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Abstract

While most existing approaches for detection in videos

focus on objects or human actions separately, we aim at

jointly detecting objects performing actions, such as cat

eating or dog jumping. We introduce an end-to-end multi-

task objective that jointly learns object-action relationships.

We compare it with different training objectives, validate

its effectiveness for detecting objects-actions in videos, and

show that both tasks of object and action detection bene-

fit from this joint learning. Moreover, the proposed archi-

tecture can be used for zero-shot learning of actions: our

multitask objective leverages the commonalities of an ac-

tion performed by different objects, e.g. dog and cat jump-

ing, enabling to detect actions of an object without training

with these object-actions pairs. In experiments on the A2D

dataset [50], we obtain state-of-the-art results on segmen-

tation of object-action pairs. We finally apply our multitask

architecture to detect visual relationships between objects

in images of the VRD dataset [24].

1. Introduction

Video understanding has received increased attention

over the past decade leading to significant advances [39,

43]. However, most existing approaches focus either on

object recognition [14, 34] or on human action recogni-

tion [29, 48] separately. For both tasks, the community has

moved from small datasets [35] to large ones with thou-

sands of videos and hundreds of classes [1, 12], from con-

trolled environments [38] to videos in-the-wild [15]. Given

the impressive success of Convolutional Neural Networks

(CNNs) for object detection [23, 34], action localization

has benefited as well from this improvement. In particu-

lar, Faster R-CNN [34] has been enhanced for videos by

using a two-stream variant [9, 29, 48], in which both ap-

pearance and motion are used as inputs. Modern approaches

first use such a detector to localize human actions in indi-

vidual frames, and then either link them or track them over

time to create spatio-temporal detections [9, 29, 48]. These
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Figure 1: Detection examples of different object-action

pairs for the videos of the A2D dataset [50].

methods focus exclusively on human action recognition.

While humans or actions alone are building blocks of

video understanding, the relationship between objects and

actions can yield a more complete interpretation. For in-

stance, an autonomous car should not only be able to de-

tect another car (object) or a human walking (action), but

also a dog running or a ball flying (object-action). Other

applications include content-based retrieval, video caption-

ing [43, 52] and health-care robots, for instance helping

blind people crossing streets. Therefore, to better under-

stand videos, we need to go beyond these two independent

tasks of object and human action recognition and under-

stand the relationship between objects and actions.

In this paper, we propose to jointly detect object-action

instances in uncontrolled videos, e.g. cat eating, dog run-

ning or car rolling, see Figure 1. We build an end-to-end

two stream network architecture for joint learning of objects

and actions. We cast this joint learning problem by leverag-

ing a multitask objective. We compare our proposed end-to-

end multitask architecture with alternative ones (Figure 3):

(i) treating every possible combination of actions and ob-

jects as a separate class (Cartesian) and (ii) considering a

hierarchy of objects-actions: the first level corresponds to

objects and the second one to the valid actions for each ob-

ject (hierarchical). We show that our method performs as

well as these two alternatives while (a) requiring fewer pa-

rameters and (b) enabling zero-shot learning of the actions

performed by a specific object, i.e., when training for an ob-
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Figure 2: Overview of our end-to-end multitask network architecture for joint object-action detection in videos. Blue

color represents convolutional layers while green represents fully connected layers. The end-to-end training is done by

concatenating the fully connected layers from both streams. Here, pO and pA are the outputs of the two branches that predict

the object and action labels, resulting in the loss described in Equation 2.

ject class alone without its actions, our multitask network is

able to predict actions for that object class by leveraging

actions performed by other objects.

Interestingly, our multitask objective not only allows to

effectively detect object-action pairs but also leads to per-

formance improvements on each individual task (i.e., de-

tection of either objects or actions). This is because the

features learned for one task help learning the other one.

We compare to the state of the art for object-action de-

tection on the Actor-Action (A2D) dataset [50] that con-

tains segmentation annotation for object-action pairs. For

a direct comparison we transform our detections into pix-

elwise segmentation maps by using segmentation propos-

als [10, 30]. Our approach significantly outperforms the

state of the art [50, 49] on this dataset. We finally ap-

ply our multitask objective to detect object-action relation-

ships in images on the Visual Relationship Detection (VRD)

dataset [24].

In summary, we make the following contributions:

• We propose an end-to-end multitask architecture for joint

object-action detection.

• We show that this multitask objective can be leveraged for

zero-shot learning of actions.

• We demonstrate the generalization of our multitask archi-

tecture by applying it to (a) object-action semantic segmen-

tation and (b) object-action relationships in images.

2. Related Work

Most existing approaches for detection in videos focus

either on object or on action localization. Over the past few

years, the methods range from low-level features [16, 20,

26, 32, 42, 45, 46], structured models that mine mid-level

elements [19, 25] to parts [7, 28, 33] and attributes [22].

However, CNNs currently constitute the dominant approach

for large-scale and high-quality video detection.

Object or action detection. Recent work on object detec-

tion [8, 14, 34] has shown remarkable progress, mainly due

to the use of CNNs [8, 17, 23]. R-CNN [8] tackles ob-

ject detection with CNNs by casting the task as a region-

proposals classification problem. Faster R-CNN [34] goes

a step further and generates proposals using a Region Pro-

posal Network (RPN), which shares convolutional features

with the proposal classification branch.

These per-frame detectors are also used by state-of-the-

art human action localization methods [29, 37] to obtain

spatial information; then the detections are linked across

time resulting in video-level localizations [9, 48]. To lever-

age video data, the detector operates on two streams [39]:

RGB and optical flow. The two streams are trained sepa-

rately and the scores are averaged at test time [9, 29, 48],

i.e., late fusion of scores. In contrast, our architecture is

a two-stream Faster R-CNN trained end-to-end based on a

fusion by a fully-connected layer that operates on concate-

nated features from both streams. Moreover, it is trained

with a multitask objective that allows us to detect objects

and actions jointly.

Joint modeling of objects and actions. Joint modeling of

objects and actions in videos has received little attention so

far. For the action localization task, some works [11, 31]

propose to model the interactions of humans and objects.

However, the task we tackle in this paper is significantly

different as objects are not used for the actions, but they are

the actors. Bojanowski et al. [2] have considered the case

in which different entities can perform a set of actions, but

these entities correspond to names of different actors, i.e.,

to person identification. Closely related to object-action de-

tection in videos is the work [49, 50] on segmenting object-

action pairs. They use Conditional Random Fields at the

supervoxel level to output a semantic segmentation at the

pixel level. We show that our detections based on a multi-

task objective also improve the semantic segmentation per-

formance by leveraging segmentation proposals [10, 30].

In images, however, object-action pairs have been mod-

eled implicitly in the context of predicting sentences for im-

ages [27, 44] and more recently by visual phrases [36] and
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(a) Multitask (b) Cartesian (c) Hierarchical

Figure 3: Illustration of the three different ways we consider for jointly learning objects and actions. The blue nodes represent

objects and the red ones action classes, while the yellow ones represent the background class.

relationships between objects [24]. The task consists in de-

tecting triplets of two objects and their relationship [24, 36].

Most approaches rely on object detectors. The relationship

label is predicted from the bounding box around the two

objects, and sometimes from additional modalities such as

languages or frequency priors in the training set. We show

that our multitask objective allows to predict the relation-

ships between objects without (a) the need to see the whole

bounding box and (b) the need to include any priors. In par-

ticular, we transform each triplet into two pairs, each con-

sisting of one of the two objects and the interaction. Then,

we train our network to detect bounding boxes around ob-

jects and also predict an interaction label.

Zero-shot learning. Most existing approaches for zero-

shot learning of categories rely on attributes [4, 5, 18]. At-

tributes have also been used for human actions [22, 51].

Liu et al. [22] were the first to represent actions by sets

of attributes. They consider that each action class has an

intra-class variability, which they try to model by search-

ing which attributes are relevant for each class. They ap-

ply zero-shot learning by manually labeling attributes for

all classes, including new ones without visual examples. In

contrast, our approach does not require any attribute labels.

3. End-to-end multitask network architecture

for joint learning of objects and actions

Given a video, we aim to detect the objects as well as the

actions they are performing. Let O (resp. A) be the set of

objects (resp. actions) labels. Some combinations of actions

and objects may not be valid, e.g. car eating. We denote by

V ⊂ O ×A the set of valid object-action combinations.

3.1. End­to­end network architecture

We build an end-to-end two-stream multitask network

that proceeds at the frame level (Figure 2). As most state-

of-the-art methods for object and action detection in videos,

we rely on Faster R-CNN [34] and its two-stream variant

[9, 37, 39]. However, instead of training each stream sep-

arately, we propose to fuse both streams, thus enabling ef-

fective end-to-end learning. Our end-to-end network has

two streams: (a) appearance, which takes as input the RGB

data and (b) motion, which operates on the optical flow [3].

Following [9], the input of the motion stream is a tensor

of three channels with the x and y coordinates of the flow

and its magnitude, represented as a 3-channel image. A Re-

gion Proposal Network (RPN) extracts candidate bounding

boxes independently for each stream. We use the set union

of the two RPNs and we aggregate features for each can-

didate box with a Region-of-Interest (RoI) pooling layer

in each stream. After one fully-connected layer, the two

streams are concatenated and fed to another fully-connected

layer. The remaining network layers operate on the fused

stream, enabling end-to-end training. This allows us to

learn the most relevant features among all possible com-

binations of appearance and motion. In contrast, late fusion

of the softmax probabilities of the two streams [29] assumes

that both appearance and motion are equally relevant for ev-

ery class. As we show in Section 4.1.1, our proposed fusion

significantly outperforms the late fusion.

Finally, we use a multitask loss for detecting objects, ac-

tions, and regressing the bounding box coordinates accord-

ing to the object classes. The total loss L of the network is:

L = LRPNR
+ LRPNF

+ Lcls + Lreg , (1)

with LRPNR
and LRPNF

the losses of the RPN operating on

the RGB and flow stream, respectively, Lcls the classifica-

tion loss, i.e., for recognizing objects and actions, and Lreg

the bounding box regression loss.

3.2. Joint learning of objects and actions

Given the candidate boxes, the network aims at jointly

predicting whether a box contains a particular object and

which action this object is performing. Let o (resp. a) be the

ground-truth object (resp. action) label of a region proposal

in the training set. To classify the boxes, we use a multi-

task architecture: one component predicts the object class,

and a second one predicts the action class, independently of

which object is performing it. Besides our proposed mul-

titask architecture, we consider two alternatives to jointly

predict object-action pairs: Cartesian product and hierarchy

of classes. We now present details for these three objec-

tives. We illustrate them in Figure 3 and summarize their

main differences in Table 1.

Multitask. Our multitask architecture relies on a multi-

task loss, for classifying candidate boxes with both object

and action labels. The first branch predicts the object la-
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loss # outputs probability # params

Multitask − log pO(o)− log pA(a) |O|+ |A|+ 2 pO(o) · pA(a) 0.9M

Cartesian − log pV(o, a) |V|+ 1 pV(o, a) 54.6M

Hierarchical − log pO(o)− log pAo
(a) |O|+ |V|+ 1 pO(o) · pAo

(a) 55.4M

Table 1: Comparison of different losses for object-action

learning. We give the number of parameters in the clas-

sification layers from the VRD dataset [24] where |O| =
100, |A| = 140, |V| = 13344 (Section 4.4).

bel. It is composed of a fully-connected layer that outputs

|O| + 1 scores (one per object class and another one for

background) followed by softmax. Let pO be the output of

this branch. In the same way, pA denotes the output of the

second branch that predicts the action label, i.e., of dimen-

sion |A| + 1. We use a log loss on both object and action

classification:

LMultitask
cls = − log pO(o)− log pA(a) . (2)

This version uses |O|+ |A|+ 2 outputs (Figure 3 (a)). For

|O| = 100 and |A| = 140 the number of parameters in

the classification layers is 0.9M (VRD dataset [24] used in

Section 4.4). At test time, the probability of a box to be the

object-action instance (o, a) is given by pO(o) · pA(a).

Cartesian product. Another solution is to consider each

object-action pair as a separate class, e.g. bird flying (Fig-

ure 3 (b)). In this case, there is only one branch for classifi-

cation with |V| + 1 outputs. We denote as pV the output of

this branch. The classification loss is:

LCartesian
cls = − log pV(o, a) . (3)

This version uses |V| + 1 outputs, which is in the or-

der of |A| × |O|. For instance, for |V| = 13344 (VRD

dataset [24]) the number of parameters in the classification

layer is 54.6M, i.e., 50× more than in the multitask (Ta-

ble 1). This makes it less scalable than our multitask ob-

jective and does not allow sharing of action labels across

object classes, which is required for zero-short learning. In

the multitask case, samples of an object-action pair help

training the detector of this object, which in turn helps de-

tecting it doing other actions; e.g. adult-running and adult-

walking samples help improving the adult detector. In con-

trast, by using the Cartesian product, each training sample

helps training only one particular object-action detector. At

test time, the probability of being an object-action instance

(o, a) is given by pV(o, a).

Hierarchy of classes. We also consider the set of valid

object-action classes as a hierarchy (Figure 3 (c)). The first

branch pO predicts the object. For each object o, any branch

pAo
predicts the actions among the valid ones Ao for o. In

this case, the classification loss is:

L
Hierarchy
cls

= − log pO(o)− log pAo
(a) . (4)

This version uses a total of |O|+1 outputs for the first level

and |V| for the second level, see Figure 3 (c). For instance,

information / datasets A2D YTO VID

objects X X X

actions X - -

# videos
training 3K 106 3,9K

test 746 49 555

# annotations
training 16K 4K 1,7M

test 4K 2,5K 170K

Table 2: Overview of the video datasets we use.

for |O| = 100 and |V| = 13344 the number of parameters

in the classification layers is 55.4M, i.e., 50× more than in

the multitask (Table 1). At test time, the probability of being

an object-action instance (o, a) is given by pO(o) · pAo
(a).

Per-object regression. In all cases, we refine the pro-

posal output by the RPN using a per-object regression of

the bounding box coordinates. The RPN minimizes the ge-

ometric difference between the proposals and the ground-

truth boxes. We follow [34] and make the regression target

scale-invariant by normalizing it by the size of the proposal.

We denote by to,a the regression target for a proposal that

covers an object. By using a per-object regression, we ob-

tain the following regression loss:

Lreg = Smooth-L1(uo − to,a) , (5)

with uo the output of the regression branch u corresponding

to object o, and:

Smooth-L1(x) =

{

0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(6)

4. Experimental Results

In this section, we study the impact of each of our contri-

butions separately. We first examine joint detection of ob-

jects and actions (Section 4.1) and zero-shot learning (Sec-

tion 4.2). Next, we compare our proposed multitask archi-

tecture to the state of the art on semantic segmentation of

object-action pairs (Section 4.3) and relationship detection

in images (Section 4.4).

Implementation details. Our framework is based on Faster

R-CNN [34] using the VGG-16 [40] as the underlying CNN

architecture. We initialize both streams using the standard

pre-training on ILSVRC 2012 [17]. This is in line with [47],

which shows that pre-training on ILSVRC 2012 instead of

UCF-101 [41] improves video classification accuracy.

4.1. Joint detection of objects and actions in videos

In this section, we evaluate our proposed end-to-end ar-

chitecture for joint detection of object-action pairs. We start

by validating the effectiveness of our end-to-end network

(Section 4.1.1) and then, we examine the joint learning with

the multitask objective (Section 4.1.2).

Video datasets. Table 2 shows some statistics of the

datasets we use. For object-action detection we use the
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input RoI Stream
A2D YTO VID

RGB Flow RGB Flow Fusion

X - X - - 63.1 58.9 45.2

- X - X - 32.0 32.3 5.0

X X X X late 61.6 57.3 33.9

X X X X ours 65.3 62.2 48.1

Table 3: Impact of end-to-end training: mAP for object de-

tection of different training scenarios on the A2D, YTO and

VID datasets.

Actor-Action (A2D) dataset [50], which has sparse frame-

level annotations for both objects and actions in videos.

To the best of our knowledge, it is the only video dataset

with bounding box and semantic segmentation annotations

for object-action pairs. It contains 7 objects (adult, baby,

ball, bird, car, cat, and dog) performing 8 different actions

(climb, crawl, eat, fly, jump, roll, run, walk) or no action.

We also use two video datasets for object detection: the

YouTube-Objects (YTO) dataset [13, 32] and the ‘object de-

tection in video’ (VID) track of the ILSVRC [1]. YTO con-

sists of videos collected from YouTube with 10 classes of

moving objects, e.g. aeroplane, car. VID contains bound-

ing boxes for 30 object classes including rigid objects, e.g.

motorcycle, watercraft, and animals, e.g. fox, monkey.

Protocol. We measure the detection performance using the

PASCAL VOC protocol [6]: a detection is correct if its

intersection-over-union overlap (IoU) with a ground-truth

box is greater than 0.5 and its labels (object and action) are

correctly predicted. The performance for a class is the aver-

age precision (AP), and the overall performance is captured

by the mean over all classes (mAP).

4.1.1 End-to-end architecture

We want to quantify the effectiveness of our proposed end-

to-end architecture that consists of two streams fused (a) at

the proposal (RoI) level and (b) at the feature level (Fig-

ure 2). We evaluate the impact of fusion for object detection

alone. We perform experiments on the three video datasets

(A2D, YTO and VID). Table 3 shows all the mAP results

for the different cases we consider.

Impact of RGB and Flow cues. To examine the impact

of the RGB and flow cues, we train each stream separately.

The first two rows of Table 3 show that the RGB stream

significantly outperforms the flow one. This is due to the

fact that the RGB stream is able to learn information about

how the objects look, which is a distinctive cue across dif-

ferent object classes. The flow stream performs worse than

the RGB one in general, and is particularly poor on the VID

dataset. This is because most objects in VID move only

slightly, or their motion is not discriminative for the class.

Impact of end-to-end training. Our proposed fusion of

the two streams enables end-to-end training. We examine

the impact by comparing our proposed fusion of streams

training
test on

objects actions objects + actions

objects 65.3 - -

actions - 56.2 -

Baseline - - 43.1

Cartesian 67.2 60.2 49.2

Hierarchical 67.9 59.6 49.6

Multitask 68.3 60.0 48.9

Table 4: mAP of six different models when training with

objects (first row), actions (second row), when multiplying

their scores (third row) or when jointly training with objects

and actions (last three rows) on A2D.

with late fusion of scores [9, 29]. In the latter, i.e., late

fusion of scores, we train the two-stream network fusing

only the region-proposal layers and then average the clas-

sification scores of each stream as [9, 37]. Results in Ta-

ble 3 show that, for all video datasets, using late score fu-

sion reduces the detection performance compared to using

the RGB stream alone. Interestingly, this is opposite of the

findings in human action localization [9, 29], where per-

formance increases due to the the significance of motion

cues for actions. This shows that the two-stream architec-

ture cannot be used as it is for object detection in videos and

highlights a clear difference between object and human ac-

tion detection. In contrast, on all object detection datasets,

our proposed fusion outperforms the other cases: it leads to

an increment over the late score fusion of approximately 2-

3%. This shows that the network successfully learns when

to leverage motion information and more importantly, how

to jointly learn features coming from the two stream.

4.1.2 Multitask learning

In this section, we evaluate our proposed multitask learning

of objects and actions. We start by evaluating the perfor-

mance only on object or on action detection. Therefore, we

train and test our network with only object or only action la-

bels (first two rows of Table 4). We also compute a baseline

(third row of Table 4) for object-action detection in which

we combine the object and the action detector trained sepa-

rately. More precisely, for each object detection, we obtain

object-action scores by multiplying the object scores with

the action scores from the most overlapping action box.

Table 4 also reports the results of our proposed multitask

architecture trained with objects and actions from the A2D

dataset. The most interesting finding is that our multitask

training improves the performance on each task separately

(Table 4 objects, actions and multitask rows). In particu-

lar, when testing just on objects (68.3%) or just on actions

(60.0%), our joint training outperforms training alone with

objects (65.3%) or with actions (56.2%). The reasons are

that the multitask network is (a) better able to generalize,

(b) less prone to overfit to the training samples and (c) ben-

efits from sharing examples across classes.
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climbing crawling eating flying jumping rolling running walking none avg.

adult 7.0 (78.2) 7.8 (72.5) 19.6 (80.0) - 11.0 (43.7) 24.3 (50.7) 6.3 (55.2) 13.6 (58.8) 33.3 (45.8) 15.3 (60.1)

baby 17.1 (63.1) 31.7 (76.4) - - - 33.2 (85.4) - 39.1 (77.9) 7.1 (31.9) 25.6 (64.9)

ball - - - 0.4 (19.3) 3.5 (29.8) 10.7 (42.2) - - 8.0 (11.1) 5.6 (28.0)

bird 16.8 (51.8) - 13.4 (38.0) 9.0 (66.2) 6.4 (32.3) 28.6 (60.2) - 7.7 (55.0) 2.4 ( 2.3) 12.1 (43.3)

car - - - 8.8 (42.2) 1.5 (90.5) 36.5 (66.8) 2.7 (63.8) - 5.1 (17.4) 10.9 (55.9)

cat 32.3 (60.2) - 28.9 (58.6) - 9.6 (21.7) 43.8 (68.2) 8.0 (31.0) 19.1 (49.2) 3.1 ( 5.8) 20.7 (43.7)

dog - 7.9 (58.2) 47.3 (74.2) - 17.9 (41.6) 25.5 (38.5) 10.3 (31.4) 34.0 (67.2) 1.8 ( 5.3) 20.7 (42.3)

Table 5: Evaluation of zero-shot learning for object-action pairs on A2D. For each object, we report the AP when excluding

all actions of this object at training. The numbers in parenthesis indicate the AP when training with all object-action pairs.

We also consider two alternative ways to jointly detect

objects and actions (Section 3.2 and Figure 3): (a) Cartesian

product of object-action labels and (b) hierarchy of object-

action classes. Table 4 (Cartesian and hierarchical) reports

the results when we train these two networks on the A2D

dataset. We observe that they both perform similarly to our

multitask network. The Cartesian and hierarchical networks

have the advantage of being able to distinguish different

ways objects perform each action (Table 1).

Discussion. In practice there are similarities in the way dif-

ferent objects perform the same action (e.g. dog and cat

eating) and in the way the same object performs different

actions (e.g. dog walking and running). Thus, our multi-

task objective allows the network to exploit the common-

ality among the two tasks, and hence, what is learned for

each task facilitates the learning of the other. In a nutshell,

our multitask architecture is a simpler model, able to reach

the same performance as the alternative architectures while

requiring much fewer parameters (Table 1 # params) and

enabling zero-shot learning (Section 4.2). For instance, in

Section 4.4 we clearly show the benefit of our multitask ar-

chitecture compared to the Cartesian and hierarchical archi-

tectures for a large number of objects and actions due to its

lower number of parameters.

Note that both losses (object and action) contribute

equally to the overall loss (Equation 2), as they are of the

same type (softmax), and the tasks they address are of the

same difficulty. To validate this, we vary the weight of the

action loss over 0.5, 1, 2 and observe insignificant variations

(< 0.5%) in the object-action mAP on A2D.

4.2. Zero­shot learning of actions

An important advantage of our end-to-end multitask ar-

chitecture is its capability of predicting actions for an object

without having trained for these particular object-actions

combinations. To validate this intuition, we experiment on

the A2D dataset (Table 2), which contains annotations for

7 objects performing 8 different actions in videos. We train

the network seven times, where each time we remove for

one object o′ all its action labels. For instance, we remove

all action labels for the object cat, but keep the cat examples

for training the object detector. Equation 2 is replaced by:

LMultitask
cls zero-shot = − log pO(o)− [o′ 6= o] log pA(a) . (7)

Note that the object classifier is not changed, while the ac-

tion classifier is learned only on the actions performed by

the objects different from o′. This approach to zero-shot

learning does not assume any prior knowledge such as at-

tributes of the unseen classes [22].

We report the results of zero-shot learning in Table 5.

We also report the AP when training with all object-action

pairs. The results show that our network is able to infer in-

formation about actions not seen at training time for a given

object. We observe that there are some object-action pair

for which the AP is only slightly decreased, e.g. cat rolling

or dog eating. This is because these objects share com-

monalities with others, e.g. cat and dog eating. In contrast,

we observe poor performance for objects like ball which

do not share similarities with other objects of the dataset.

For object classes that share similarities in actions, such as

cat and dog, our multitask architecture outperforms chance

level classification of unknown actions by a large margin

(+15%), while for classes that do not share commonalities

with other classes, like adult the gain is smaller (+5%).

4.3. Object­action segmentation

A2D comes with annotations for semantic segmentation

of object-action pairs. In this section, we extend our bound-

ing box detections to pixelwise segmentation and we com-

pare our results to the state of the art.

Metrics. Following [50], we measure class-average pixel

accuracy and global pixel accuracy. Accuracy is the per-

centage of pixels for which the label is correctly pre-

dicted, either over all pixels (global) or first computed for

each class separately and then averaged over classes (class-

average). We also evaluate our segmentations using mIoU,

i.e., the IoU between the ground-truth segmentation and

output segmentation averaged over all classes. mIoU is bet-

ter suited as it is not biased towards background which is

the most present class and it penalizes errors when too many

pixels are set to a particular label instead of background.

Setup. Our multitask model predicts bounding boxes for

each object-action pair. We extend our detections to pix-

elwise segmentations of object-action pairs by using seg-

mentation proposals from either (a) the recently proposed

SharpMask [30] or (b) the hierarchical video segmentation

method GBH [10], which is the one used by the state-of-the-
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methods
object action object + action

ave glo mIoU ave glo mIoU ave glo mIoU

Trilayer [50] 45.7 74.6 - 47.0 74.6 - 25.4 76.2 -

GPM (TSP) [49] 58.3 85.2 33.4 60.5 85.3 32.0 43.3 84.2 19.9

GPM (GBH) [49] 59.4 84.8 33.3 61.2 84.9 31.9 43.9 83.8 19.9

Ours (GBH) 72.9 85.8 42.7 61.4 84.6 35.5 48.0 83.9 24.9

Ours (SharpMask) 73.7 90.6 49.5 60.5 89.3 42.2 47.5 88.7 29.7

Table 6: Comparison to the state of the art for object, action and object-action segmentation on A2D using class-average

pixel accuracy (ave), global pixel accuracy (glo) and mean Intersection over Union (mIoU) metrics.

art GPM method [49]. For each frame, we first apply non-

maximum suppression on the detections that have a score

greater than 0.5. Then, for each detection, we select the

segmentation proposal that overlaps the most with it (ac-

cording to IoU). If there is no such proposal, we directly

use the rectangular detection itself as a segmentation mask.

While our setup is simple, it serves as a baseline to evaluate

our detections for semantic segmentation.

Results. The first three rows of Figure 4 show correctly

labeled and segmented object-action pairs. We observe

that our segmentation results are accurate, even in difficult

cases, such as small objects (e.g. birds) or cluttered scenes

(e.g. adults running). The two last rows show typical failure

cases. In the fourth row, the action label of one adult is in-

correct and there are some detections considered as wrong

due to missing annotations. In the last row we miss the adult

for which only one arm is visible.

Table 6 provides a quantitative comparison between our

results and the state of the art [49, 50] on A2D. When us-

ing SharpMask, we outperform the previous state of the art

for all metrics and all tasks, except for average accuracy on

action segmentation, where we match [49]. Our improve-

ments are particularly significant for object segmentation

(+14% class-average accuracy, +16% mIoU) and joint ob-

ject and action segmentation (more than +5% on all met-

rics). Note that we do not use any training segmentation

from the A2D dataset (SharpMask is pre-trained on MS

COCO [21]). Furthermore, we observe that even when us-

ing the same underlying method (GBH [10]), we perform on

par or better than [49, 50] in all metric-task combinations.

4.4. Relationship detection of objects and actions

In this section we use only images, and therefore we use

only the RGB stream as there is no flow for images. We

apply our model to visual relationship detection, where we

detect relationships between objects, defined as triples: ob-

ject1 - interaction - object2. To do so, we transform each

triplet into two pairs, each consisting of an object and an

interaction and use them to train our multitask architecture.

Dataset and protocol. We employ the Visual Relationship

Detection (VRD) dataset [24] that examines object relation-

ships. It contains 4k training and 1k test images with 38k

relationships between objects, such as person kick ball, per-

frame ground-truth ours

birds-flying birds-flying

dog-

running
ball-

jumping

dog-

running
ball-

jumping

dog-crawling

adult-walking

dog-crawling

adult-walking

adult-

none

adults-

running

adults-

none

adult-

walking

adults-

running

adult-

none

bird-rolling bird-rolling

Figure 4: Examples of semantic segmentation with (from

left to right): the frame, the ground-truth and the segmen-

tation output obtained when combining our approach with

proposals from SharpMask [30]. The colors of the segmen-

tations represent an object-action pair. Note that we do not

use any object-action segmentation at training time.

son wear shirt, motorcycle has wheel. There are 100 differ-

ent objects and 70 interaction types.

We consider here visual phrase detection [36], where the

goal is to output a triplet object1 - interaction - object2 and

localize it with one box having an IoU over 0.5 with the

ground-truth box. We also evaluate relationship detection:

the task consists in detecting a triplet object1 - interaction

- object2 with two bounding boxes on object1 and object2,

both having an IoU over 0.5 with their ground-truth boxes.

For evaluation, the metric used is recall @100 and re-

call @50 (denoted as R@N ) and not mAP, as not all pos-

sible interactions are annotated in the test images. In each

image, the top N detections are kept and recall is measured.

Model. To detect relationships using our multitask architec-

ture, we transform each object1-interaction-object2 triplet

into two pairs, each consisting of an object and an interac-

tion label. More precisely, we double the set of all possible

interactions, by including their passive forms. For example,

the triplet human kicks ball becomes two pairs: (i) one with

object human and action kick, and (ii) another pair with ob-
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Modality Method
Phrase detection Relationship detection

R@100 R@50 R@100 R@50

V

VP [36] 0.07 0.04 - -

Joint CNN [39] 0.09 0.07 0.09 0.07

VRD [24] 2.6 2.2 1.9 1.6

Baseline 11.9 7.7 7.1 4.5

Ours Multitask 18.3 14.5 11.3 8.6

V+L+F VRD [24] 17.0 16.2 14.7 13.9

Table 7: Comparison to different architectures and to the

state-of-the-art visual relationships on the VRD dataset for

phrases and relationship detection. We report R@100 and

R@50 for methods using only visual cue (V) or also lan-

guage and frequency priors (V+L+F).

ject ball and action k̃ick = being kicked. In that way, our

training set consists of 100 object classes performing 140
different actions. Note here that the possible number of out-

puts is 100 + 140 + 2 for our multitask objective.

At test time, we keep all detection with score over 0.5
and apply non-maximum suppression. For each pair of ob-

ject detections, we score each possible interaction using the

multiplication of the object scores and the interaction score.

The interaction score is defined as the combination of the

score of an interaction from the first object and its passive

form from the second object, i.e., the interaction score of

kick in human kicks ball includes both scores of kick for the

human and being kicked for the ball.

Results. Table 7 reports the R@100 and R@50 for the

two tasks we examine, i.e., phrase and relationship detec-

tion. We outperform all previous state-of-the-art results on

both tasks and at both operating points, when comparing to

methods based purely on the images ([24, 36, 39]). More-

over, our results are only a little worse than those of [24],

where they enhance their visual model with some frequency

prior as well as language priors by leveraging the semantic

similarities of relationships in term of words. In particu-

lar, we perform on par on phrase detection (+1% at R@100

and −2% at R@50). Note how our method features a clear

increment from R@50 to R@100, which shows its poten-

tial to correctly detect interactions that may be lower in the

recall list. Hence, including some language or spatial pri-

ors could significantly increase our performance. Figure 5

shows some qualitative results.

Benefits of the multitask training. We compare our multi-

task architecture with a baseline approach where we multi-

ply the scores of two separate networks, one trained on ob-

jects and another one trained on interactions. Table 7 shows

that our multitask architecture outperforms this alternative

(‘Baseline’ row). This comparison highlights the benefit of

joint training compared to training for each task separately.

We have also evaluated the Cartesian and hierarchical com-

bination of objects and actions (Section 3.2) and found that

they perform poorly (for both R@100 is around 0%). This

can be explained by lack of training data necessary to deter-

mine the large number of parameters (55M in Table 1).

motorcycle has wheel
wheel on 

motorcycle

building behind car

motorcycle 

has helmet

motorcycle 

has helmet
laptop on bed

person on bed

bed under person

clock by bed

person use camera

phone by bed

Figure 5: Qualitative object-action relationships on the

VRD dataset: (yellow): our correct boxes with their green

label, (red): missed interactions for 100 retrieved boxes.

Modality Method
Phrase detection Relationship detection

R@100 R@50 R@100 R@50

V

VRD [24] 1.1 0.8 0.8 0.7

Baseline 4.3 2.3 2.4 1.3

Ours Multitask 5.5 3.4 2.9 1.9

V+L+F VRD [24] 3.8 3.4 3.5 3.1

Table 8: Comparison to the state-of-the-art zero-shot detec-

tion of visual relationships on the VRD dataset. We report

R@100 and R@50 for methods using only visual cue (V) or

also language and frequency priors (V+L+F).

Zero-shot learning. The test set of the VRD dataset con-

tains 1.9k triplets that never occur in the training set. Our

architecture allows zero-shot learning and we report the re-

sults on these triplets in Table 8. Our method outperforms

the state-of-the-art method [24] when using only the visual

modality (no language or frequency prior). Additionally,

for phrase detection we detect unseen-at-training interac-

tions better than [24], even when they also use language and

frequency priors. Finally, our multitask architecture outper-

forms the baseline by a significant margin, highlighting the

benefit of joint training compared to separate one.

5. Conclusions

Most state-of-the-art works for video detection aim at lo-

calizing either objects or actions. Instead, we jointly detect

objects and actions in uncontrolled video scenes. To this

end, we propose an end-to-end network built upon Faster

R-CNN [34]. The key point is that our network operates

with a multitask objective. We show that this joint train-

ing: (a) outperforms training alone with objects or with ac-

tions, as the network can generalize better, is less prone to

overfit and benefits from sharing statistical strength between

classes, (b) performs as well as other variants while requir-

ing fewer parameters and (c) allows zero-shot learning of

actions performed by an object, for which no action labels

are present at training time. Our network can also be ap-

plied to different tasks including semantic segmentation and

visual relationship detection.
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