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Abstract

We propose a novel deep learning architecture for re-

gressing disparity from a rectified pair of stereo images.

We leverage knowledge of the problem’s geometry to form a

cost volume using deep feature representations. We learn to

incorporate contextual information using 3-D convolutions

over this volume. Disparity values are regressed from the

cost volume using a proposed differentiable soft argmin op-

eration, which allows us to train our method end-to-end to

sub-pixel accuracy without any additional post-processing

or regularization. We evaluate our method on the Scene

Flow and KITTI datasets and on KITTI we set a new state-

of-the-art benchmark, while being significantly faster than

competing approaches.

1. Introduction

Accurately estimating three dimensional geometry from

stereo imagery is a core problem for many computer vision

applications, including autonomous vehicles and UAVs [2].

In this paper we are specifically interested in computing the

disparity of each pixel between a rectified stereo pair of im-

ages. To achieve this, the core task of a stereo algorithm is

computing the correspondence of each pixel between two

images. This is very challenging to achieve robustly in real-

world scenarios. Current state-of-the-art stereo algorithms

often have difficulty with textureless areas, reflective sur-

faces, thin structures and repetitive patterns. Many stereo

algorithms aim to mitigate these failures with pooling or

gradient based regularization [15, 23]. However, this often

requires a compromise between smoothing surfaces and de-

tecting detailed structures.

In contrast, deep learning models have been successful

in learning powerful representations directly from the raw

data in object classification [28], detection [17] and seman-

tic segmentation [31, 3]. These examples demonstrate that

deep convolutional networks are very effective for under-

standing semantics. They excel at classification tasks when

supervised with large training datasets. We observe that a

number of these challenging problems for stereo algorithms

would benefit from knowledge of global semantic context,

rather than relying solely on local geometry. For example,

given a reflective surface of a vehicle’s wind-shield, a stereo

algorithm is likely to be erroneous if it relies solely on the

local appearance of the reflective surface to compute geom-

etry. Rather, it would be advantageous to understand the

semantic context of this surface (that it belongs to a vehi-

cle) to infer the local geometry. In this paper we show how

to learn a stereo regression model end-to-end, with the ca-

pacity to understand wider contextual information.

Stereo algorithms which leverage deep learning repre-

sentations have so far been largely focused on using them

to generate unary terms [48, 32]. Applying cost matching

on the deep unary representations performs poorly when es-

timating pixel disparities [32, 48]. Traditional regulariza-

tion and post processing steps are still used, such as semi

global block matching and left-right consistency checks

[23]. These regularization steps are severely limited be-

cause they are hand-engineered, shallow functions, which

are still susceptible to the aforementioned problems.

This paper asks the question, can we formulate the en-

tire stereo vision problem with deep learning using our un-

derstanding of stereo geometry? The main contribution of

this paper is an end-to-end deep learning method to estimate

per-pixel disparity from a single rectified image pair. Our

architecture is illustrated in Figure 1. It explicitly reasons

about geometry by forming a cost volume, while also rea-

soning about semantics using a deep convolutional network

formulation. We achieve this with two key ideas:

• We learn to incorporate context directly from the data,

employing 3-D convolutions to learn to filter the cost

volume over height×width×disparity dimensions,

• We use a soft argmin function, which is fully differ-

entiable, and allows us to regress sub-pixel disparity

values from the disparity cost volume.

Section 3 introduces this model. In Section 4 we evaluate

our model on the synthetic Scene Flow dataset [36] and set

a new state-of-the-art benchmark on the KITTI 2012 and
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Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).

2015 datasets [14, 35]. Finally, in Section 4.3 we present

evidence that our model has the capacity to learn semantic

reasoning and contextual information.

2. Related Work

The problem of computing depth from stereo image pairs

has been studied for quite some time [5]. A survey by

Scharstein and Szeliski [39] provides a taxonomy of stereo

algorithms as performing some subset of: matching cost

computation, cost support aggregation, disparity computa-

tion and optimization, or disparity refinement. This survey

also described the first Middlebury dataset and associated

evaluation metrics. The KITTI dataset [14, 35] is a larger

dataset from data collected from a moving vehicle with LI-

DAR ground truth. These datasets first motivated improved

hand-engineered techniques for all components of stereo, of

which we mention a few notable examples.

The matching cost is a measure of pixel dissimilarity for

potentially corresponding image locations [25], of which

absolute differences, squared differences, and truncated dif-

ferences are examples. Local descriptors based on gra-

dients [16] or binary patterns, such as CENSUS [45] or

BRIEF [7, 22], can be employed. Awareness of the im-

age content can more heavily incorporate neighboring pix-

els possessing similar appearance, under the assumption

that they are more likely to come from the same surface

and disparity. A survey of these techniques is provided by

Tombari et al. [43]. Local matching costs may also be op-

timized within a global framework, usually minimizing an

energy function combining a local data term and a pairwise

smoothness term. Global optimization can be accomplished

using graph cuts [27] or belief propagation [26], which can

be extended to slanted surfaces [6]. A popular and effective

approximation to global optimization is the Semi-Global

Matching (SGM) of Hirschmüller [24], where dynamic pro-

gramming optimizes a pathwise form of the energy function

in many directions.

In addition to providing a basis for comparing stereo al-

gorithms, the ground truth depth data from these datasets

provides the opportunity to use machine learning for im-

proving stereo algorithms in a variety of ways. Zhang and

Seitz [52] alternately optimized disparity and Markov ran-

dom field regularization parameters. Scharstein and Pal [38]

learn conditional random field (CRF) parameters, and Li

and Huttenlocher [29] train a non-parametric CRF model

using the structured support vector machine. Learning can

also be employed to estimate the confidence of a traditional

stereo algorithm, such as the random forest approach of

Haeusler et al. [19]. Such confidence measures can improve

the result of SGM as shown by Park and Yoon [37].

Deep convolutional neural networks can be trained to

match image patches [46]. A deep network trained to match

9 × 9 image patches, followed by non-learned cost aggre-

gation and regularization, was shown by Žbontar and Le-

Cun [47, 49] to produce then state-of-the-art results. Luo

et al. presented a notably faster network for computing lo-

cal matching costs as a multi-label classification of dispar-

ities using a Siamese network [33]. A multi-scale embed-

ding model from Chen et al. [9] also provided good local

matching scores. Also noteworthy is the DeepStereo work

of Flynn et al. [12], which learns a cost volume combined

with a separate conditional color model to predict novel

viewpoints in a multi-view stereo setting.

Mayer et al. created a large synthetic dataset to train

a network for disparity estimation (as well as optical

flow) [34], improving the state-of-the-art. As one variant

of the network, a 1-D correlation was proposed along the

disparity line which is a multiplicative approximation to the

stereo cost volume. In contrast, our work does not collapse

the feature dimension when computing the cost volume and

uses 3-D convolutions to incorporate context.

Though the focus of this work is on binocular stereo, it

is worth noting that the representational power of deep con-

volutional networks also enables depth estimation from a

single monocular image [10]. Deep learning is combined

with a continuous CRF by Liu et al. [30]. Instead of super-

vising training with labeled ground truth, unlabeled stereo

pairs can be used to train a monocular model [13].
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In our work, we apply no post-processing or regular-

ization. We explicitly reason about geometry by forming

a fully differentiable cost volume and incorporate context

from the data with a 3-D convolutional architecture. We

don’t learn a probability distribution, cost function, or clas-

sification result. Rather, our network is able to directly

regress a sub-pixel estimate of disparity from a stereo image

pair.

3. Learning End-to-end Disparity Regression

Rather than design any step of the stereo algorithm by

hand, we would like to learn an end-to-end mapping from

an image pair to disparity maps using deep learning. We

hope to learn a more optimal function directly from the

data. Additionally, this approach promises to reduce much

of the engineering design complexity. However, our inten-

tion is not to naively construct a machine learning architec-

ture as a black box to model stereo. Instead, we advocate

the use of the insights from many decades of multi-view ge-

ometry research [20] to guide architectural design. There-

fore, we form our model by developing differentiable lay-

ers representing each major component in traditional stereo

pipelines [39]. This allows us to learn the entire model end-

to-end while leveraging our geometric knowledge of the

stereo problem.

Our architecture, GC-Net (Geometry and Context

Network) is illustrated in Figure 1, with a more detailed

layer-by-layer definition in Table 1. In the remainder of

this section we discuss each component in detail. Later,

in Section 4.1, we present quantitative results justifying our

design decisions.

3.1. Unary Features

First we learn a deep representation to use to compute

the stereo matching cost. Rather than compute the stereo

matching cost using raw pixel intensities, it is common to

use a feature representation. The motivation is to compare

a descriptor which is more robust to the ambiguities in pho-

tometric appearance and can incorporate local context.

In our model we learn a deep representation through a

number of 2-D convolutional operations. Each convolu-

tional layer is followed by a batch normalization layer and

a rectified linear non-linearity. To reduce computational

demand, we initially apply a 5×5 convolutional filter with

stride of two to subsample the input. Following this layer,

we append eight residual blocks [21] which each consist of

two 3×3 convolutional filters in series. Our final model ar-

chitecture is shown in Table 1. We form the unary features

by passing both left and right stereo images through these

layers. We share the parameters between the left and right

towers to more effectively learn corresponding features.

Layer Description Output Tensor Dim.

Input image H×W×C

Unary features (section 3.1)

1 5×5 conv, 32 features, stride 2 1⁄2H×1⁄2W×F
2 3×3 conv, 32 features 1⁄2H×1⁄2W×F
3 3×3 conv, 32 features 1⁄2H×1⁄2W×F

add layer 1 and 3 features (residual connection) 1⁄2H×1⁄2W×F
4-17 (repeat layers 2,3 and residual connection) × 7 1⁄2H×1⁄2W×F
18 3×3 conv, 32 features, (no ReLu or BN) 1⁄2H×1⁄2W×F

Cost volume (section 3.2)

Cost Volume 1⁄2D×1⁄2H×1⁄2W×2F

Learning regularization (section 3.3)

19 3-D conv, 3×3×3, 32 features 1⁄2D×1⁄2H×1⁄2W×F
20 3-D conv, 3×3×3, 32 features 1⁄2D×1⁄2H×1⁄2W×F
21 From Cost Volume: 3-D conv, 3×3×3, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×2F
22 3-D conv, 3×3×3, 64 features 1⁄4D×1⁄4H×1⁄4W×2F
23 3-D conv, 3×3×3, 64 features 1⁄4D×1⁄4H×1⁄4W×2F
24 From 21: 3-D conv, 3×3×3, 64 features, stride 2 1⁄8D×1⁄8H×1⁄8W×2F
25 3-D conv, 3×3×3, 64 features 1⁄8D×1⁄8H×1⁄8W×2F
26 3-D conv, 3×3×3, 64 features 1⁄8D×1⁄8H×1⁄8W×2F
27 From 24: 3-D conv, 3×3×3, 64 features, stride 2 1⁄16D×1⁄16H×1⁄16W×2F
28 3-D conv, 3×3×3, 64 features 1⁄16D×1⁄16H×1⁄16W×2F
29 3-D conv, 3×3×3, 64 features 1⁄16D×1⁄16H×1⁄16W×2F
30 From 27: 3-D conv, 3×3×3, 128 features, stride 2 1⁄32D×1⁄32H×1⁄32W×4F
31 3-D conv, 3×3×3, 128 features 1⁄32D×1⁄32H×1⁄32W×4F
32 3-D conv, 3×3×3, 128 features 1⁄32D×1⁄32H×1⁄32W×4F
33 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄16D×1⁄16H×1⁄16W×2F

add layer 33 and 29 features (residual connection) 1⁄16D×1⁄16H×1⁄16W×2F
34 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄8D×1⁄8H×1⁄8W×2F

add layer 34 and 26 features (residual connection) 1⁄8D×1⁄8H×1⁄8W×2F
35 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×2F

add layer 35 and 23 features (residual connection) 1⁄4D×1⁄4H×1⁄4W×2F
36 3×3×3, 3-D transposed conv, 32 features, stride 2 1⁄2D×1⁄2H×1⁄2W×F

add layer 36 and 20 features (residual connection) 1⁄2D×1⁄2H×1⁄2W×F
37 3×3×3, 3-D trans conv, 1 feature (no ReLu or BN) D×H×W×1

Soft argmin (section 3.4)

Soft argmin H×W

Table 1: Summary of our end-to-end deep stereo regression ar-

chitecture, GC-Net. Each 2-D or 3-D convolutional layer repre-

sents a block of convolution, batch normalization and ReLU non-

linearity (unless otherwise specified).

3.2. Cost Volume

We use the deep unary features to compute the stereo

matching cost by forming a cost volume. While a naive

approach might simply concatenate the left and right fea-

ture maps, forming a cost volume allows us to constrain the

model in a way which preserves our knowledge of the ge-

ometry of stereo vision. For each stereo image, we form

a cost volume of dimensionality height×width×(max dis-

parity + 1)×feature size. We achieve this by concatenating

each unary feature with their corresponding unary from the

opposite stereo image across each disparity level, and pack-

ing these into the 4D volume.

Crucially, we retain the feature dimension through this

operation, unlike previous work which uses a dot product

style operation which decimates the feature dimension [32].

This allows us to learn to incorporate context which can op-

erate over feature unaries (Section 3.3). We find that form-

ing a cost volume with concatenated features improves per-

formance over subtracting features or using a distance met-

ric. Our intuition is that by maintaining the feature unaries,

the network has the opportunity to learn an absolute rep-

resentation (because it is not a distance metric) and carry

this through to the cost volume. This gives the architecture

the capacity to learn semantics. In contrast, using a dis-

tance metric restricts the network to only learning relative
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(b) Multi-modal distribution
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(c) Multi-modal distribution with prescaling

Figure 2: A graphical depiction of the soft argmin operation (Section 3.4) which we propose in this work. It is able to take a cost curve

along each disparity line and output an estimate of the argmin by summing the product of each disparity’s softmax probability and it’s

disparity index. (a) demonstrates that this very accurately captures the true argmin when the curve is uni-modal. (b) demonstrates a failure

case when the data is bi-modal with one peak and one flat region. (c) demonstrates that this failure may be avoided if the network learns to

pre-scale the cost curve, because the softmax probabilities will tend to be more extreme, producing a uni-modal result.

representations between features, and cannot carry absolute

feature representations through to cost volume.

3.3. Learning Context

Given this disparity cost volume, we would now like to

learn a regularization function which is able to take into ac-

count context in this volume and refine our disparity esti-

mate. The matching costs between unaries can never be

perfect, even when using a deep feature representation. For

example, in regions of uniform pixel intensity (for exam-

ple, sky) the cost curve will be flat for any features based

on a fixed, local context. We find that regions like this can

cause multi modal matching cost curves across the dispar-

ity dimension. Therefore we wish to learn to regularize and

improve this volume.

We propose to use three-dimensional convolutional op-

erations to filter and refine this representation. 3-D con-

volutions are able to learn feature representations from the

height, width and disparity dimensions. Because we com-

pute the cost curve for each unary feature, we can learn con-

volutional filters from this representation. In Section 4.1 we

show the importance of these 3-D filters for learning context

and significantly improving stereo performance.

The difficulty with 3-D convolutions is that the addi-

tional dimension is a burden on the computational time for

both training and inference. Deep encoder-decoder tasks

which are designed for dense prediction tasks get around

their computational burden by encoding sub-sampled fea-

ture maps, followed by up-sampling in a decoder [3]. We

extend this idea to three dimensions. By sub-sampling the

input with stride two, we also reduce the 3-D cost volume

size by a factor of eight. We form our 3-D regularization

network with four levels of sub-sampling. As the unaries

are already sub-sampled by a factor of two, the features are

sub-sampled by a total factor of 32. This allows us to ex-

plicitly leverage context with a wide field of view. We apply

two 3×3×3 convolutions in series for each encoder level.

To make dense predictions with the original input resolu-

tion, we employ a 3-D transposed convolution to up-sample

the volume in the decoder. The full architecture is described

in Table 1.

Sub-sampling is useful to increase each feature’s recep-

tive field while reducing computation. However, it also re-

duces spatial accuracy and fine-grained details through the

loss of resolution. For this reason, we add each higher reso-

lution feature map before up-sampling. These residual lay-

ers have the benefit of retaining higher frequency informa-

tion, while the up-sampled features provide an attentive fea-

ture map with a larger field of view.

Finally, we apply a single 3-D transposed convolution

(deconvolution), with stride two and a single feature out-

put. This layer is necessary to make dense prediction in the

original input dimensions because the feature unaries were

sub-sampled by a factor of two. This results in the final,

regularized cost volume with size H×W×D.

3.4. Differentiable ArgMin

Typically, stereo algorithms produce a final cost volume

from the matching cost unaries. From this volume, we may

estimate disparity by performing an argmin operation over

the cost volumes disparity dimension. However, this opera-

tion has two problems:
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Model > 1 px > 3 px > 5 px MAE (px) RMS (px) Param. Time (ms)

1. Comparison of architectures

Unaries only (omitting all 3-D conv layers 19-36) w Regression Loss 97.9 93.7 89.4 36.6 47.6 0.16M 0.29
Unaries only (omitting all 3-D conv layers 19-36) w Classification Loss 51.9 24.3 21.7 13.1 36.0 0.16M 0.29
Single scale 3-D context (omitting 3-D conv layers 21-36) 34.6 24.2 21.2 7.27 20.4 0.24M 0.84
Hierarchical 3-D context (all 3-D conv layers) 16.9 9.34 7.22 2.51 12.4 3.5M 0.95

2. Comparison of loss functions

GC-Net + Classification loss 19.2 12.2 10.4 5.01 20.3 3.5M 0.95
GC-Net + Soft classification loss [32] 20.6 12.3 10.4 5.40 25.1 3.5M 0.95
GC-Net + Regression loss 16.9 9.34 7.22 2.51 12.4 3.5M 0.95

GC-Net (final architecture with regression loss) 16.9 9.34 7.22 2.51 12.4 3.5M 0.95

Table 2: Results on the Scene Flow dataset [36] which contains 35, 454 training and 4, 370 testing images of size 960 × 540px from

an array of synthetic scenes. We compare different architecture variants to justify our design choices. The first experiment shows the

importance of the 3-D convolutional architecture. The second experiment shows the performance gain from using a regression loss.

• it is discrete and is unable to produce sub-pixel dispar-

ity estimates,

• it is not differentiable and therefore unable to be

trained using back-propagation.

To overcome these limitations, we define a soft argmin1

which is both fully differentiable and able to regress a

smooth disparity estimate. First, we convert the predicted

costs, cd (for each disparity, d) from the cost volume to a

probability volume by taking the negative of each value.

We normalize the probability volume across the disparity

dimension with the softmax operation, σ(·). We then take

the sum of each disparity, d, weighted by its normalized

probability. A graphical illustration is shown in Figure 2

and defined mathematically in (1):

soft argmin :=

Dmax
∑

d=0

d× σ(−cd) (1)

This operation is fully differentiable and allows us to train

and regress disparity estimates. We note that a similar func-

tion was first introduced by [4] and referred to as a soft-

attention mechanism. Here, we show how to apply it for the

stereo regression problem.

However, compared to the argmin operation, its output

is influenced by all values. This leaves it susceptible to

multi-modal distributions, as the output will not take the

most likely. Rather, it will estimate a weighted average

of all modes. To overcome this limitation, we rely on the

network’s regularization to produce a disparity probability

distribution which is predominantly unimodal. The net-

work can also pre-scale the matching costs to control the

peakiness (sometimes called temperature) of the normalized

post-softmax probabilities (Figure 2). We explicitly omit

batch normalization from the final convolution layer in the

unary tower to allow the network to learn this from the data.

1Note that if we wished for our network to learn probabilities, rather

than cost, this function could easily be adapted to a soft argmax operation.

3.5. Loss

We train our entire model end-to-end from a random ini-

tialization. We train our model with supervised learning

using ground truth depth data. In the case of using LIDAR

to label ground truth values (e.g. KITTI dataset [14, 35])

these labels may be sparse. Therefore, we average our loss

over the labeled pixels, N . We train our model using the ab-

solute error between the ground truth disparity, dn, and the

model’s predicted disparity, d̂n, for pixel n. This supervised

regression loss is defined in (2):

Loss =
1

N

N
∑

n=1

∥

∥

∥
dn − d̂n

∥

∥

∥

1

(2)

In the following section we show that formulating our

model as a regression problem allows us to regress with sub-

pixel accuracy and outperform classification approaches.

Additionally, formulating a regression model makes it pos-

sible to leverage unsupervised learning losses based on pho-

tometric reprojection error [13].

4. Experimental Evaluation

In this section we present qualitative and quantitative re-

sults on two datasets, Scene Flow [36] and KITTI [14, 35].

Firstly, in Section 4.1 we experiment with different variants

of our model and justify a number of our design choices us-

ing the Scene Flow dataset [36]. In Section 4.2 we present

results of our approach on the KITTI dataset and set a

new state-of-the-art benchmark. Finally, we measure our

model’s capacity to learn context in Section 4.3.

For the experiments in this section, we implement our ar-

chitecture using TensorFlow [1]. All models are optimized

end-to-end with RMSProp [42] and a constant learning rate

of 1×10−3. We train with a batch size of 1 using a 256×512
randomly located crop from the input images. Before train-

ing we normalize each image such that the pixel intensi-

ties range from −1 to 1. We trained the network (from

a random initialization) on Scene Flow for approximately

150k iterations which takes two days on a single NVIDIA
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>2 px >3 px >5 px Mean Error Runtime
Non-Occ All Non-Occ All Non-Occ All Non-Occ All (s)

SPS-st [44] 4.98 6.28 3.39 4.41 2.33 3.00 0.9 px 1.0 px 2
Deep Embed [8] 5.05 6.47 3.10 4.24 1.92 2.68 0.9 px 1.1 px 3
Content-CNN [32] 4.98 6.51 3.07 4.29 2.03 2.82 0.8 px 1.0 px 0.7
MC-CNN [50] 3.90 5.45 2.43 3.63 1.64 2.39 0.7 px 0.9 px 67
PBCP [40] 3.62 5.01 2.36 3.45 1.62 2.32 0.7 px 0.9 px 68
Displets v2 [18] 3.43 4.46 2.37 3.09 1.72 2.17 0.7 px 0.8 px 265

GC-Net (this work) 2.71 3.46 1.77 2.30 1.12 1.46 0.6 px 0.7 px 0.9

(a) KITTI 2012 test set results [14]. This benchmark contains 194 train and 195 test gray-scale image pairs.

All Pixels Non-Occluded Pixels Runtime
D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

MBM [11] 4.69 13.05 6.08 4.33 12.12 5.61 0.13
ELAS [15] 7.86 19.04 9.72 6.88 17.73 8.67 0.3
Content-CNN [32] 3.73 8.58 4.54 3.32 7.44 4.00 1.0
DispNetC [34] 4.32 4.41 4.34 4.11 3.72 4.05 0.06
MC-CNN [50] 2.89 8.88 3.89 2.48 7.64 3.33 67
PBCP [40] 2.58 8.74 3.61 2.27 7.71 3.17 68
Displets v2 [18] 3.00 5.56 3.43 2.73 4.95 3.09 265

GC-Net (this work) 2.21 6.16 2.87 2.02 5.58 2.61 0.9

(b) KITTI 2015 test set results [35]. This benchmark contains 200 training and 200 test color image pairs. The qualifier ‘bg’ refers to

background pixels which contain static elements, ‘fg’ refers to dynamic object pixels, while ‘all’ is all pixels (fg+bg). The results show the

percentage of pixels which have greater than three pixels or 5% disparity error from all 200 test images.

Table 3: Comparison to other stereo methods on the test set of KITTI 2012 and 2015 benchmarks [14, 35]. Our method sets a new

state-of-the-art on these two competitive benchmarks, out performing all other approaches.

Titan-X GPU. For the KITTI dataset we fine-tune the mod-

els pre-trained on Scene Flow for a further 50k iterations.

For our experiments on Scene Flow we use F=32, H=540,

W=960, D=192 and on the KITTI dataset we use F=32,

H=388, W=1240, D=192 for feature size, image height, im-

age width and maximum disparity, respectively.

4.1. Model Design Analysis

In Table 2 we present an ablation study to compare a

number of different model variants and justify our design

choices. We wish to evaluate the importance of the key

ideas in this paper; using a regression loss over a classifi-

cation loss, and learning 3-D convolutional filters for cost

volume regularization. We use the synthetic Scene Flow

dataset [36] for these experiments, which contains 35, 454
training and 4, 370 testing images. We use this dataset for

two reasons. Firstly, we know perfect, dense ground truth

from the synthetic scenes which removes any discrepan-

cies due to erroneous labels. Secondly, the dataset is large

enough to train the model without over-fitting. In contrast,

the KITTI dataset only contains 200 training images, mak-

ing the model is susceptible to over-fitting to this very small

dataset. With tens of thousands of training images we do

not have to consider over-fitting in our evaluation.

The first experiment in Table 2 shows that including the

3-D filters performs significantly better than learning unar-

ies only. We compare our full model (as defined in Table 1)

to a model which uses only unary features (omitting all 3-

D convolutional layers 19-36) and a model which omits the

hierarchical 3-D convolution (omitting layers 21-36). We

observe that the 3-D filters are able to regularize and smooth

the output effectively, while learning to retain sharpness and

accuracy in the output disparity map. We find that the hi-

erarchical 3-D model outperforms the vanilla 3-D convolu-

tional model by aggregating a much large context, without

significantly increasing computational demand.

The second experiment in Table 2 compares our regres-

sion loss function to baselines classifying disparities with

hard or soft classification as proposed in [32]. Hard clas-

sification trains the network to classify disparities in the

cost volume as probabilities using cross entropy loss with

a ‘one hot’ encoding. Soft classification (used by [32])

smooths this encoding to learn a Gaussian distribution cen-

tered around the correct disparity value. In Table 2 we

show our regression approach outperforms both hard and

soft classification. This is especially noticeable for the pixel

accuracy metrics and the percentage of pixels which are

within one pixel of the true disparity, because the regression

loss allows the model to predict with sub-pixel accuracy.

4.2. KITTI Benchmark

In Table 3 we evaluate the performance of our model on

the KITTI 2012 and 2015 stereo datasets [14, 35]. These

consist of challenging and varied road scene imagery col-
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(a) KITTI 2012 test data qualitative results. From left: left stereo input image, disparity prediction, error map.

(b) KITTI 2015 test data qualitative results. From left: left stereo input image, disparity prediction, error map.

(c) Scene Flow test set qualitative results. From left: left stereo input image, disparity prediction, ground truth.

Figure 3: Qualitative results. By learning to incorporate wider context our method is often able to handle challenging scenarios, such as

reflective, thin or texture-less surfaces. By explicitly learning geometry in a cost volume, our method produces sharp results and can also

handle large occlusions.
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(a) Left stereo input image

(b) Predicted disparity map

(c) Saliency map (red = stronger saliency)

(d) What the network sees (input attenuated by saliency)

Figure 4: Saliency map visualization which shows the model’s

effective receptive field for a selected output pixel (indicated by

the white cross). This shows that our architecture is able to learn

to regress stereo disparity with a large field of view and significant

contextual knowledge of the scene, beyond the local geometry and

appearance. For example, in the example on the right we observe

that the model considers contextual information from the vehicle

and surrounding road surface to estimate disparity.

lected from a test vehicle. Ground truth depth maps for

training and evaluation are obtained from LIDAR data.

KITTI is a prominent dataset for benchmarking stereo al-

gorithms. The downside is that it only contains 200 training

images, which handicaps learning algorithms. for this rea-

son, we pre-train our model on the large synthetic dataset,

Scene Flow [36]. This helps to prevent our model from

over-fitting the very small KITTI training dataset. We hold

out 40 image pairs as our validation set.

Table 3a and 3b compare our method, GC-Net

(Geometry and Context Network), to other approaches on

the KITTI 2012 and 2015 datasets, respectively2. Our

method achieves state of the art results for both KITTI

benchmarks, by a notable margin. We improve on state-

of-the-art by 9% and 22% for KITTI 2015 and 2012 re-

spectively. Our method is also notably faster than most

competing approaches which often require expensive post-

processing. In Figure 3 we show qualitative results of our

2Full leaderboard: www.cvlibs.net/datasets/kitti/

method on KITTI 2012, KITTI 2015 and Scene Flow.

Our approach outperforms previous deep learning patch

based methods [48, 32] which produce noisy unary poten-

tials and are unable to predict with sub-pixel accuracy. For

this reason, these algorithms do not use end-to-end learn-

ing and typically post-process the unary output with SGM

regularization [11] to produce the final disparity maps.

The closest method to our architecture is DispNetC [34],

which is an end-to-end regression network pre-trained on

SceneFlow. However, our method outperforms this archi-

tecture by a notable margin for all test pixels. DispNetC

uses a 1-D correlation layer along the disparity line as an

approximation to the stereo cost volume. In contrast, our

architecture more explicitly leverages geometry by formu-

lating a full cost volume by using 3-D convolutions and a

soft argmin layer, resulting in an improvement in perfor-

mance.

4.3. Model Saliency

In this section we present evidence which shows our

model can reason about local geometry using wider con-

textual information. In Figure 4 we show some examples

of the model’s saliency with respect to a predicted pixel’s

disparity. Saliency maps [41] shows the sensitivity of the

output with respect to each input pixel. We use the method

from [51] which plots the predicted disparity as a function

of systematically occluding the input images. We offset the

occlusion in each stereo image by the point’s disparity.

These results show that the disparity prediction for a

given point is dependent on a wide contextual field of view.

For example, the disparity on the front of the car depends on

the input pixels of the car and the road surface below. This

demonstrates that our model is able to reason about wider

context, rather than simply 9×9 local patches like previous

deep learning patch-similarity stereo methods [50, 32].

5. Conclusions

We propose a novel end-to-end deep learning architec-

ture for stereo vision. It is able to learn to regress dispar-

ity without any additional post-processing or regularization.

We demonstrate the efficacy of our method on the KITTI

dataset, setting a new state-of-the-art benchmark.

We show how to efficiently learn context in the dispar-

ity cost volume using 3-D convolutions. We show how to

formulate it as a regression model using a soft argmin layer.

This allows us to learn disparity as a regression problem,

rather than classification, improving performance and en-

abling sub-pixel accuracy. We demonstrate that our model

learns to incorporate wider contextual information.

For future work we are interested in exploring a more

explicit representation of semantics to improve our disparity

estimation, and reasoning under uncertainty with Bayesian

convolutional neural networks.

73

www.cvlibs.net/datasets/kitti/


References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-

fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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[36] N.Mayer, E.Ilg, P.Häusser, P.Fischer, D.Cremers, A.Dosovitskiy, and

T.Brox. A large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In IEEE International Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2016.

arXiv:1512.02134. 1, 5, 6, 8

[37] M. G. Park and K. J. Yoon. Leveraging stereo matching with

learning-based confidence measures. Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recogni-

tion, 07-12-June:101–109, 2015. 2

[38] D. Scharstein and C. Pal. Learning conditional random fields for

stereo. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2007. 2

74



[39] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense

Two-Frame Stereo Correspondence Algorithms. International Jour-

nal of Computer Vision, 47(1):7–42, 2002. 2, 3

[40] A. Seki and M. Pollefeys. Patch based confidence prediction for

dense disparity map. In British Machine Vision Conference (BMVC),

2016. 6

[41] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-

volutional networks: Visualising image classification models and

saliency maps. arXiv preprint arXiv:1312.6034, 2013. 8

[42] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural

networks for machine learning, 4(2), 2012. 5

[43] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda. Classi-

fication and evaluation of cost aggregation methods for stereo corre-

spondence. 26th IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, 2008. 2

[44] K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient joint seg-

mentation, occlusion labeling, stereo and flow estimation. In Eu-

ropean Conference on Computer Vision, pages 756–771. Springer,

2014. 6

[45] R. Zabih and J. Woodfill. Non-parametric Local Transforms for

Computing Visual Correspondence. In Proceedings of European

Conference on Computer Vision, (May):151–158, 1994. 2

[46] S. Zagoruyko and N. Komodakis. Learning to compare image

patches via convolutional neural networks. Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 07-12-June(i):4353–4361, 2015. 2
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