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Figure 1: Our online deblurring results (bottom) on a number of challenging real-world video frames (top) suffering from

strong object motion. Our proposed approach is able to process the input video (VGA) in real-time, i.e. ∼24 fps on a standard

graphics card (NVIDIA GTX 1080).

Abstract

State-of-the-art video deblurring methods are capable

of removing non-uniform blur caused by unwanted cam-

era shake and/or object motion in dynamic scenes. How-

ever, most existing methods are based on batch process-

ing and thus need access to all recorded frames, rendering

them computationally demanding and time-consuming and

thus limiting their practical use. In contrast, we propose

an online (sequential) video deblurring method based on

a spatio-temporal recurrent network that allows for real-

time performance. In particular, we introduce a novel ar-

chitecture which extends the receptive field while keeping

the overall size of the network small to enable fast execu-

tion. In doing so, our network is able to remove even large

blur caused by strong camera shake and/or fast moving ob-

jects. Furthermore, we propose a novel network layer that

enforces temporal consistency between consecutive frames

by dynamic temporal blending which compares and adap-

tively (at test time) shares features obtained at different time

steps. We show the superiority of the proposed method in an

extensive experimental evaluation.

1. Introduction

Moving objects in dynamic scenes as well as camera

shake can cause undesirable motion blur in video record-

ings, often implying a severe degradation of video qual-

ity. This is especially true for low-light situations where

the exposure time of each frame is increased, and for videos

recorded with action (hand-held) cameras that have enjoyed

widespread popularity in recent years. Therefore, not only

to improve video quality [6, 18] but also to facilitate other

vision tasks such as tracking [16], SLAM [21], and dense

3D reconstruction [22], video deblurring techniques and

their applications have seen an ever increasing interest re-

cently. However, removing motion blur and restoring sharp
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frames in a blind manner (i.e., without knowing the blur of

each frame) is a highly ill-posed problem and an active re-

search topic in the field of computational photography.

In this paper, we propose a novel discriminative video

deblurring method. Our method leverages recent insights

within the field of deep learning and proposes a novel neu-

ral network architecture that enables run-times which are

orders of magnitude faster than previous methods without

significantly sacrificing restoration quality. Furthermore,

our approach is the first online (sequential) video deblurring

technique that is able to remove general motion blur stem-

ming from both egomotion and object motion in real-time

(for VGA video resolution).

Our novel network architecture employs deep convolu-

tional residual networks [12] with a layout that is recurrent

both in time and space. For temporal sequence modeling,

we propose a network layer that implements a novel mech-

anism that we dub dynamic temporal blending, which com-

pares the feature representation at consecutive time steps

and allows for dynamic (i.e. input-dependent) pixel-specific

information propagation. Recurrence in the spatial domain

is implemented through a novel network layout that is able

to extend the spatial receptive field over time without in-

creasing the size of the network. In doing so, we can handle

large blurs better than typical networks for video frames,

without run-time overhead.

Due to the lack of publicly available training data for

video deblurring, we also have collected a large number

of blurry and sharp videos by adapting the work of Kim

et al. [19] and the recent work of Nah et al. [26]. Specifi-

cally, we recorded sharp frames using a high-speed camera

and generated realistic blurry frames by averaging over sev-

eral consecutive sharp frames. Using this new dataset, we

successfully trained our novel video deblurring network in

an end-to-end manner.

Using the proposed network and new dataset, we per-

form deblurring in a sequential manner, in contrast to many

previous methods that require access to all frames, while at

the same time being much faster than existing state-of-the-

art video deblurring methods. In the experimental section,

we demonstrate the performance of our proposed model on

a number of challenging real-world videos capturing dy-

namic scenes such as the one shown in Fig. 1, and illustrate

the superiority of our method in a comprehensive compari-

son with the state of the art, both qualitatively and quantita-

tively. In particular, we make the following contributions:

• we present, to the best of our knowledge, the first dis-

criminative learning approach to real-time video de-

blurring which is capable of removing spatially vary-

ing motion blurs in a sequential manner

• we introduce a novel spatio-temporal recurrent ar-

chitecture with small computational footprint and in-

creased receptive field along with a dynamic temporal

blending mechanism that enables adaptive information

propagation during test time

• we generate a large-scale high-speed video dataset that

enables discriminative learning

• we show promising results on a wide range of chal-

lenging real-world video sequences

2. Related Work

Multi-frame Deblurring. Early attempts to handle motion

blur caused by camera shake considered multiple blurry im-

ages [27, 4], and adapted techniques for removing uniform

blur in single blurry images [10, 30]. Other works include

Cai et al [2], and Zhang et al [38] which obtained sharp

frames by exploiting the sparsity of the blur kernels and gra-

dient distribution of the latent frames. More recently, Del-

bracio and Sapiro [8] proposed Fourier Burst Accumulation

(FBA) for burst deblurring, an efficient method to combine

multiple blurry images without explicit kernel estimation

by averaging complex pixel coefficients of multiple obser-

vations in the Fourier domain. Wieschollek et al. [35] ex-

tended the work with a recent neural network approach for

single image blind deconvolution [3], and achieved promis-

ing results by training the network in an end-to-end manner.

Most of the afore-mentioned methods assume station-

arity, i.e., shift invariant blur, and cannot handle the more

challenging case of spatially varying blur. To deal with spa-

tially varying blur, often caused by rotational camera mo-

tion (roll) around the optical axis [34, 11, 14], additional

non-trivial alignment of multiple images is required. Sev-

eral methods have been proposed to simultaneously solve

the alignment and restoration problem [5, 37, 39]. In par-

ticular, Li et al. [24] proposed a method to jointly perform

camera motion (global motion) estimation and multi-frame

deblurring, in contrast to previous methods that estimate a

single latent image from multiple frames.

Video Deblurring. Despite some of these methods being

able to handle non-uniform blur caused by camera shake,

none of them is able to remove spatially-varying blur stem-

ming from object motion in a video recording of a dynamic

scene. More generally, blur in a typical video might origi-

nate from various sources including moving objects, camera

shake, and depth variation, and thus it is required to estimate

pixel-wise different blur kernels which is a highly intricate

problem.

Some early approaches make use of sharp “lucky”

frames which sometimes exist in long videos. Matsushita

et al. [25] detected sharp frames using image statistics, per-

formed global image registration and transferred pixel in-

tensities from neighboring sharp frames to blurry ones in

order to remove blur. Cho et al. [6] improved deblurring

quality significantly by employing additional local search

and a blur model for aligning differently blurred image re-
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Figure 2: Generation of our blur dataset {Sn,Bn} by averaging neighboring frames from a high-speed video {XnT }.

gions. However, these exemplar-based methods still have

some limitations in treating distinct blurs by fast moving ob-

jects due to the difficulty of accurately finding correspond-

ing points between severely blurred objects and the sharp

reference one.

Other deblurring attempts segment differently blurred re-

gions. Both Levin [23] and Bar et al. [1] automatically seg-

mented a motion blurred object in the foreground from a

(constant) background, and assumed a uniform motion blur

model in the foreground region. Wulff and Black [36] con-

sidered differently blurred bi-layered scenes and estimated

segment-wise accurate blur kernels by constraining those

through a temporally consistent affine motion model. While

they achieved impressive results especially at the motion

boundaries, extending and generalizing their model to han-

dle multi-layered scenes in real situations are difficult as we

do not know the number and depth ordering of the layers in

advance.

In contrast, there are some recent works that estimate

pixel-wise varying kernels directly without segmentation.

Kim and Lee [17] proposed a method to parametrize pixel-

wise varying kernels with motion flows in a single im-

age, and they naturally extended it to deal with blurs in

videos [18]. Delbracio and Sapiro [9] also employed bi-

directional optical flows for pixel-wise registration of con-

secutive frames, however, managed to keep processing time

low by using their fast FBA [8] method for local blur re-

moval. Recently, Sellent et al. [29] tackled independent ob-

ject motions with local homographies, and their adaptive

boundary handling rendered promising results with stereo

video datasets. Although these methods are applicable to re-

move general motion blurs, they are rather time-consuming

due to optical flow estimation and/or pixel-wise varying ker-

nel estimation. Probably the closest approach related to our

method is the concurrent work of Su et al. [31], which trains

a CNN to remove blur stemming from both ego and ob-

ject motions. In a comprehensive comparison, we show the

merits of our novel network architecture both in terms of

computation time as well as restoration quality.

3. Training Datasets

A key factor for the recent success of deep learning in

computer vision is the availability of large amounts of train-

ing data. However, the situation is more tricky for the task

of blind deblurring. Previous learning-based single-image

blind deconvolution [3, 28, 32] and burst deblurring [35]

approaches have considered only ego motion and assumed

a uniform blur model. However, adapting these techniques

to the case of spatially and temporally varying motion blurs

caused by both ego motion and object motion is not straight-

forward. Therefore, we pursue a different strategy and em-

ploy recently proposed techniques [19, 31, 26] that generate

pairs of sharp and blurry videos using high-speed cameras.

Given a high-speed video, we “simulate” long shut-

ter times by averaging several consecutive short-exposure

images, thereby synthesizing a video with fewer longer-

exposed frames. The rendered (averaged) frames are likely

to feature motion blur which might arise from camera shake

and/or object motion. At the same time, we use the center

short-exposure image as a reference sharp frame. We thus

have,
{

Bn = 1

τ

∑τ

j=0
XnT+j

Sn = X
nT+⌈ τ

2 ⌉
, (1)

where n denotes the time step, and {XnT }, Bn, and Sn are

the short-exposure frames (high-speed video), synthesized

blurry frame, and reference sharp frame respectively. A pa-

rameter τ corresponds to the effective shutter speed which

determines the number of frames to be averaged. A time in-

terval T, which satisfies T ≥ τ controls the frame rate of the

synthesized video. For example, the frame rate of the gen-

erated video is
f

T
for a high-speed video captured at a frame

rate f. Note that with these datasets, we can handle motion

blurs only, but not other blurs (e.g., defocus blur). We can

control the strength of the blurs by adjusting τ (a larger τ

generates more blurry videos), and can also change the duty

cycle of the generated video by controlling the time interval

T. The whole process is visualized in Fig. 2.

For our experiments, we collected high-speed sharp

frames using a GoProHERO4 BLACK camera which sup-

ports recording HD (1280x720) video at a speed of f = 240
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Figure 3: (a) Baseline model (CNN). (b) Spatio-temporal recurrent network (STRCNN). Feature maps at time step (n − 1)
are added to the input of the network at time step n. (c) Spatio-temporal recurrent network with a proposed dynamic temporal

blending layer (STRCNN+DTB). Intermediate feature maps are blended adaptively to render a clearer feature map by using

weight map generated at runtime.

frames per second, and then downsampled frames to the

resolution of 960x540 size to reduce noise and jpeg arti-

facts. To generate more realistic blurry frames, we care-

fully captured videos to have small motions (ideally less

than 1 pixel) among high-speed sharp frames as suggested

in [19]. Moreover, we randomly selected parameters as

τ ∈ {7, 9, 11, 13, 15} and τ ≤ T < 2τ to generate vari-

ous datasets with different frame rates, blur sizes, and duty

cycles.

4. Method Overview

In this paper, using our large dataset of blurry and sharp

video pairs, we propose a video deblurring network esti-

mating the latent sharp frames from blurry ones. As sug-

gested in the work of Su et al. [31], a straightforward and

naive technique to deal with a video rather than a single im-

age is employing a neural network repeatedly as shown in

Fig. 3 (a). Here, input to the network are consecutive blurry

frames 〈Bn〉m = {Bn−m, . . . ,Bn+m} where Bn is the mid-

frame and m some small positive integer1. The network

predicts a single sharp frame Ln for time step n. In con-

trast, we present networks specialized for treating videos

by exploiting temporal information and improve the deblur-

ring performance drastically without increasing the number

of parameters and the overall size of the networks.

In the present section, we introduce network architec-

tures which we have found to improve the performance sig-

nificantly. First, in Fig. 3 (b), we propose a spatio-temporal

recurrent network which effectively extends the receptive

field without increasing the number of parameters of the

network, facilitating the removal of large blurs caused by

severe motion. Next, in Fig. 3 (c), we additionally intro-

duce a network architecture that implements our dynamic

temporal blending mechanism which enforces temporal co-

herence between consecutive frames and further improves

our spatio-temporal recurrent model. In the following, we

1For simplicity we dropped index m from 〈Bn〉m.

describe our proposed network architectures in more detail.

4.1. Spatiotemporal recurrent network

A large receptive field is essential for a neural network

being capable of handling large blurs. For example, it re-

quires about 50 convolutional layers to handle blur kernels

of a size of 101x101 pixels with conventional deep residual

networks using 3x3 small filters [12, 13]. Although em-

ploying a deeper network and/or larger filters are a straight-

forward and an easy way to ensure large receptive field, the

overall run-time does increase with the number of additional

layers and increasing filter size. Therefore, we propose an

effective network which retains large receptive field without

increasing its depth and filter size, i.e. number of layers and

therewith its number of parameters.

The architecture of the proposed spatio-temporal net-

work in Fig. 3 (b) is based on conventional recurrent net-

work [33], but has a point of distinction and profound dif-

ference. To be specific, we put Fn−1 which is the feature

map of multiple blurry input frames 〈Bn−1〉 coupled with

the previous feature map Fn−2, as an additional input to

our network together with blurry input frames 〈Bn〉 at time

step n. By doing so, at time step n, the feature of a single

blurry frame Bn passes through the same network (m + 1)

times, and ideally, we could increase the receptive field by

the same factor without having to change the number of lay-

ers and parameters of our network. Notice that, in practice,

the increase of receptive field is limited by the network ca-

pacity.

In other words, in a high dimensional feature space, each

blurry input frame is recurrently processed multiple times

by our recurrent network over time, thereby effectively ex-

periencing a deeper spatial feature extraction with an in-

creased receptive field. Moreover, further (temporal) infor-

mation obtained from previous time steps is also transferred

to enhance the current frame, thus we call such a network

spatio-temporal recurrent or simply STRCNN.
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Figure 4: Detailed configurations of the proposed model. Our network is composed of encoder, dynamic temporal blending

network, and decoder.

4.2. Dynamic temporal blending network

When handling video rather than a single frame, it is

important to enforce temporal consistency. Although we

recurrently transfer previous feature maps over time and

implicitly share information between consecutive frames,

we developed a novel mechanism for temporal information

propagation that significantly improves the deblurring per-

formance.

Motivated by the recent deep learning approaches of

[7, 15] which dynamically adapt network parameters to in-

put data at test time, we also generate weight parameters

for temporal feature blending that encourages temporal con-

sistency, as depicted in Fig. 3 (c). Specifically, based on

our spatio-temporal recurrent network, we additionally pro-

pose a dynamic temporal blending network, which gen-

erates weight parameter wn at time step n used for lin-

ear blending between the feature maps of consecutive time

steps, i.e.

h̃n = wn ⊗ hn + (1 − wn)⊗ h̃n−1, (2)

where hn denotes the feature map at current time step n,

h̃n denotes its filtered version, and h̃n−1 denotes the pre-

viously filtered feature map at time step (n − 1). Weight

parameters wn have a size equal to the size of hn, and have

values between zero and one. As a linear operator ⊗ de-

notes element-wise multiplication, our filter parameter wn

can be viewed as a locally varying weight map. Notably, hn

is a feature activated in the middle of the entire network and

thus it is different from Fn which denotes the final activa-

tion.

It is natural that the previously filtered (clean) feature

map h̃n−1 is favored when hn is a degraded but correspond-

ing version of h̃n−1. Therefore we introduce a new cell

which generates filter parameter wn by comparing similar-

ity between two feature maps, given by

wn = min(1, | tanh(Ah̃n−1 + Bhn)|+ β)) (3)

where tanh(.) denotes a hyperbolic tangent function, A and

B correspond to linear (convolutional) filters. A trainable

parameter 0 ≤ β ≤ 1 denotes a bias value, and it controls

the mixing rate, i.e. it satisfies wn = β · 1 when the hyper-

bolic tangent function returns zero, and h̃n−1 is favored.

Notably, to this end, we could embed a temporal filter-

ing unit into our deblurring network with only one single

additional convolutional layer. By doing so, we could learn

the way to generate weights (coefficients) of the temporal

filter in an end-to-end manner, and do the filtering process

in the high dimensional feature space rather than the image

domain. Moreover, as the proposed module is shallow and

light, ours still performs quickly with little computational

overhead. We refer to this network as STRCNN+DTB.

5. Implementation and Training

In this section, we describe our proposed network archi-

tecture in full detail. An illustration is shown in Fig. 4,

where we show a configuration at time step n only since

our model shares all trainable parameters across time. Our

network comprises three modules, i.e. encoder, dynamic

temporal blending network, and decoder. Furthermore, we

also discuss our objective function and training procedure.

5.1. Network architecture

5.1.1 Encoder

Fig. 4 (a) depicts the encoder of our proposed network. In-

put is (2m+1) consecutive blurry frames 〈Bn〉 where Bn is
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the mid-frame, along with feature activations Fn−1 from the

previous stage. All input images are in color and range in

intensity from 0 to 1. The feature map Fn−1 is half the size

of a single input image and has 32 channels. All blurry in-

put images are filtered first, before being concatenated with

the feature map and being fed into a deep residual network.

Our encoder has a stack of 4 residual blocks (8 convolu-

tional layers) similar to [12]. The output of our encoder is

feature map hn.

5.1.2 Dynamic temporal blending

Our dynamic temporal blending network is illustrated in

Figure 4 (b). It takes two concatenated feature maps h̃n−1

and hn as input and estimates weight maps wn through a

convolutional layer with filters of size 5x5 pixels and a sub-

sequent squashing function (tanh(.) and Abs(.)). Finally,

the generated weight map wn is used for blending between

h̃n−1 and hn according to Eq. 2.

5.1.3 Decoder

Input to our decoder, depicted in Fig. 4 (c), is the blended

feature map h̃n of the previous stage which is fed into a

stack of 4 residual blocks (8 convolutional layers) with 64

convolutional filters of size 3x3 pixels. Outputs are a latent

sharp frame Ln that corresponds to the blurry input frame

Bn, and a feature map Fn. Notably, our output feature map

Fn is handed over as input to the network at the next time

step.

5.2. Objective function

As our final objective function, we use the mean squared

error (MSE) between the latent frames and their corre-

sponding sharp ground-truth frames, and regularize the net-

work parameters to prevent overfitting, i.e.

E =
1

Nmse

∑

n

||Sn − Ln||
2 + λ‖W‖2, (4)

where Nmse denotes the number of pixels in a latent frame,

and W denotes the trainable network parameters. User

parameter λ trades off the data fidelity and regularization

terms. In all our experiments we set λ to 10−5.

5.3. Training parameters

For training, we randomly select 13 consecutive blurry

frames from artificially blurred videos (i.e., B1, . . . ,B13) ,

and crop a patch per frame. Each patch is 128x128 pixels

in size, and a randomly chosen pixel location is used for

cropping all 13 patches. Moreover, we use a batch size of

8. For optimization, we employ Adam [20] with an initial

learning rate of 0.0001, and the learning rate exponentially

decays every 10k steps with a base of 0.96. We trained the
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Figure 5: Performance comparisons among models pro-

posed in Sec. 4 in terms of PSNR for varying blur strength.

network for 300k iterations, and the training takes about 3

days on a NVIDIA GTX 1080 graphic card.

6. Experiments

6.1. Model comparison

We study the three different network architectures that

we discussed in Sec. 4, and evaluate deblurring quality in

terms of peak signal-to-noise ratio (PSNR). For the fair

comparison, we use the same number of network param-

eters, except for one additional convolutional layer that is

required in the dynamic temporal blending network. We

use our dataset (described in Sec. 3) for training, and use

the dataset of [31] for evaluation at test time.

First, we compare the PSNR values of the three different

models for varying blur strength by changing the effective

shutter speed τ in Eq. (1). We take three consecutive blurry

frames as input to the networks. As shown in Fig. 5, our

STRCNN+DTB model shows consistently better results for

all blur sizes. On average, the PSNR value of our STRCNN

is 0.21dB higher than the baseline (CNN) model, and STR-

CNN+DTB achieves a gain of 0.38dB against the baseline.

Next, in Table 1, we evaluate and compare the perfor-

mance of the models with a varying number of input blurry

frames. Our STRCNN+DTB model outperforms other net-

works for all input settings. We choose STRCNN+DTB

using three input frames (m = 1) as our final model.

6.2. Quantitative results

For objective evaluations, we compare with the state-

of-the-art video deblurring methods [18, 31] whose source

codes are available at the time of submission. In particu-

lar, as Shuochen et al. [31] provide their fully trained net-

work parameters with three different input alignment meth-

ods. Specifically, they align input images with optical flow

(FLOW), or homography (HOMOG.), and they also take

raw inputs without alignment (NOALIGN). For fair com-

parisons, we train our STRCNN+DTB model with their

dataset and evaluate performance with our own dataset.

We provide a quantitative comparison for 25 test videos
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Number of blurry inputs 3 5 7

CNN 29.38 29.43 29.27

STRCNN 29.67 29.71 29.58

STRCNN+DTB 29.83 29.85 29.76

Table 1: PSNR values for a varying number of input

frames. STRCNN+DTB model, which encompasses a dy-

namic blending network, shows consistently better results.

Method
PSNR

[dB]

Run-time

[Sec]

Kim and Lee. [18] 27.42 ∼60k (cpu)

Cho et al. [6] - ∼6k (cpu)

Delbracio et al. [9] - ∼1.5k (cpu)

Su et al. [31] (FLOW) 28.81 ∼570 (cpu+gpu)

Su et al. [31] (HOMOG.) 28.09 ∼160 (cpu+gpu)

Su et al. [31] (NOALIGN) 28.47 ∼25 (gpu)

Ours 29.11 ∼12.6 (gpu)

Table 2: Quantitative comparison with state-of-the-art

video deblurring methods in terms of PSNR. A total of 25

(test) videos is used for evaluation. Moreover, execution

times for processing 100 HD frames are given.

generated with our high-speed camera described in Sec.3.

Our model outperforms the state-of-the-art methods in

terms of PSNR as shown in Table. 2.

6.3. Qualitative results

To verify the generalization capabilities of our trained

network, we provide qualitative results for a number of

challenging videos. Fig. 7 shows a comparison with [18, 31]

on challenging video clips. All these frames have spatially

varying blurs caused by distinct object motion and/or rota-

tional camera shake. In particular, blurry frames shown in

the third and fourth rows are downloaded from YouTube,

and thus contain high-level noise and severe encoding ar-

tifacts. Nevertheless, our method successfully restores the

sharp frames especially at the motion boundaries in real-

time. In the last row, the offline (batch) deblurring approach

by Kim and Lee [18] shows the best result however at the

cost of long computation times. On the other hand, our ap-

proach yields competitive results though orders of magni-

tudes faster.

6.4. Run time evaluations

At test time, our online approach can process VGA

(640x480) video frames at ∼24 frames per second with

a recent NVIDIA GTX 1080 graphics card, and HD

(1280x720) frames at ∼8 frames per second. In contrast,

other conventional (offline) video deblurring methods take

much longer. In Table. 2, we compare run-times for pro-

cessing 100 HD (1280x720) video frames. Notably, our
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Figure 6: Top to bottom: Consecutive blurry frames, de-

blurred results by STRCNN and STRCNN+DTB. Notably,

the arrow indicates erroneous region by STRCNN model.

proposed method runs at a much faster rate than other con-

ventional methods.

6.5. Effects of dynamic temporal blending

In Fig. 6, we show a qualitative comparison of the results

obtained with STRCNN and STRCNN+DTB. Although

STRCNN could also remove motion blur by camera shake

in the blurry frames well, it causes some artifacts on the

car window. In contrast, STRCNN+DTB successfully re-

stores sharp frames with fewer artifacts by enforcing tempo-

ral consistency using the proposed dynamic temporal blend-

ing network.

7. Conclusion

In this work, we proposed a novel network architecture

for discriminative video deblurring. To this end, we have

acquired a large dataset of blurry/sharp video pairs for train-

ing and introduced a novel spatio-temporal recurrent net-

work which enables near real-time performance by adding

the feature activations of the last layer as an additional in-

put to the network at the following time step. In doing so,

we could retain large receptive field which is crucial to han-

dle large blurs, without introducing a computational over-

head. Furthermore, we proposed a dynamic blending net-

work that enforces temporal consistency, which provides a

considerable performance gain. We demonstrate the effi-

ciency and superiority of our proposed method by intensive

experiments on challenging real-world videos.
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Figure 7: Left to right: Real blurry frames, Kim and Lee [18], Su et al. [31] (FLOW), and our deblurring results.
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