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Joint learning of object and action detectors

Vicky Kalogeiton'-?

Abstract

While most existing approaches for detection in videos
focus on objects or human actions separately, we aim at
jointly detecting objects performing actions, such as cat
eating or dog jumping. We introduce an end-to-end multi-
task objective that jointly learns object-action relationships.
We compare it with different training objectives, validate
its effectiveness for detecting objects-actions in videos, and
show that both tasks of object and action detection bene-
fit from this joint learning. Moreover, the proposed archi-
tecture can be used for zero-shot learning of actions: our
multitask objective leverages the commonalities of an ac-
tion performed by different objects, e.g. dog and cat jump-
ing, enabling to detect actions of an object without training
with these object-actions pairs. In experiments on the A2D
dataset [50], we obtain state-of-the-art results on segmen-
tation of object-action pairs. We finally apply our multitask
architecture to detect visual relationships between objects
in images of the VRD dataset [24].

1. Introduction

Video understanding has received increased attention
over the past decade leading to significant advances [39,
43]. However, most existing approaches focus either on
object recognition [14, 34] or on human action recogni-
tion [29, 48] separately. For both tasks, the community has
moved from small datasets [35] to large ones with thou-
sands of videos and hundreds of classes [, 12], from con-
trolled environments [38] to videos in-the-wild [15]. Given
the impressive success of Convolutional Neural Networks
(CNNs) for object detection [23, 34], action localization
has benefited as well from this improvement. In particu-
lar, Faster R-CNN [34] has been enhanced for videos by
using a two-stream variant [9, 29, 48], in which both ap-
pearance and motion are used as inputs. Modern approaches
first use such a detector to localize human actions in indi-
vidual frames, and then either link them or track them over
time to create spatio-temporal detections [9, 29, 48]. These

'Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000
Grenoble, France

2University of Edinburgh

3Naver Labs Europe

Philippe Weinzaepfel®

Vittorio Ferrari? Cordelia Schmid!

dog-running

dog-jumpin

(S0 e

|- carrunning

adult-none | adult-running ||
Figure 1: Detection examples of different object-action

pairs for the videos of the A2D dataset [50].

methods focus exclusively on human action recognition.

While humans or actions alone are building blocks of
video understanding, the relationship between objects and
actions can yield a more complete interpretation. For in-
stance, an autonomous car should not only be able to de-
tect another car (object) or a human walking (action), but
also a dog running or a ball flying (object-action). Other
applications include content-based retrieval, video caption-
ing [43, 52] and health-care robots, for instance helping
blind people crossing streets. Therefore, to better under-
stand videos, we need to go beyond these two independent
tasks of object and human action recognition and under-
stand the relationship between objects and actions.

In this paper, we propose to jointly detect object-action
instances in uncontrolled videos, e.g. cat eating, dog run-
ning or car rolling, see Figure 1. We build an end-to-end
two stream network architecture for joint learning of objects
and actions. We cast this joint learning problem by leverag-
ing a multitask objective. We compare our proposed end-to-
end multitask architecture with alternative ones (Figure 3):
(1) treating every possible combination of actions and ob-
jects as a separate class (Cartesian) and (ii) considering a
hierarchy of objects-actions: the first level corresponds to
objects and the second one to the valid actions for each ob-
ject (hierarchical). We show that our method performs as
well as these two alternatives while (a) requiring fewer pa-
rameters and (b) enabling zero-shot learning of the actions
performed by a specific object, i.e., when training for an ob-
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Overview of our end-to-end multitask network architecture for joint object-action detection in videos. Blue

color represents convolutional layers while green represents fully connected layers. The end-to-end training is done by
concatenating the fully connected layers from both streams. Here, po and p 4 are the outputs of the two branches that predict
the object and action labels, resulting in the loss described in Equation 2.

ject class alone without its actions, our multitask network is
able to predict actions for that object class by leveraging
actions performed by other objects.

Interestingly, our multitask objective not only allows to
effectively detect object-action pairs but also leads to per-
formance improvements on each individual task (i.e., de-
tection of either objects or actions). This is because the
features learned for one task help learning the other one.
We compare to the state of the art for object-action de-
tection on the Actor-Action (A2D) dataset [50] that con-
tains segmentation annotation for object-action pairs. For
a direct comparison we transform our detections into pix-
elwise segmentation maps by using segmentation propos-
als [10, 30]. Our approach significantly outperforms the
state of the art [50, 49] on this dataset. We finally ap-
ply our multitask objective to detect object-action relation-
ships in images on the Visual Relationship Detection (VRD)
dataset [24].

In summary, we make the following contributions:

e We propose an end-to-end multitask architecture for joint
object-action detection.

e We show that this multitask objective can be leveraged for
zero-shot learning of actions.

e We demonstrate the generalization of our multitask archi-
tecture by applying it to (a) object-action semantic segmen-
tation and (b) object-action relationships in images.

2. Related Work

Most existing approaches for detection in videos focus
either on object or on action localization. Over the past few
years, the methods range from low-level features [16, 20,
26, 32, 42, 45, 46], structured models that mine mid-level
elements [19, 25] to parts [7, 28, 33] and attributes [22].
However, CNNs currently constitute the dominant approach
for large-scale and high-quality video detection.

Object or action detection. Recent work on object detec-
tion [8, 14, 34] has shown remarkable progress, mainly due

to the use of CNNs [8, 17, 23]. R-CNN [8] tackles ob-
ject detection with CNNs by casting the task as a region-
proposals classification problem. Faster R-CNN [34] goes
a step further and generates proposals using a Region Pro-
posal Network (RPN), which shares convolutional features
with the proposal classification branch.

These per-frame detectors are also used by state-of-the-
art human action localization methods [29, 37] to obtain
spatial information; then the detections are linked across
time resulting in video-level localizations [9, 48]. To lever-
age video data, the detector operates on two streams [39]:
RGB and optical flow. The two streams are trained sepa-
rately and the scores are averaged at test time [9, 29, 48],
i.e., late fusion of scores. In contrast, our architecture is
a two-stream Faster R-CNN trained end-to-end based on a
fusion by a fully-connected layer that operates on concate-
nated features from both streams. Moreover, it is trained
with a multitask objective that allows us to detect objects
and actions jointly.

Joint modeling of objects and actions. Joint modeling of
objects and actions in videos has received little attention so
far. For the action localization task, some works [11, 31]
propose to model the interactions of humans and objects.
However, the task we tackle in this paper is significantly
different as objects are not used for the actions, but they are
the actors. Bojanowski et al. [2] have considered the case
in which different entities can perform a set of actions, but
these entities correspond to names of different actors, i.e.,
to person identification. Closely related to object-action de-
tection in videos is the work [49, 50] on segmenting object-
action pairs. They use Conditional Random Fields at the
supervoxel level to output a semantic segmentation at the
pixel level. We show that our detections based on a multi-
task objective also improve the semantic segmentation per-
formance by leveraging segmentation proposals [10, 30].
In images, however, object-action pairs have been mod-
eled implicitly in the context of predicting sentences for im-
ages [27, 44] and more recently by visual phrases [36] and
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Figure 3: Illustration of the three different ways we consider for jointly learning objects and actions. The blue nodes represent
objects and the red ones action classes, while the yellow ones represent the background class.

relationships between objects [24]. The task consists in de-
tecting triplets of two objects and their relationship [24, 36].
Most approaches rely on object detectors. The relationship
label is predicted from the bounding box around the two
objects, and sometimes from additional modalities such as
languages or frequency priors in the training set. We show
that our multitask objective allows to predict the relation-
ships between objects without (a) the need to see the whole
bounding box and (b) the need to include any priors. In par-
ticular, we transform each triplet into two pairs, each con-
sisting of one of the two objects and the interaction. Then,
we train our network to detect bounding boxes around ob-
jects and also predict an interaction label.

Zero-shot learning. Most existing approaches for zero-
shot learning of categories rely on attributes [4, 5, 18]. At-
tributes have also been used for human actions [22, 51].
Liu et al. [22] were the first to represent actions by sets
of attributes. They consider that each action class has an
intra-class variability, which they try to model by search-
ing which attributes are relevant for each class. They ap-
ply zero-shot learning by manually labeling attributes for
all classes, including new ones without visual examples. In
contrast, our approach does not require any attribute labels.

3. End-to-end multitask network architecture
for joint learning of objects and actions

Given a video, we aim to detect the objects as well as the
actions they are performing. Let O (resp. .A) be the set of
objects (resp. actions) labels. Some combinations of actions
and objects may not be valid, e.g. car eating. We denote by
V C O x A the set of valid object-action combinations.

3.1. End-to-end network architecture

We build an end-to-end two-stream multitask network
that proceeds at the frame level (Figure 2). As most state-
of-the-art methods for object and action detection in videos,
we rely on Faster R-CNN [34] and its two-stream variant
[9, 37, 39]. However, instead of training each stream sep-
arately, we propose to fuse both streams, thus enabling ef-
fective end-to-end learning. Our end-to-end network has
two streams: (a) appearance, which takes as input the RGB
data and (b) motion, which operates on the optical flow [3].
Following [9], the input of the motion stream is a tensor

of three channels with the x and y coordinates of the flow
and its magnitude, represented as a 3-channel image. A Re-
gion Proposal Network (RPN) extracts candidate bounding
boxes independently for each stream. We use the set union
of the two RPNs and we aggregate features for each can-
didate box with a Region-of-Interest (Rol) pooling layer
in each stream. After one fully-connected layer, the two
streams are concatenated and fed to another fully-connected
layer. The remaining network layers operate on the fused
stream, enabling end-to-end training. This allows us to
learn the most relevant features among all possible com-
binations of appearance and motion. In contrast, late fusion
of the softmax probabilities of the two streams [29] assumes
that both appearance and motion are equally relevant for ev-
ery class. As we show in Section 4.1.1, our proposed fusion
significantly outperforms the late fusion.

Finally, we use a multitask loss for detecting objects, ac-
tions, and regressing the bounding box coordinates accord-
ing to the object classes. The total loss £ of the network is:

L = Lrpny + Lrengy + Las + Lreg 9]

with Lrpn,, and Lgrpn,. the losses of the RPN operating on
the RGB and flow stream, respectively, L the classifica-
tion loss, i.e., for recognizing objects and actions, and Lcg
the bounding box regression loss.

3.2. Joint learning of objects and actions

Given the candidate boxes, the network aims at jointly
predicting whether a box contains a particular object and
which action this object is performing. Let o (resp. a) be the
ground-truth object (resp. action) label of a region proposal
in the training set. To classify the boxes, we use a multi-
task architecture: one component predicts the object class,
and a second one predicts the action class, independently of
which object is performing it. Besides our proposed mul-
titask architecture, we consider two alternatives to jointly
predict object-action pairs: Cartesian product and hierarchy
of classes. We now present details for these three objec-
tives. We illustrate them in Figure 3 and summarize their
main differences in Table 1.

Multitask. Our multitask architecture relies on a multi-

task loss, for classifying candidate boxes with both object
and action labels. The first branch predicts the object la-
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H loss ‘ # outputs ‘ probability ‘ # params

Multitask —log po(0) —log pa(a) | |O]+[A|+2 | po(o)-pala) 0.9M
Cartesian —log pv(o,a) V|+1 pv(o,a) 54.6M
Hierarchical || —log po(o) —log pa,(a) | |O]+|V[+1 | po(o)-pa,(a) 55.4M

Table 1: Comparison of different losses for object-action
learning. We give the number of parameters in the clas-
sification layers from the VRD dataset [24] where |O| =
100, | A| = 140, |V| = 13344 (Section 4.4).

bel. It is composed of a fully-connected layer that outputs
|O| + 1 scores (one per object class and another one for
background) followed by softmax. Let po be the output of
this branch. In the same way, p4 denotes the output of the
second branch that predicts the action label, i.e., of dimen-
sion |A| + 1. We use a log loss on both object and action
classification:

Ly = —log po(0) —log pa(a) . ()
This version uses |O| + |.A| 4 2 outputs (Figure 3 (a)). For
|O| = 100 and |A| = 140 the number of parameters in
the classification layers is 0.9M (VRD dataset [24] used in
Section 4.4). At test time, the probability of a box to be the
object-action instance (o0, a) is given by po(0) - pa(a).
Cartesian product. Another solution is to consider each
object-action pair as a separate class, e.g. bird flying (Fig-
ure 3 (b)). In this case, there is only one branch for classifi-
cation with |V| 4+ 1 outputs. We denote as py, the output of
this branch. The classification loss is:

llccfsmesmn = —log pv(o,a) . 3)
This version uses |[V| + 1 outputs, which is in the or-
der of |A] x |O]. For instance, for |V| = 13344 (VRD
dataset [24]) the number of parameters in the classification
layer is 54.6M, i.e., 50x more than in the multitask (Ta-
ble 1). This makes it less scalable than our multitask ob-
jective and does not allow sharing of action labels across
object classes, which is required for zero-short learning. In
the multitask case, samples of an object-action pair help
training the detector of this object, which in turn helps de-
tecting it doing other actions; e.g. adult-running and adult-
walking samples help improving the adult detector. In con-
trast, by using the Cartesian product, each training sample
helps training only one particular object-action detector. At
test time, the probability of being an object-action instance
(0, a) is given by py (0, a).

Hierarchy of classes. We also consider the set of valid
object-action classes as a hierarchy (Figure 3 (c)). The first
branch po predicts the object. For each object o, any branch
D4, predicts the actions among the valid ones A, for o. In
this case, the classification loss is:

Egi:rarchy = —log po (o) —log pa,(a) . S

This version uses a total of |O] + 1 outputs for the first level
and |V| for the second level, see Figure 3 (c). For instance,

information / datasets H A2D \ YTO \ VID

objects v v v
actions v - -
training 3K 106 | 39K
test 746 49 555
training 16K 4K | 1,TM
test 4K | 2,5K | 170K

Table 2: Overview of the video datasets we use.

for |O| = 100 and |V| = 13344 the number of parameters
in the classification layers is 55.4M, i.e., 50x more than in
the multitask (Table 1). At test time, the probability of being
an object-action instance (o, a) is given by po(0) - pa, (a).

# videos

# annotations

Per-object regression. In all cases, we refine the pro-
posal output by the RPN using a per-object regression of
the bounding box coordinates. The RPN minimizes the ge-
ometric difference between the proposals and the ground-
truth boxes. We follow [34] and make the regression target
scale-invariant by normalizing it by the size of the proposal.
We denote by ¢, , the regression target for a proposal that
covers an object. By using a per-object regression, we ob-
tain the following regression loss:

l:reg = SmOOth-Ll(Uo - to,a) ) ®

with w, the output of the regression branch u corresponding
to object o, and:

0.5x2 if |z < 1,

|z — 0.5 ©

Smooth-L1(z) = { otherwise

4. Experimental Results

In this section, we study the impact of each of our contri-

butions separately. We first examine joint detection of ob-
jects and actions (Section 4.1) and zero-shot learning (Sec-
tion 4.2). Next, we compare our proposed multitask archi-
tecture to the state of the art on semantic segmentation of
object-action pairs (Section 4.3) and relationship detection
in images (Section 4.4).
Implementation details. Our framework is based on Faster
R-CNN [34] using the VGG-16 [40] as the underlying CNN
architecture. We initialize both streams using the standard
pre-training on ILSVRC 2012 [17]. This is in line with [47],
which shows that pre-training on ILSVRC 2012 instead of
UCF-101 [41] improves video classification accuracy.

4.1. Joint detection of objects and actions in videos

In this section, we evaluate our proposed end-to-end ar-
chitecture for joint detection of object-action pairs. We start
by validating the effectiveness of our end-to-end network
(Section 4.1.1) and then, we examine the joint learning with
the multitask objective (Section 4.1.2).

Video datasets. Table 2 shows some statistics of the
datasets we use. For object-action detection we use the
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input Rol Stream
RGB [ Flow | RGB [ Flow | Fusion
v - v - - 63.1 589 | 452
- v - v - 32.0 | 323 5.0
v v v v late 61.6 | 573 | 339
v | v [ v [ v ] ours [[653] 622 [ 481
Table 3: Impact of end-to-end training: mAP for object de-
tection of different training scenarios on the A2D, YTO and

VID datasets.

A2D | YTO | VID

Actor-Action (A2D) dataset [50], which has sparse frame-
level annotations for both objects and actions in videos.
To the best of our knowledge, it is the only video dataset
with bounding box and semantic segmentation annotations
for object-action pairs. It contains 7 objects (adult, baby,
ball, bird, car, cat, and dog) performing 8 different actions
(climb, crawl, eat, fly, jump, roll, run, walk) or no action.
We also use two video datasets for object detection: the
YouTube-Objects (YTO) dataset [ 13, 32] and the ‘object de-
tection in video’ (VID) track of the ILSVRC [1]. YTO con-
sists of videos collected from YouTube with 10 classes of
moving objects, e.g. aeroplane, car. VID contains bound-
ing boxes for 30 object classes including rigid objects, e.g.
motorcycle, watercraft, and animals, e.g. fox, monkey.

Protocol. We measure the detection performance using the
PASCAL VOC protocol [6]: a detection is correct if its
intersection-over-union overlap (IoU) with a ground-truth
box is greater than 0.5 and its labels (object and action) are
correctly predicted. The performance for a class is the aver-
age precision (AP), and the overall performance is captured
by the mean over all classes (mAP).

4.1.1 End-to-end architecture

We want to quantify the effectiveness of our proposed end-
to-end architecture that consists of two streams fused (a) at
the proposal (Rol) level and (b) at the feature level (Fig-
ure 2). We evaluate the impact of fusion for object detection
alone. We perform experiments on the three video datasets
(A2D, YTO and VID). Table 3 shows all the mAP results
for the different cases we consider.

Impact of RGB and Flow cues. To examine the impact
of the RGB and flow cues, we train each stream separately.
The first two rows of Table 3 show that the RGB stream
significantly outperforms the flow one. This is due to the
fact that the RGB stream is able to learn information about
how the objects look, which is a distinctive cue across dif-
ferent object classes. The flow stream performs worse than
the RGB one in general, and is particularly poor on the VID
dataset. This is because most objects in VID move only
slightly, or their motion is not discriminative for the class.

Impact of end-to-end training. Our proposed fusion of
the two streams enables end-to-end training. We examine
the impact by comparing our proposed fusion of streams

.. test on

training objects | actions | objects + actions

objects 65.3 - -

actions - 56.2 -
Baseline - - 43.1
Cartesian 67.2 60.2 49.2
Hierarchical 67.9 59.6 49.6
Multitask 68.3 60.0 48.9

Table 4: mAP of six different models when training with
objects (first row), actions (second row), when multiplying
their scores (third row) or when jointly training with objects
and actions (last three rows) on A2D.

with late fusion of scores [9, 29]. In the latter, i.e., late
fusion of scores, we train the two-stream network fusing
only the region-proposal layers and then average the clas-
sification scores of each stream as [9, 37]. Results in Ta-
ble 3 show that, for all video datasets, using late score fu-
sion reduces the detection performance compared to using
the RGB stream alone. Interestingly, this is opposite of the
findings in human action localization [9, 29], where per-
formance increases due to the the significance of motion
cues for actions. This shows that the two-stream architec-
ture cannot be used as it is for object detection in videos and
highlights a clear difference between object and human ac-
tion detection. In contrast, on all object detection datasets,
our proposed fusion outperforms the other cases: it leads to
an increment over the late score fusion of approximately 2-
3%. This shows that the network successfully learns when
to leverage motion information and more importantly, how
to jointly learn features coming from the two stream.

4.1.2 Multitask learning

In this section, we evaluate our proposed multitask learning
of objects and actions. We start by evaluating the perfor-
mance only on object or on action detection. Therefore, we
train and test our network with only object or only action la-
bels (first two rows of Table 4). We also compute a baseline
(third row of Table 4) for object-action detection in which
we combine the object and the action detector trained sepa-
rately. More precisely, for each object detection, we obtain
object-action scores by multiplying the object scores with
the action scores from the most overlapping action box.

Table 4 also reports the results of our proposed multitask
architecture trained with objects and actions from the A2D
dataset. The most interesting finding is that our multitask
training improves the performance on each task separately
(Table 4 objects, actions and multitask rows). In particu-
lar, when testing just on objects (68.3%) or just on actions
(60.0%), our joint training outperforms training alone with
objects (65.3%) or with actions (56.2%). The reasons are
that the multitask network is (a) better able to generalize,
(b) less prone to overfit to the training samples and (c) ben-
efits from sharing examples across classes.
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‘ ‘ climbing ‘ crawling ‘ eating ‘ flying ‘ jumping ‘ rolling ‘ running ‘ walking ‘ none ‘ ‘ avg.
adult 7.0 (78.2) | 7.8 (72.5) | 19.6 (80.0) - 11.0(43.7) | 243(50.7) | 6.3 (55.2) | 13.6(58.8) | 33.3(45.8) || 15.3(60.1)
baby || 17.1(63.1) | 31.7 (76.4) - - - 33.2(85.4) - 39.1(77.9) | 7.1 31.9) || 25.6 (64.9)
ball - - - 0.4(19.3) | 3.5(29.8) | 10.7 (42.2) - - 8.0 (11.1) 5.6 (28.0)
bird 16.8 (51.8) - 13.4 (38.0) | 9.0(66.2) | 6.4 (32.3) | 28.6(60.2) - 7.7 (55.0) | 2.4 (2.3) 12.1 (43.3)
car - - - 8.8 (42.2) 1.5 (90.5) | 36.5(66.8) | 2.7 (63.8) - 5.1 (17.4) || 10.9 (55.9)
cat 32.3 (60.2) - 28.9 (58.6) - 9.6 (21.7) | 43.8(68.2) | 8.0 (31.0) | 19.1(49.2) | 3.1 (5.8) || 20.7 (43.7)
dog - 7.9 (58.2) | 47.3(74.2) - 17.9 (41.6) | 25.5(38.5) | 10.3(31.4) | 34.0(67.2) 1.8 (5.3) || 20.7 (42.3)

Table 5: Evaluation of zero-shot learning for object-action pairs on A2D. For each object, we report the AP when excluding
all actions of this object at training. The numbers in parenthesis indicate the AP when training with all object-action pairs.

We also consider two alternative ways to jointly detect
objects and actions (Section 3.2 and Figure 3): (a) Cartesian
product of object-action labels and (b) hierarchy of object-
action classes. Table 4 (Cartesian and hierarchical) reports
the results when we train these two networks on the A2D
dataset. We observe that they both perform similarly to our
multitask network. The Cartesian and hierarchical networks
have the advantage of being able to distinguish different
ways objects perform each action (Table 1).

Discussion. In practice there are similarities in the way dif-
ferent objects perform the same action (e.g. dog and cat
eating) and in the way the same object performs different
actions (e.g. dog walking and running). Thus, our multi-
task objective allows the network to exploit the common-
ality among the two tasks, and hence, what is learned for
each task facilitates the learning of the other. In a nutshell,
our multitask architecture is a simpler model, able to reach
the same performance as the alternative architectures while
requiring much fewer parameters (Table 1 # params) and
enabling zero-shot learning (Section 4.2). For instance, in
Section 4.4 we clearly show the benefit of our multitask ar-
chitecture compared to the Cartesian and hierarchical archi-
tectures for a large number of objects and actions due to its
lower number of parameters.

Note that both losses (object and action) contribute
equally to the overall loss (Equation 2), as they are of the
same type (softmax), and the tasks they address are of the
same difficulty. To validate this, we vary the weight of the
action loss over 0.5, 1, 2 and observe insignificant variations
(< 0.5%) in the object-action mAP on A2D.

4.2. Zero-shot learning of actions

An important advantage of our end-to-end multitask ar-
chitecture is its capability of predicting actions for an object
without having trained for these particular object-actions
combinations. To validate this intuition, we experiment on
the A2D dataset (Table 2), which contains annotations for
7 objects performing 8 different actions in videos. We train
the network seven times, where each time we remove for
one object o’ all its action labels. For instance, we remove
all action labels for the object cat, but keep the cat examples
for training the object detector. Equation 2 is replaced by:

)

Lk o = —log po(o) — [0/ # o]log pa(a) .

Note that the object classifier is not changed, while the ac-
tion classifier is learned only on the actions performed by
the objects different from o’. This approach to zero-shot
learning does not assume any prior knowledge such as at-
tributes of the unseen classes [22].

We report the results of zero-shot learning in Table 5.
We also report the AP when training with all object-action
pairs. The results show that our network is able to infer in-
formation about actions not seen at training time for a given
object. We observe that there are some object-action pair
for which the AP is only slightly decreased, e.g. cat rolling
or dog eating. This is because these objects share com-
monalities with others, e.g. cat and dog eating. In contrast,
we observe poor performance for objects like ball which
do not share similarities with other objects of the dataset.
For object classes that share similarities in actions, such as
cat and dog, our multitask architecture outperforms chance
level classification of unknown actions by a large margin
(+15%), while for classes that do not share commonalities
with other classes, like adult the gain is smaller (+5%).

4.3. Object-action segmentation

A2D comes with annotations for semantic segmentation
of object-action pairs. In this section, we extend our bound-
ing box detections to pixelwise segmentation and we com-
pare our results to the state of the art.

Metrics. Following [50], we measure class-average pixel
accuracy and global pixel accuracy. Accuracy is the per-
centage of pixels for which the label is correctly pre-
dicted, either over all pixels (global) or first computed for
each class separately and then averaged over classes (class-
average). We also evaluate our segmentations using mloU,
i.e., the IoU between the ground-truth segmentation and
output segmentation averaged over all classes. mloU is bet-
ter suited as it is not biased towards background which is
the most present class and it penalizes errors when too many
pixels are set to a particular label instead of background.

Setup. Our multitask model predicts bounding boxes for
each object-action pair. We extend our detections to pix-
elwise segmentations of object-action pairs by using seg-
mentation proposals from either (a) the recently proposed
SharpMask [30] or (b) the hierarchical video segmentation
method GBH [10], which is the one used by the state-of-the-
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methods object action object + action
ave | glo [ mloU [| ave | glo [ mloU || ave | glo | mloU

Trilayer [50] 45.7 | 74.6 - 47.0 | 74.6 - 254 | 76.2 -
GPM (TSP) [49] 583 | 852 334 60.5 | 85.3 32.0 433 | 84.2 19.9
GPM (GBH) [49] 59.4 | 84.8 333 61.2 | 849 31.9 439 | 83.8 199
Ours (GBH) 729 | 85.8 42.7 61.4 | 84.6 35.5 48.0 | 839 24.9
Qurs (SharpMask) || 73.7 | 90.6 | 49.5 60.5 | 89.3 | 422 475 | 88.7 29.7

Table 6: Comparison to the state of the art for object, action and object-action segmentation on A2D using class-average
pixel accuracy (ave), global pixel accuracy (glo) and mean Intersection over Union (mloU) metrics.

art GPM method [49]. For each frame, we first apply non-
maximum suppression on the detections that have a score
greater than 0.5. Then, for each detection, we select the
segmentation proposal that overlaps the most with it (ac-
cording to IoU). If there is no such proposal, we directly
use the rectangular detection itself as a segmentation mask.
While our setup is simple, it serves as a baseline to evaluate
our detections for semantic segmentation.

Results. The first three rows of Figure 4 show correctly
labeled and segmented object-action pairs. We observe
that our segmentation results are accurate, even in difficult
cases, such as small objects (e.g. birds) or cluttered scenes
(e.g. adults running). The two last rows show typical failure
cases. In the fourth row, the action label of one adult is in-
correct and there are some detections considered as wrong
due to missing annotations. In the last row we miss the adult
for which only one arm is visible.

Table 6 provides a quantitative comparison between our
results and the state of the art [49, 50] on A2D. When us-
ing SharpMask, we outperform the previous state of the art
for all metrics and all tasks, except for average accuracy on
action segmentation, where we match [49]. Our improve-
ments are particularly significant for object segmentation
(+14% class-average accuracy, +16% mloU) and joint ob-
ject and action segmentation (more than +5% on all met-
rics). Note that we do not use any training segmentation
from the A2D dataset (SharpMask is pre-trained on MS
COCO [21]). Furthermore, we observe that even when us-
ing the same underlying method (GBH [ 10]), we perform on
par or better than [49, 50] in all metric-task combinations.

4.4. Relationship detection of objects and actions

In this section we use only images, and therefore we use
only the RGB stream as there is no flow for images. We
apply our model to visual relationship detection, where we
detect relationships between objects, defined as triples: ob-
jectl - interaction - object2. To do so, we transform each
triplet into two pairs, each consisting of an object and an
interaction and use them to train our multitask architecture.

Dataset and protocol. We employ the Visual Relationship
Detection (VRD) dataset [24] that examines object relation-
ships. It contains 4k training and 1k test images with 38k
relationships between objects, such as person kick ball, per-

ground-truth

frame

birds-flying

birds-flying

ball- running

jumping

ball- running

jumping

adult-walking adult-walking

dog-crawling dog-crawling

Ladults-

B

adults-
running

14 42

adults-

- adult-
running

‘adult—
none walking

bird-rolling

Figure 4: Examples of semantic segmentation with (from
left to right): the frame, the ground-truth and the segmen-
tation output obtained when combining our approach with
proposals from SharpMask [30]. The colors of the segmen-
tations represent an object-action pair. Note that we do not
use any object-action segmentation at training time.

son wear shirt, motorcycle has wheel. There are 100 differ-
ent objects and 70 interaction types.

We consider here visual phrase detection [36], where the
goal is to output a triplet object] - interaction - object2 and
localize it with one box having an IoU over 0.5 with the
ground-truth box. We also evaluate relationship detection:
the task consists in detecting a triplet objectl - interaction
- object2 with two bounding boxes on objectl and object2,
both having an IoU over 0.5 with their ground-truth boxes.

For evaluation, the metric used is recall @100 and re-
call @50 (denoted as R@N) and not mAP, as not all pos-
sible interactions are annotated in the test images. In each
image, the top IV detections are kept and recall is measured.

Model. To detect relationships using our multitask architec-
ture, we transform each objectl-interaction-object2 triplet
into two pairs, each consisting of an object and an interac-
tion label. More precisely, we double the set of all possible
interactions, by including their passive forms. For example,
the triplet human kicks ball becomes two pairs: (i) one with
object human and action kick, and (ii) another pair with ob-
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. Phrase detection Relationship detection
Modality Method R@100 | R@50 || R@100 | R@50

VP [36] 0.07 0.04 - -

Joint CNN [39] 0.09 0.07 0.09 0.07

\% VRD [24] 2.6 2.2 1.9 1.6

Baseline 11.9 7.7 7.1 4.5

Ours Multitask 18.3 14.5 11.3 8.6

V+L+F VRD [24] 17.0 16.2 14.7 13.9

Table 7: Comparison to different architectures and to the
state-of-the-art visual relationships on the VRD dataset for
phrases and relationship detection. We report R@ 100 and
R@50 for methods using only visual cue (V) or also lan-
guage and frequency priors (V+L+F).

ject ball and action kick = being kicked. In that way, our
training set consists of 100 object classes performing 140
different actions. Note here that the possible number of out-
puts is 100 + 140 + 2 for our multitask objective.

At test time, we keep all detection with score over 0.5
and apply non-maximum suppression. For each pair of ob-
ject detections, we score each possible interaction using the
multiplication of the object scores and the interaction score.
The interaction score is defined as the combination of the
score of an interaction from the first object and its passive
form from the second object, i.e., the interaction score of
kick in human kicks ball includes both scores of kick for the
human and being kicked for the ball.

Results. Table 7 reports the R@100 and R@50 for the
two tasks we examine, i.e., phrase and relationship detec-
tion. We outperform all previous state-of-the-art results on
both tasks and at both operating points, when comparing to
methods based purely on the images ([24, 36, 39]). More-
over, our results are only a little worse than those of [24],
where they enhance their visual model with some frequency
prior as well as language priors by leveraging the semantic
similarities of relationships in term of words. In particu-
lar, we perform on par on phrase detection (+1% at R@ 100
and —2% at R@50). Note how our method features a clear
increment from R@50 to R@100, which shows its poten-
tial to correctly detect interactions that may be lower in the
recall list. Hence, including some language or spatial pri-
ors could significantly increase our performance. Figure 5
shows some qualitative results.

Benefits of the multitask training. We compare our multi-
task architecture with a baseline approach where we multi-
ply the scores of two separate networks, one trained on ob-
jects and another one trained on interactions. Table 7 shows
that our multitask architecture outperforms this alternative
(‘Baseline’ row). This comparison highlights the benefit of
joint training compared to training for each task separately.
We have also evaluated the Cartesian and hierarchical com-
bination of objects and actions (Section 3.2) and found that
they perform poorly (for both R@ 100 is around 0%). This
can be explained by lack of training data necessary to deter-
mine the large number of parameters (55M in Table 1).

Figure 5: Qualitative object-action relationships on the
VRD dataset: (yellow): our correct boxes with their green
label, (red): missed interactions for 100 retrieved boxes.

. Phrase detection Relationship detection
Modality Method R@100 | R@50 || R@I00 | R@50
VRD [24] 1.1 0.8 0.8 0.7
\% Baseline 43 2.3 2.4 1.3
Ours Multitask 5.5 34 2.9 1.9
V+L+F VRD [24] 3.8 34 35 3.1

Table 8: Comparison to the state-of-the-art zero-shot detec-
tion of visual relationships on the VRD dataset. We report
R@ 100 and R@50 for methods using only visual cue (V) or
also language and frequency priors (V+L+F).

Zero-shot learning. The test set of the VRD dataset con-
tains 1.9k triplets that never occur in the training set. Our
architecture allows zero-shot learning and we report the re-
sults on these triplets in Table 8. Our method outperforms
the state-of-the-art method [24] when using only the visual
modality (no language or frequency prior). Additionally,
for phrase detection we detect unseen-at-training interac-
tions better than [24], even when they also use language and
frequency priors. Finally, our multitask architecture outper-
forms the baseline by a significant margin, highlighting the
benefit of joint training compared to separate one.

5. Conclusions

Most state-of-the-art works for video detection aim at lo-
calizing either objects or actions. Instead, we jointly detect
objects and actions in uncontrolled video scenes. To this
end, we propose an end-to-end network built upon Faster
R-CNN [34]. The key point is that our network operates
with a multitask objective. We show that this joint train-
ing: (a) outperforms training alone with objects or with ac-
tions, as the network can generalize better, is less prone to
overfit and benefits from sharing statistical strength between
classes, (b) performs as well as other variants while requir-
ing fewer parameters and (c) allows zero-shot learning of
actions performed by an object, for which no action labels
are present at training time. Our network can also be ap-
plied to different tasks including semantic segmentation and
visual relationship detection.
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