open-ended visual question answering (VQA) an al-

gorithm must produce answers to arbitrary text-based ques-

tions about images [21, 3]. VQA is an exciting computer

vision problem that requires a system to be capable of many

tasks. Truly solving VQA would be a milestone in artificial

intelligence, and would significantly advance human com-

puter interaction. However, VQA datasets must test a wide

range of abilities for progress to be adequately measured.

VQA research began in earnest in late 2014 when the
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Figure 1: A good VQA benchmark tests a wide range of

computer vision tasks in an unbiased manner. In this paper,

we propose a new dataset with 12 distinct tasks and evalu-

ation metrics that compensate for bias, so that the strengths

and limitations of algorithms can be better measured.

DAQUAR dataset was released [21]. Including DAQUAR,

six major VQA datasets have been released, and algorithms

have rapidly improved. On the most popular dataset, ‘The

VQA Dataset’ [3], the best algorithms are now approach-

ing 70% accuracy [5] (human performance is 83%). While

these results are promising, there are critical problems with

existing datasets in terms of multiple kinds of biases. More-

over, because existing datasets do not group instances into

meaningful categories, it is not easy to compare the abilities

of individual algorithms. For example, one method may ex-

cel at color questions compared to answering questions re-

quiring spatial reasoning. Because color questions are far

more common in the dataset, an algorithm that performs

well at spatial reasoning will not be appropriately rewarded

for that feat due to the evaluation metrics that are used.

Contributions: Our paper has four major contributions

aimed at better analyzing and comparing VQA algorithms:

1) We create a new VQA benchmark dataset where ques-

tions are divided into 12 different categories based on the

task they solve; 2) We propose two new evaluation metrics

that compensate for forms of dataset bias; 3) We balance

the number of yes/no object presence detection questions to
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assess whether a balanced distribution can help algorithms

learn better; and 4) We introduce absurd questions that force

an algorithm to determine if a question is valid for a given

image. We then use the new dataset to re-train and evalu-

ate both baseline and state-of-the-art VQA algorithms. We

found that our proposed approach enables more nuanced

comparisons of VQA algorithms, and helps us understand

the benefits of specific techniques better. In addition, it also

allowed us to answer several key questions about VQA al-

gorithms, such as, ‘Is the generalization capacity of the al-

gorithms hindered by the bias in the dataset?’, ‘Does the use

of spatial attention help answer specific question-types?’,

‘How successful are the VQA algorithms in answering less-

common questions?’, and ’Can the VQA algorithms differ-

entiate between real and absurd questions?’

2. Background

2.1. Prior Natural Image VQA Datasets

Six datasets for VQA with natural images have been

released between 2014–2016: DAQUAR [21], COCO-

QA [25], FM-IQA [6], The VQA Dataset [3], Vi-

sual7W [35], and Visual Genome [18]. FM-IQA needs hu-

man judges and has not been widely used, so we do not dis-

cuss it further. Table 1 shows statistics for the other datasets.

Following others [13, 34, 29], we refer to the portion of The

VQA Dataset containing natural images as COCO-VQA.

Detailed dataset reviews can be found in [14] and [28].

All of the aforementioned VQA datasets are biased.

DAQUAR and COCO-QA are small and have a limited

variety of question-types. Visual Genome, Visual7W, and

COCO-VQA are larger, but they suffer from several biases.

Bias takes the form of both the kinds of questions asked and

the answers that people give for them. For COCO-VQA, a

system trained using only question features achieves 50%

accuracy [13]. This suggests that some questions have pre-

dictable answers. Without a more nuanced analysis, it is

challenging to determine what kinds of questions are more

dependent on the image. For datasets made using Mechani-

cal Turk, annotators often ask object recognition questions,

e.g., ‘What is in the image?’ or ‘Is there an elephant in the

image?’. Note that in the latter example, annotators rarely

ask that kind of question unless the object is in the image.

On COCO-VQA, 79% of questions beginning with ‘Is there

a’ will have ‘yes’ as their ground truth answer.

In 2017, the VQA 2.0 [7] dataset was introduced. In

VQA 2.0, the same question is asked for two different

images and annotators are instructed to give opposite an-

swers, which helped reduce language bias. However, in

addition to language bias, these datasets are also biased in

their distribution of different types of questions and the dis-

tribution of answers within each question-type. Existing

VQA datasets use performance metrics that treat each test

instance with equal value (e.g., simple accuracy). While

some do compute additional statistics for basic question-

types, overall performance is not computed from these sub-

scores [3, 25]. This exacerbates the issues with the bias

because the question-types that are more likely to be bi-

ased are also more common. Questions beginning with

‘Why’ and ‘Where’ are rarely asked by annotators com-

pared to those beginning with ‘Is’ and ’Are’. For example,

on COCO-VQA, improving accuracy on ‘Is/Are’ questions

by 15% will increase overall accuracy by over 5%, but an-

swering all ‘Why/Where’ questions correctly will increase

accuracy by only 4.1% [14]. Due to the inability of the ex-

isting evaluation metrics to properly address these biases,

algorithms trained on these datasets learn to exploit these

biases, resulting in systems that work poorly when deployed

in the real-world.

For related reasons, major benchmarks released in the

last decade do not use simple accuracy for evaluating image

recognition and related computer vision tasks, but instead

use metrics such as mean-per-class accuracy that compen-

sates for unbalanced categories. For example, on Caltech-

101 [4], even with balanced training data, simple accuracy

fails to address the fact that some categories were much eas-

ier to classify than others (e.g., faces and planes were easy

and also had the largest number of test images). Mean per-

class accuracy compensates for this by requiring a system

to do well on each category, even when the amount of test

instances in categories vary considerably.

Existing benchmarks do not require reporting accuracies

across different question-types. Even when they are re-

ported, the question-types can be too coarse to be useful,

e.g., ‘yes/no’, ‘number’ and ‘other’ in COCO-VQA. To im-

prove the analysis of the VQA algorithms, we categorize the

questions into meaningful types, calculate the sub-scores,

and incorporate them in our evaluation metrics.

2.2. Synthetic Datasets that Fight Bias

Previous works have studied bias in VQA and proposed

countermeasures. In [33], the Yin and Yang dataset was cre-

ated to study the effect of having an equal number of binary

(yes/no) questions about cartoon images. They found that

answering questions from a balanced dataset was harder.

This work is significant, but it was limited to yes/no ques-

tions and their approach using cartoon imagery cannot be

directly extended to real-world images.

One of the goals of this paper is to determine what kinds

of questions an algorithm can answer easily. In [1], the

SHAPES dataset was proposed, which has similar objec-

tives. SHAPES is a small dataset, consisting of 64 images

that are composed by arranging colored geometric shapes in

different spatial orientations. Each image has the same 244

yes/no questions, resulting in 15,616 questions. Although

SHAPES serves as an important adjunct evaluation, it alone
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cannot suffice for testing a VQA algorithm. The major lim-

itation of SHAPES is that all of its images are of 2D shapes,

which are not representative of real-world imagery. Along

similar lines, Compositional Language and Elementary Vi-

sual Reasoning (CLEVR) [12] also proposes use of 3D ren-

dered geometric objects to study reasoning capacities of a

model. CLEVR is larger than SHAPES and makes use of

3D rendered geometric objects. In addition to shape and

color, it adds material property to the objects. CLEVR has

five types of questions: attribute query, attribute compari-

son, integer comparison, counting, and existence.

Both SHAPES and CLEVR were specifically tailored for

compositional language approaches [1] and downplay the

importance of visual reasoning. For instance, the CLEVR

question, ‘What size is the cylinder that is left of the brown

metal thing that is left of the big sphere?’ requires demand-

ing language reasoning capabilities, but only limited visual

understanding is needed to parse simple geometric objects.

Unlike these three synthetic datasets, our dataset contains

natural images and questions. To improve algorithm anal-

ysis and comparison, our dataset has more (12) explicitly

defined question-types and new evaluation metrics.

3. TDIUC for Nuanced VQA Analysis

In the past two years, multiple publicly released datasets

have spurred the VQA research. However, due to the biases

and issues with evaluation metrics, interpreting and com-

paring the performance of VQA systems can be opaque.

We propose a new benchmark dataset that explicitly assigns

questions into 12 distinct categories. This enables mea-

suring performance within each category and understand

which kind of questions are easy or hard for today’s best

systems. Additionally, we use evaluation metrics that fur-

ther compensate for the biases. We call the dataset the

Task Driven Image Understanding Challenge (TDIUC). The

overall statistics and example images of this dataset are

shown in Table 1 and Fig. 2 respectively.

TDIUC has 12 question-types that were chosen to rep-

resent both classical computer vision tasks and novel high-

level vision tasks which require varying degrees of image

understanding and reasoning. The question-types are:

1. Object Presence (e.g., ‘Is there a cat in the image?’)

2. Subordinate Object Recognition (e.g., ‘What kind of

furniture is in the picture?’)

3. Counting (e.g., ’How many horses are there?’)

4. Color Attributes (e.g., ‘What color is the man’s tie?’)

5. Other Attributes (e.g., ‘What shape is the clock?’)

6. Activity Recognition (e.g., ‘What is the girl doing?’)

7. Sport Recognition (e.g.,‘What are they playing?’)

8. Positional Reasoning (e.g., ‘What is to the left of the

man on the sofa?’)

9. Scene Classification (e.g., ‘What room is this?’)

Q: What color is the suitcase? A:

Absurd Q: What color is the man’s

hat? A: White Q: What sport is

this? A: Tennis

Q: What is to the left of the blue

bus? A: Car Q: Is there a train in

the photo? A: No Q: How many bi-

cycles are there? A: One

Figure 2: Images from TDIUC and their corresponding

question-answer pairs.

10. Sentiment Understanding (e.g.,‘How is she feeling?’)

11. Object Utilities and Affordances (e.g.,‘What object

can be used to break glass?’)

12. Absurd (i.e., Nonsensical queries about the image)

The number of each question-type in TDIUC is given in

Table 2. The questions come from three sources. First,

we imported a subset of questions from COCO-VQA and

Visual Genome. Second, we created algorithms that gen-

erated questions from COCO’s semantic segmentation an-

notations [19], and Visual Genome’s objects and attributes

annotations [18]. Third, we used human annotators for cer-

tain question-types. In the following sections, we briefly

describe each of these methods.

3.1. Importing Questions from Existing Datasets

We imported questions from COCO-VQA and Visual

Genome belonging to all question-types except ‘object util-

ities and affordances’. We did this by using a large number

of templates and regular expressions. For Visual Genome,

we imported questions that had one word answers. For

COCO-VQA, we imported questions with one or two word

answers and in which five or more annotators agreed.

For color questions, a question would be imported if

it contained the word ‘color’ in it and the answer was a

commonly used color. Questions were classified as activ-

ity or sports recognition questions if the answer was one of

nine common sports or one of fifteen common activities and

the question contained common verbs describing actions or

sports, e.g., playing, throwing, etc. For counting, the ques-

tion had to begin with ‘How many’ and the answer had to

be a small countable integer (1-16). The other categories

were determined using regular expressions. For example, a

question of the form ‘Are feeling ?’ was classified

as sentiment understanding and ‘What is to the right of/left

of/ behind the ?’ was classified as positional reasoning.

Similarly, ‘What <OBJECT CATEGORY> is in the image?’
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Table 1: Comparison of previous natural image VQA datasets with TDIUC. For COCO-VQA, the explicitly defined number

of question-types is used, but a much finer granularity would be possible if they were individually classified. MC/OE refers

to whether open-ended or multiple-choice evaluation is used.

Images Questions
Annotation

Source

Question

Types

Unique

Answers
MC/OE

DAQUAR 1,449 16,590 Both 3 968 OE

COCO-QA 123,287 117,684 Auto 4 430 OE

COCO-VQA 204,721 614,163 Manual 3 145,172 Both

Visual7W 47,300 327,939 Manual 7 25,553 MC

Visual Genome 108,000 1,773,358 Manual 6 207,675 OE

TDIUC (This Paper) 167,437 1,654,167 Both 12 1,618 OE

and similar templates were used to populate subordinate ob-

ject recognition questions. This method was used for ques-

tions about the season and weather as well, e.g., ‘What sea-

son is this?’, ‘Is this rainy/sunny/cloudy?’, or ‘What is the

weather like?’ were imported to scene classification.

3.2. Generating Questions using Image Annotations

Images in the COCO dataset and Visual Genome both

have individual regions with semantic knowledge attached

to them. We exploit this information to generate new ques-

tions using question templates. To introduce variety, we

define multiple templates for each question-type and use

the annotations to populate them. For example, for count-

ing we use 8 templates, e.g., ‘How many <objects> are

there?’, ‘How many <objects> are in the photo?’, etc.

Since the COCO and Visual Genome use different annota-

tion formats, we discuss them separately.

3.2.1 Questions Using COCO annotations

Sport recognition, counting, subordinate object recognition,

object presence, scene understanding, positional reasoning,

and absurd questions were created from COCO, similar to

the scheme used in [15]. For counting, we count the num-

ber of object instances in an image annotation. To minimize

ambiguity, this was only done if objects covered an area of

at least 2,000 pixels.

For subordinate object recognition, we create ques-

tions that require identifying an object’s subordinate-level

object classification based on its larger semantic category.

To do this, we use COCO supercategories, which are se-

mantic concepts encompassing several objects under a com-

mon theme, e.g., the supercategory ‘furniture’ contains

chair, couch, etc. If the image contains only one type of

furniture, then a question similar to ‘What kind of furni-

ture is in the picture?’ is generated because the answer is

not ambiguous. Using similar heuristics, we create ques-

tions about identifying food, electronic appliances, kitchen

appliances, animals, and vehicles.

To create object presence questions, we find images

with objects that have an area larger than 2,000 pixels and

then produce a question similar to ‘Is there a <object>

in the picture?’ These questions will have ‘yes’ as an an-

swer. To create negative questions, we ask questions about

COCO objects that are not present in an image. To make

this harder, we prioritize the creation of questions referring

to absent objects that belong to the same supercategory of

objects that are present in the image. A street scene is more

likely to contain trucks and cars than it is to contain couches

and televisions. Therefore, it is more difficult to answer ‘Is

there a truck?’ in a street scene than it is to answer ‘Is there

a couch?’

For sport recognition questions, we detect the pres-

ence of specific sports equipment in the annotations and

ask questions about the type of sport being played. Images

must only contain sports equipment for one particular sport.

A similar approach was used to create scene understanding

questions. For example, if a toilet and a sink are present

in annotations, the room is a bathroom and an appropriate

scene recognition question can be created. Additionally, we

use the supercategories ‘indoor’ and ‘outdoor’ to ask ques-

tions about where a photo was taken.

For creating positional reasoning questions, we use the

relative locations of bounding boxes to create questions

similar to ‘What is to the left/right of <object>?’ This

can be ambiguous due to overlapping objects, so we employ

the following heuristics to eliminate ambiguity: 1) The ver-

tical separation between the two bounding boxes should be

within a small threshold; 2) The objects should not overlap

by more than the half the length of its counterpart; and 3)

The objects should not be horizontally separated by more

than a distance threshold, determined by subjectively judg-

ing optimal separation to reduce ambiguity. We tried to gen-

erate above/below questions, but the results were unreliable.

Absurd questions test the ability of an algorithm to

judge when a question is not answerable based on the im-

age’s content. To make these, we make a list of the objects

that are absent from a given image, and then we find ques-

tions from rest of TDIUC that ask about these absent ob-

jects, with the exception of yes/no and counting questions.

This includes questions imported from COCO-VQA, auto-
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Table 2: The number of questions per type in TDIUC.

Questions Unique Answers

Scene Recognition 66,706 83

Sport Recognition 31,644 12

Color Attributes 195,564 16

Other Attributes 28,676 625

Activity Recognition 8,530 13

Positional Reasoning 38,326 1,300

Sub. Object Recognition 93,555 385

Absurd 366,654 1

Utility/Affordance 521 187

Object Presence 657,134 2

Counting 164,762 16

Sentiment Understanding 2,095 54

Grand Total 1,654,167 1,618

generated questions, and manually created questions. We

make a list of all possible questions that would be ‘absurd’

for each image and we uniformly sample three questions per

image. In effect, we will have same question repeated mul-

tiple times throughout the dataset, where it can either be a

genuine question or a nonsensical question. The algorithm

must answer ‘Does Not Apply’ if the question is absurd.

3.2.2 Questions Using Visual Genome annotations

Visual Genome’s annotations contain region descriptions,

relationship graphs, and object boundaries. However, the

annotations can be both non-exhaustive and duplicated,

which makes using them to automatically make QA pairs

difficult. We only use Visual Genome to make color and

positional reasoning questions. The methods we used are

similar to those used with COCO, but additional precautions

were needed due to quirks in their annotations. Additional

details are provided in the Supplemental Materials.

3.3. Manual Annotation

Creating sentiment understanding and object util-

ity/affordance questions cannot be readily done using tem-

plates, so we used manual annotation to create these.

Twelve volunteer annotators were trained to generate these

questions, and they used a web-based annotation tool that

we developed. They were shown random images from

COCO and Visual Genome and could also upload images.

3.4. Post Processing

Post processing was performed on questions from all

sources. All numbers were converted to text, e.g., 2 became

two. All answers were converted to lowercase, and trailing

punctuation was stripped. Duplicate questions for the same

image were removed. All questions had to have answers

that appeared at least twice. The dataset was split into train

and test splits with 70% for train and 30% for test.

4. Proposed Evaluation Metric

One of the main goals of VQA research is to build com-

puter vision systems capable of many tasks, instead of only

having expertise at one specific task (e.g., object recogni-

tion). For this reason, some have argued that VQA is a kind

of Visual Turing Test [21]. However, if simple accuracy

is used for evaluating performance, then it is hard to know

if a system succeeds at this goal because some question-

types have far more questions than others. In VQA, skewed

distributions of question-types are to be expected. If each

test question is treated equally, then it is difficult to assess

performance on rarer question-types and to compensate for

bias. We propose multiple measures to compensate for bias

and skewed distributions.

To compensate for the skewed question-type distribu-

tion, we compute accuracy for each of the 12 question-

types separately. However, it is also important to have a

final unified accuracy metric. Our overall metrics are the

arithmetic and harmonic means across all per question-type

accuracies, referred to as arithmetic mean-per-type (Arith-

metic MPT) accuracy and harmonic mean-per-type accu-

racy (Harmonic MPT). Unlike the Arithmetic MPT, Har-

monic MPT measures the ability of a system to have high

scores across all question-types and is skewed towards low-

est performing categories.

We also use normalized metrics that compensate for bias

in the form of imbalance in the distribution of answers

within each question-type, e.g., the most repeated answer

‘two’ covers over 35% of all the counting-type questions.

To do this, we compute the accuracy for each unique an-

swer separately within a question-type and then average

them together for the question-type. To compute overall

performance, we compute the arithmetic normalized mean

per-type (N-MPT) and harmonic N-MPT scores. A large

discrepancy between unnormalized and normalized scores

suggests an algorithm is not generalizing to rarer answers.

5. Algorithms for VQA

While there are alternative formulations (e.g., [6, 10]),

the majority of VQA systems formulate it as a classifica-

tion problem in which the system is given an image and a

question, with the answers as categories. [3, 25, 5, 27, 9, 16,

11, 20, 24, 26, 29, 31, 32, 34, 10, 22]. Almost all systems

use CNN features to represent the image and either a recur-

rent neural network (RNN) or a bag-of-words model for the

question. We briefly review some of these systems, focus-

ing on the models we compare in experiments. For a more

comprehensive review, see [14] and [28].

Two simple VQA baselines are linear or multi-layer per-

ceptron (MLP) classifiers that take as input the question and

image embeddings concatenated to each other [3, 13, 34],

where the image features come from the last hidden layer
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of a CNN. These simple approaches often work well and

can be competitive with complex attentive models [13, 34].

Spatial attention has been heavily investigated in VQA

models [5, 27, 32, 30, 31, 20, 9]. These systems weigh

the visual features based on their relevance to the question,

instead of using global features, e.g., from the last hidden

layer of a CNN. For example, to answer ‘What color is the

bear?’ they aim emphasize the visual features around the

bear and suppress other features.

The MCB system [5] won the CVPR-2016 VQA Work-

shop Challenge. In addition to using spatial attention, it im-

plicitly computes the outer product between the image and

question features to ensure that all of their elements interact.

Explicitly computing the outer product would be slow and

extremely high dimensional, so it is done using an efficient

approximation. It uses an long short-term memory (LSTM)

networks to embed the question.

The neural module network (NMN) is an especially

interesting compositional approach to VQA [1, 2]. The

main idea is to compose a series of discrete modules

(sub-networks) that can be executed collectively to an-

swer a given question. To achieve this, they use a va-

riety of modules, e.g., the find(x) module outputs a

heat map for detecting x. To arrange the modules, the

question is first parsed into a concise expression (called

an S-expression), e.g., ‘What is to the right of the car?’

is parsed into (what car);(what right);(what

(and car right)). Using these expressions, modules

are composed into a sequence to answer the query.

The multi-step recurrent answering units (RAU) model

for VQA is another state-of-the-art method [23]. Each in-

ference step in RAU consists of a complete answering block

that takes in an image, a question, and the output from the

previous LSTM step. Each of these is part of a larger LSTM

network that progressively reasons about the question.

6. Experiments

We trained multiple baseline models as well as state-of-

the-art VQA methods on TDIUC. The methods we use are:

• YES: Predicts ‘yes’ for all questions.

• REP: Predicts the most repeated answer in a question-

type category using an oracle.

• QUES: A linear softmax classifier given only question

features (image blind).

• IMG: A linear softmax classifier given only image fea-

tures (question blind).

• Q+I: A linear classifier given the question and image..

• MLP: A 4-layer MLP fed question and image features.

• MCB: MCB [5] without spatial attention.

• MCB-A: MCB [5] with spatial attention.

• NMN: NMN from [1] with minor modifications.

• RAU: RAU [23] with minor modifications.

For image features, ResNet-152 [8] with 448×448 images

was used for all models.

QUES and IMG provide information about biases in the

dataset. QUES, Q+I, and MLP all use 4800-dimensional

skip-thought vectors [17] to embed the question, as was

done in [13]. For image features, these all use the ‘pool5’

layer of ResNet-152 normalized to unit length. MLP is a 4-

layer net with a softmax output layer. The 3 ReLU hidden

layers have 6000, 4000, and 2000 units, respectively. Dur-

ing training, dropout (0.3) was used for the hidden layers.

For MCB, MCB-A, NMN and RAU, we used publicly

available code to train them on TDIUC. The experimental

setup and hyperparamters were kept unchanged from the

default choices in the code, except for upgrading NMN and

RAU’s visual representation to both use ResNet-152.

Results on TDIUC for these models are given in Table 3.

Accuracy scores are given for each of the 12 question-types

in Table 3, and scores that are normalized by using mean-

per-unique-answer are given in supplementary Table 2.

7. Detailed Analysis of VQA Models

7.1. Easy Question­Types for Today’s Methods

By inspecting Table 3, we can see that some question-

types are comparatively easy (> 90%) under MPT: scene

recognition, sport recognition, and object presence. High

accuracy is also achieved on absurd, which we discuss in

greater detail in Sec. 7.4. Subordinate object recognition is

moderately high (> 80%), despite having a large number

of unique answers. Accuracy on counting is low across all

methods, despite a large number of training data. For the re-

maining question-types, more analysis is needed to pinpoint

whether the weaker performance is due to lower amounts of

training data, bias, or limitations of the models. We next in-

vestigate how much of the good performance is due to bias

in the answer distribution, which N-MPT compensates for.

7.2. Effects of the Proposed Accuracy Metrics

One of our major aims was to compensate for the fact

that algorithms can achieve high scores by simply learning

to answer more populated and easier question-types. For

existing datasets, earlier work has shown that simple base-

line methods routinely exceed more complex methods using

simple accuracy [13, 34, 10]. On TDIUC, MLP surpasses

MCB and NMN in terms of simple accuracy, but a closer

inspection reveals that MLP’s score is highly determined

by performance on categories with a large number of exam-

ples, such as ‘absurd’ and ‘object presence.’ Using MPT, we

find that both NMN and MCB outperform MLP. Inspect-

ing normalized scores for each question-type (supplemen-

tary Table 2) shows an even more pronounced differences,

which is also reflected in arithmetic N-MPT score presented

in Table 3. This indicates that MLP is prone to overfitting.
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Table 3: Results for all VQA models. The unnormalized accuracy for each question-type is shown. Overall performance is

reported using 5 metrics. Overall (Arithmetic MPT) and Overall (Harmonic MPT) are averages of these sub-scores, providing

a clearer picture of performance across question-types than simple accuracy. Overall Arithmetic N-MPT and Harmonic N-

MPT normalize across unique answers to better analyze the impact of answer imbalance (see Sec. 4). Normalized scores for

individual question-types are presented in the supplementary materials. * denotes training without absurd questions.

YES REP IMG QUES Q+I *Q+I MLP MCB *MCB MCB-A NMN RAU

Scene Recognition 26.90 26.90 14.25 53.18 72.19 72.75 91.45 92.04 91.87 93.06 91.88 93.96

Sport Recognition 0.00 22.05 18.61 18.87 85.16 89.40 90.24 92.47 92.47 92.77 89.99 93.47

Color Attributes 0.00 22.74 0.92 37.60 43.69 50.52 53.64 56.93 57.07 68.54 54.91 66.86

Other Attributes 0.00 24.23 2.07 36.13 42.89 51.47 41.79 53.24 54.62 56.72 47.66 56.49

Activity Recognition 0.00 21.63 3.06 10.81 24.16 48.55 39.22 51.42 53.58 52.35 44.26 51.60

Positional Reasoning 0.00 6.05 2.23 14.23 25.15 27.73 21.87 33.34 33.02 35.40 27.92 35.26

Sub. Object Recognition 0.00 7.16 10.55 21.40 80.92 81.66 80.55 84.63 84.58 85.54 82.02 86.11

Absurd 0.00 100.00 19.97 96.71 96.98 N/A 95.96 83.44 N/A 84.82 87.51 96.08

Utility and Affordances 11.70 11.70 5.26 16.37 24.56 30.99 13.45 33.92 29.24 35.09 25.15 31.58

Object Presence 50.00 50.00 20.73 69.06 69.43 69.50 92.33 91.84 91.55 93.64 92.50 94.38

Counting 0.00 36.19 0.30 44.51 44.82 44.84 51.12 50.29 50.07 51.01 49.21 48.43

Sentiment Understanding 44.64 44.64 15.93 52.84 53.00 59.94 58.33 65.46 66.25 66.25 58.04 60.09

Overall (Arithmetic MPT) 11.10 31.11 9.49 39.31 55.25 57.03 60.87 65.75 66.07 67.90 62.59 67.81

Overall (Harmonic MPT) 0.00 17.53 1.92 25.93 44.13 50.30 42.80 58.03 55.43 60.47 51.87 59.00

Overall (Arithmetic N-MPT) 4.87 15.63 5.82 21.46 29.47 28.10 31.36 39.81 35.49 42.24 34.00 41.04

Overall (Harmonic N-MPT) 0.00 0.83 1.91 8.42 14.99 18.30 9.46 24.77 23.20 27.28 16.67 23.99

Simple Accuracy 21.14 51.15 14.54 62.74 69.53 63.30 81.07 79.20 78.06 81.86 79.56 84.26

Similar observations can be made for MCB-A compared to

RAU, where RAU outperforms MCB-A using simple accu-

racy, but scores lower on all the metrics designed to com-

pensate for the skewed answer distribution and bias.

Comparing the unnormalized and normalized metrics

can help us determine the generalization capacity of the

VQA algorithms for a given question-type. A large dif-

ference in these scores suggests that an algorithm is rely-

ing on the skewed answer distribution to obtain high scores.

We found that for MCB-A, the accuracy on subordinate ob-

ject recognition drops from 85.54% with unnormalized to

23.22% with normalized, and for scene recognition it drops

from 93.06% (unnormalized) to 38.53% (normalized). Both

these categories have a heavily skewed answer distribution;

the top-25 answers in subordinate object recognition and

the top-5 answers in scene recognition cover over 80% of

all questions in their respective question-types. This shows

that question-types that appear to be easy may simply be

due to the algorithms learning the answer statistics. A

truly easy question-type will have similar performance for

both unnormalized and normalized metrics. For example,

sport recognition shows only 17.39% drop compared to a

30.21% drop for counting, despite counting having same

number of unique answers and far more training data. By

comparing relative drop in performance between normal-

ized and unnormalized metric, we can also compare the

generalization capability of the algorithms, e.g., for sub-

ordinate object recognition, RAU has higher unnormalized

score (86.11%) compared to MCB-A (85.54%). However,

for normalized scores, MCB-A has significantly higher per-

formance (23.22%) than RAU (21.67%). This shows RAU

may be more dependent on the answer distribution. Similar

observations can be made for MLP compared to MCB.

7.3. Can Algorithms Predict Rare Answers?

In the previous section, we saw that the VQA models

struggle to correctly predict rarer answers. Are the less re-

peated questions actually harder to answer, or are the al-

gorithms simply biased toward more frequent answers? To

study this, we created a subset of TDIUC that only consisted

of questions that have answers repeated less than 1000

times. We call this dataset TDIUC-Tail, which has 46,590

train and 22,065 test questions. Then, we trained MCB on:

1) the full TDIUC dataset; and 2) TDIUC-Tail. Both ver-

sions were evaluated on the validation split of TDIUC-Tail.

We found that MCB trained only on TDIUC-Tail outper-

formed MCB trained on all of TDIUC across all question-

types (details are in supplementary Table 3). This shows

that MCB is capable of learning to correctly predict rarer

answers, but it is simply biased towards predicting more

common answers to maximize overall accuracy. Using nor-

malized accuracy disincentivizes the VQA algorithms’ re-

liance on the answer statistics, and for deploying a VQA

system it may be useful to optimize directly for N-MPT.

7.4. Effects of Including Absurd Questions

Absurd questions force a VQA system to look at the im-

age to answer the question. In TDIUC, these questions are
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sampled from the rest of the dataset, and they have a high

prior probability of being answered ‘Does not apply.’ This

is corroborated by the QUES model, which achieves a high

accuracy on absurd; however, for the same questions when

they are genuine for an image, it only achieves 6.77% ac-

curacy on these questions. Good absurd performance is

achieved by sacrificing performance on other categories. A

robust VQA system should be able to detect absurd ques-

tions without then failing on others. By examining the ac-

curacy on real questions that are identical to absurd ques-

tions, we can quantify an algorithm’s ability to differenti-

ate the absurd questions from the real ones. We found that

simpler models had much lower accuracy on these ques-

tions, (QUES: 6.77%, Q+I: 34%), compared to more com-

plex models (MCB: 62.44%, MCB-A: 68.83%).

To further study this, we we trained two VQA systems,

Q+I and MCB, both with and without absurd. The re-

sults are presented in Table 3. For Q+I trained without

absurd questions, accuracies for other categories increase

considerably compared to Q+I trained with full TDIUC, es-

pecially for question-types that are used to sample absurd

questions, e.g., activity recognition (24% when trained with

absurd and 48% without). Arithmetic MPT accuracy for

the Q+I model that is trained without absurd (57.03%) is

also substantially greater than MPT for the model trained

with absurd (51.45% for all categories except absurd).

This suggests that Q+I is not properly discriminating be-

tween absurd and real questions and is biased towards mis-

identifying genuine questions as being absurd. In contrast,

MCB, a more capable model, produces worse results for

absurd, but the version trained without absurd shows much

smaller differences than Q+I, which shows that MCB is

more capable of identifying absurd questions.

7.5. Effects of Balancing Object Presence

In Sec. 7.3, we saw that a skewed answer distribution

can impact generalization. This effect is strong even for

simple questions and affects even the most sophisticated

algorithms. Consider MCB-A when it is trained on both

COCO-VQA and Visual Genome, i.e., the winner of the

CVPR-2016 VQA Workshop Challenge. When it is evalu-

ated on object presence questions from TDIUC, which con-

tains 50% ‘yes’ and 50% ‘no’ questions, it correctly pre-

dicts ‘yes’ answers with 86.3% accuracy, but only 11.2% for

questions with ‘no’ as an answer. However, after training it

on TDIUC, MCB-A is able to achieve 95.02% for ‘yes’ and

92.26% for ‘no.’ MCB-A performed poorly by learning the

biases in the COCO-VQA dataset, but it is capable of per-

forming well when the dataset is unbiased. Similar observa-

tions about balancing yes/no questions were made in [33].

Datasets could balance simple categories like object pres-

ence, but extending the same idea to all other categories is a

challenging task and undermines the natural statistics of the

real-world. Adopting mean-per-class and normalized accu-

racy metrics can help compensate for this problem.

7.6. Advantages of Attentive Models

By breaking questions into types, we can assess which

types benefit the most from attention. We do this by com-

paring the MCB model with and without attention, i.e.,

MCB and MCB-A. As seen in Table 3, attention helped im-

prove results on several question categories. The most pro-

nounced increases are for color recognition, attribute recog-

nition, absurd, and counting. All of these question-types

require the algorithm to detect specified object(s) (or lack

thereof) to be answered correctly. MCB-A computes at-

tention using local features from different spatial locations,

instead of global image features. This aids in localizing in-

dividual objects. The attention mechanism learns the rela-

tive importance of these features. RAU also utilizes spatial

attention and shows similar increments.

7.7. Compositional and Modular Approaches

NMN, and, to a lesser extent, RAU propose com-

positional approaches for VQA. For COCO-VQA, NMN

has performed worse than some MLP models [13] using

simple accuracy. We hoped that it would achieve bet-

ter performance than other models for questions that re-

quire logically analyzing an image in a step-by-step man-

ner, e.g., positional reasoning. However, while NMN

did perform better than MLP using MPT and N-MPT

metric, we did not see any substantial benefits in spe-

cific question-types. This may be because NMN is lim-

ited by the quality of the ‘S-expression’ parser, which

produces incorrect or misleading parses in many cases.

For example, ‘What color is the jacket of the man on

the far left?’ is parsed as (color jacket);(color

leave);(color (and jacket leave)). This ex-

pression not only fails to parse ‘the man’, which is a crucial

element needed to correctly answer the question, but also

wrongly interprets ‘left’ as past tense of leave.

RAU performs inference over multiple hops, and be-

cause each hop contains a complete VQA system, it can

learn to solve different tasks in each step. Since it is trained

end-to-end, it does not need to rely on rigid question parses.

It showed very good performance in detecting absurd ques-

tions and also performed well on other categories.

8. Conclusion

We introduced TDIUC, a VQA dataset that consists of

12 explicitly defined question-types, including absurd ques-

tions, and we used it to perform a rigorous analysis of recent

VQA algorithms. We proposed new evaluation metrics to

compensate for biases in VQA datasets. Results show that

the absurd questions and the new evaluation metrics enable

a deeper understanding of VQA algorithm behavior.
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