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Abstract

We present an algorithm for test-time combination of a set

of reference predictors with unknown parametric forms. Ex-

isting multi-task and transfer learning algorithms focus on

training-time transfer and combination, where the paramet-

ric forms of predictors are known and shared. However, when

the parametric form of a predictor is unknown, e.g., for a

human predictor or a predictor in a precompiled library,

existing algorithms are not applicable. Instead, we empiri-

cally evaluate predictors on sampled data points to measure

distances between different predictors. This embeds the set

of reference predictors into a Riemannian manifold, upon

which we perform manifold denoising to obtain the refined

predictor. This allows our approach to make no assumptions

about the underlying predictor forms. Our test-time combi-

nation algorithm equals or outperforms existing multi-task

and transfer learning algorithms on challenging real-world

datasets, without introducing specific model assumptions.

1. Introduction

When a single predictor is insufficient for a task, we can

refine it based on a set of reference predictors with the same

input domain. Recent advances in multi-task and transfer

learning have shown this by exploiting dependencies across

multiple related tasks. These approaches estimate and se-

lectively strengthen pairwise similarities between different

predictors. Most work on these problems focuses on the

predictor training phase, where known parametric represen-

tations allow similarities to be measured and enforced (w.r.t.

a Euclidean metric). However, these assumptions make it

impossible to exploit dependencies between multiple predic-

tors with different representations, such as support vector ma-

chines defined on different input feature spaces, or predictors

based on precomplied libraries, or even predictors without

any explicit functional form, such as human predictors.

We call this problem predictor combination: refining

a given predictor using a set of reference predictors with

unknown form. In this scenario, there is no guarantee that

all reference predictors are even relevant to the given task.

We present an algorithm to exploit only the relevant

predictors by automatically estimating their dependencies at

test time. Unlike prior techniques which assume known (and

possibly shared) predictor parametric forms, we assume no

known parametric form or even a shared parameter space.

We posit that reference predictors lie on an underlying

manifold M , and that our initial predictor f is a noisy obser-

vation of an underlying predictor t on M . We model points

(or predictors) on this manifold as non-parametric Gaussian

processes (GPs). Then, the similarity between two predictors

is obtained as the KL-divergence between their correspond-

ing GPs. This renders M as a Riemannian manifold with the

Fisher information metric. Refining the predictor of interest—

combining it with our reference predictors—is then manifold

denoising: we refine the original noisy predictor through a

diffusion process on the reference predictor manifold.

The manifold assumption has been successfully applied

to multi-task learning [1, 11, 21]. However, the crucial

difference is that we do not use any explicit parametrization,

which facilitates combining multiple heterogeneous

predictors. Since the distances between different predictors

are measured in KL-divergences, it is inherently adaptive

to the data generating distributions as similarities between

predictors are stressed more in high-density regions. In con-

trast, in classical parametric models, once the parameters are

constructed, the distances between them are agnostic to data

distributions. Further, if prediction confidences are available,

our GP model provides a natural way to exploit them.

As our problem is to combine multiple existing predictors

of unknown form at test time, our approach is categorically

different to existing multi-task and transfer learning algo-

rithms. To enable comparison, we conduct experiments in

which the parametric forms are explicitly provided to these

existing algorithms, but not to our approach. We compare on

challenging datasets including human body shape and pose

estimation, as well as on multi-task regression benchmark

datasets. In this setting, the performance of our approach

is comparable to or outperforms existing techniques, even

though we make no assumptions about the predictors’

parametric forms—even that a parametric form exists at all.

2. Related work

Our algorithm aims to refine a predictor f based on a set

{hi} of fixed reference predictors at test time; no knowledge

of f or {hi} is assumed. This could be regarded as an

instance of multi-task learning (MTL), in which all tasks are

learned simultaneously (assuming f=h1∈{hi}). However,

our problem differs in that we focus on refining one predictor

given the reference predictors. It could also be regarded

3553



as an instance of transfer learning (TL), in which a single

task is learned given a fixed set of predictors. However,

in our problem, we use multiple reference predictors to

refine a given predictor instead of transferring a single

reference predictor to a given task domain. With additional

assumptions, existing MTL and TL algorithms can be

applied to our setting. However, to our knowledge, no

previous MTL or TL algorithm has targeted the combination

of predictors with unknown form.

That said, our algorithm is motivated by the success of

MTL and TL algorithms that directly enforce the similarity

between predictor parameters [4, 10, 11, 17, 22, 32, 36].

These methods assume that all predictors (either fixed or not)

share a common parametric form, and regularize the estimate

by minimizing the pairwise distances between the parameter

vectors of the predictors. Assuming that each predictor is

linear, i.e., hi(x)=x⊤wi, the solutions of these algorithms

can be obtained by minimizing the joint energy functional

EMTL(W)=

n
∑

i=1

R̂(hi)+λ1

n
∑

i=1

‖wi‖2+λ2tr[W
⊤LW],

(1)

where W= [w1,...,wn], R̂(hi) is the training error of hi,

tr[A] is the trace of matrix A, and L is the graph Laplacian

encoding pairwise similarities between tasks.

For TL, all predictors {hi} but one (f =h1) are fixed a

priori. In this case, there is typically exactly one reference

predictor [4, 17, 32]. For MTL, Evgeniou and Pontil [10]

constructed the graph Laplacian L based on a fully connected

graph, which is extended to a sparse graph Laplacian-based

algorithm that exploits the known task relationships [11].

These methods require prior knowledge about the strengths

of relationships between tasks. Pentina et al. [23] addressed

this problem by formulating MTL as a curriculum learning

problem where the tasks are sequentially learned. The task

sequence is then identified during the training by minimizing

the upper bound on the generalization error. This class of

MTL algorithms can be extended to nonlinear predictors

when they are given as kernel-based predictors:

hi(x)=Φ(x)⊤wi, (2)

where Φ is a nonlinear map from X ⊂R
n to a reproducing

kernel Hilbert space (RKHS). Our approach can be regarded

as a model-free extension of these algorithms. In our

experiments, we show that our algorithm is on par with or

outperforms these algorithms, even though they make much

stronger assumptions about the parametric form of predic-

tors, while our algorithm is agnostic to their parametric form.

An alternative MTL method to explicitly estimate the

relationships between tasks is to identify a common structure

among predictors. Typically, such methods assume that a

structure is manifested through a low-dimensional latent

space that spans all parameter vectors {wi}. For instance,

Ruvolo and Eaton [28] learned a low-dimensional projection

matrix P of the parameter matrix W by minimizing the

Frobenius norm of P. Argyriou et al. [3] proposed using

a sparse regularizer on W (which replaces the second

regularizer in Equation 1). This has been extended by Kumar

and Daumé III to enforce group sparsity [18], by Lozano and

Swirszcz for hierarchical group sparsity [20], and has been

generalized to (linear or nonlinear) low-rank embeddings to

facilitate heterogeneous domain transfer [9, 33]. Bonilla et

al. proposed a non-parametric Gaussian process (GP)-based

framework that uses shared input kernels across all tasks [7]

while Tuitsias and Lázaro-Gredilla used GPs that explicitly

model the latent processes shared by all tasks [31]. These

structure-based methods have demonstrated good MTL

performance. However, they require simultaneous training:

access to the training process of individual predictors. As

such, their application to our problem domain of refining a

predictor given a fixed reference set is not directly possible.

Nevertheless, we provide a baseline MTL comparison with

Bonilla et al.’s algorithm [7] in the supplemental document.

Another problem strongly related to MTL and TL is

domain adaptation: adapting a model trained on a source

data distribution to a different target data distribution.

This can be approached using TL algorithms, while other

(problem-specific) approaches model the change of data

distributions [12, 14]. In particular, recent work on object

recognition enables test-time adaptation [19, 27]. However,

these algorithms focus on modeling and adapting the change

of distributions—which is not the case in our combination

problem—and are thus complementary to our contribution.

3. Test-time predictor combination

Suppose that we are given a deterministic function

f ∈C∞(X ) on the domain X as an estimate of a target re-

gression function t. The estimate f might be either explicitly

constructed by training on a dataset sampled from an under-

lying probability distribution pX×R, or the functional form

might be unknown, e.g., if it is a precompiled software pack-

age. In both cases, we assume that f can be evaluated for a

given set U={x1,...,xu}⊂X of data points. Our predictor

combination task is to refine f towards the target regression

function t based on auxiliary information available on t.
Here, we assume that such auxiliary information is available

in the form of reference predictors H={hi}. Similarly to

f , each element hi may not have a specific parametric form.

Furthermore, it may or may not be related to the underlying

ground-truth t or its estimate f . Our goal is first to identify

the relevant reference predictors in H (if any), and then to

exploit the identified reference predictors to refine f .

3.1. The predictor manifold M

While each reference predictor hi∈H can be assumed to be

an element of C∞(X ) (i.e., hi is a deterministic function),

we consider the more general case where hi has a covariance

operator Ki. This probabilistic predictor can be modeled

as a Gaussian process (GP) with a mean function hi and the
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covariance kernel ki such that Ki[g] :=
∫

ki(x,y)g(y)dy for

g∈C∞(X ). With a slight abuse of notation, we refer to this

GP by its mean function hi (hi∈G). For deterministic func-

tions hi, we use the unit covariance kernel ki(x,y)=δ(x,y).
As detailed shortly, the function f to be refined will also

be modeled as a GP with mean function f and covariance

operator Kf . Thus, the deterministic prediction f(x) for an

input x∈X is obtained by evaluating the majority vote pre-

dictor (corresponding to GP f ) on x [23]. Note that the GP

model is actually fairly general, and includes non-parametric

deterministic estimation as a special case. As demonstrated

later, the GP assumption helps especially when the reference

predictions are provided with predictive variances.

We now construct our reference manifold M from a

subset of G, which has square-integrable mean functions and

bounded, non-degenerate covariance operators. Each GP hi

in this set can be projected onto M by globally centering

and scaling the mean function hi based on its covariance

Ki (hi∈G→ [hi]∈M ):

〈

[hi],1
〉

X
=0 and

〈

[hi],(Ki)−1[hi]
〉

X
=1, (3)

where 1(·) = 1 is a function equal to one, and

〈r,s〉X :=
∫

r(x)s(x)pX (x) dx with pX the marginal

distribution of pX×R. As Ki is a bounded operator, its

inverse (Ki)−1 is well-defined. As will become clear later,

this normalization enables us to exploit predictors hi whose

scale deviates from the scale of f . Our model assumption

is that the projected predictor [f ] is given as a noisy observa-

tion of an underlying process [t]∈M . This leads to a strategy

to identify the clean solution [t] by denoising [f ] along M .

Before we present our specific denoising algorithm, we first

discuss the details of the manifold structure.

Due to the normalization in Equation 3, each point

[hi] ∈ M actually corresponds to an equivalence class,

where GPs hk,hl∈G correspond to [hi] if they are square-

integrable and deviate only at the set of probability zero:

〈

hk−hl,(Ki)−1(hk−hl)
〉

X
=0. (4)

Based on this structure, we can identify M with an

embedded submanifold of G (ı : hi ∈G → [hi]∈M ). This

renders M into a (semi)-Riemannian manifold based on

the f -divergences defined originally on G [2]. A natural

f -divergence between two processes hi and hj on G is the

Kullback–Leibler (KL) divergence:

KL(hi |hj)=

∫

ln

(

pi(g)

pj(g)

)

pi(g)dg, (5)

where pi is the distribution of hi.1

1 This induces the Fisher information metric as a metric in G:

gG(F,H)=

∫
dF

dp

dH

dp
p(g)dg, (6)

where F,H∈T (G) lie in the tangent bundle T (G) of G [16]. The metric
gM on M as a submanifold of G is then inherited from gG . This opens the

3.2. Manifold denoising algorithm

We adopt the manifold denoising approach of Hein and

Maier [13], which enables denoising a noisy sample of an un-

derlying manifold M as represented by a point cloud of the

ambient Euclidean space. We start with the description of the

original manifold denoising algorithm [13], and then discuss

its application to denoising the predictor [f ]. We assume that

our reference predictor set H is a clean sample and therefore

needs no denoising. If H is noisy, H and f can be jointly de-

noised.2 For notational convenience, we will use f and hi to

also denote their projections onto M (instead of [f ] and [hi]).
Suppose that a set of data points G= {g1,...,gn}⊂R

d

is given as a (noisy) sample of an m-dimensional manifold

M embedded in R
d (ı(M)⊂R

d). Then, G is a sample from

a probability distribution on R
d which is supported only

on ı(M). The metric of M is induced from R
d. Now we

assume that the noise is i.i.d. isotropic Gaussian ǫ in R
d:

gi= ı(oi)+ǫ, (7)

where {o1,...,on}⊂M are the underlying noise-free data

points. Hein and Maier’s algorithm denoises G⊂ R
d by

inducing a diffusion process on M . First, they build a graph

Laplacian L as a discrete approximation of the diffusion

generator, the Laplace–Beltrami operator:

L=I−D−1W, (8)

where D is a diagonal matrix storing the row sums of the

matrix W, i.e. Dii=
∑

j=1Wij , and

Wij=w(D(gi,gj),σ
2
f ), with (9)

w(x,c)=exp

(

−
x2

c

)

, (10)

where D is the Euclidean distance function in R
d, and σf

is a hyper-parameter.

Given the graph Laplacian L, the denoising algorithm is

presented as a differential equation describing the diffusion

process on the finite set G of data points:

∂G

∂t
=−δLG, (11)

where G=[g1 ... gn]
⊤ and δ >0 is a diffusion constant

(hyper-parameter). This equation is nonlinear, as L is

a function of G, which evolves over time. Discretizing

Equation 11 in time, we obtain an implicit Euler scheme:

Gt+1−Gt=−δLGt+1. (12)

possibility of analyzing M (in particular the convergence of the estimate [f ]
to [t]) based on the well-developed methods of information geometry [2].
However, we focus on the algorithmic construction, which can be facilitated
by using the f -divergence of G instead of the metric gM defined on M .

2This could lead to a new multi-task learning algorithm, where the set
of tasks are jointly denoised by exploiting task dependencies.
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The solution of Equation 12 (per timestep t) is obtained

as the minimizer of the following regularized regression

energy [13]:

E(Z)=‖Z−Gt‖2F+δ〈Z,LZ〉, (13)

where ‖A‖F is the Frobenius norm of matrix A and

〈A,B〉 :=tr[A⊤B]. The denoising algorithm iterates mini-

mizing the energy E in Equation 13 until the termination con-

dition is met (e.g., number of iterations). Given the Gaussian

noise model, this process directs G (and so G) towards the

submanifold ı(M), and thus eventually makes G lie on ı(M).
As the number n of data points increases, the graph Lapla-

cian L converges to the corresponding Laplace–Beltrami

operator ∆ on M [13]. In this case, as the diffusion proceeds

with t→∞, the noisy sample G converges to ı(M). Note

that L is constructed entirely based on evaluations of the Eu-

clidean distances. Therefore, Equation 13 enables us to per-

form manifold denoising given only sampled data points in

the ambient space R
d, without having to access M directly.

Denoising on the predictor manifold M . Our algorithm

extends this strategy to denoising the initial predictor

f0 :=f . First, we construct G by stacking f and the refer-

ence predictor set H row-wise. Then, our graph Laplacian

L is constructed from the ambient KL-divergences in

G (replacing the Euclidean distance D in Equation 9).3

Given the predictors G and the Laplacian L, denoising is

performed by iteratively solving Equation 13. Since H is

assumed to be free from noise, only the first row of G (i.e.,

f ) is updated. Equation 13 then simplifies to:4

E(z)=‖z−f t‖22+δ
∑

hi∈H

w(hi)KL(z |hi)2, (14)

w(hi)=
w(KL(f t |hi),σ2

f )
∑

hj∈Hw(KL(f t |hj),σ2
f )

. (15)

The remainder of this section shows that calculating the

KL-divergence between z (and f t) and hi boils down to

calculating the (normalized) correlations between them. This

enables exploiting the information on positively correlated

references hi to refine f . To also exploit negatively corre-

lated reference predictors, we augment H by including −hi

for all hi∈H . During the combination, we use either one

of hi or −hi, whichever has the smaller KL-divergence to z.

KL-divergence given unlabeled data points. The

denoising cost functional E in Equation 14 balances the

deviation from the previous estimate f t with the sum of

the KL-divergences KL(z |hi) for hi∈H . To facilitate the

comparison of a deterministic function z with a GP hi∈H ,

we cast z into a GP by adopting z as its mean function

and using the covariance operator Ki. Pentina et al. use

3Since the KL-divergence is not symmetric, it is not a proper distance
measure. If necessary, the symmetrized KL-divergence can be used, but
we simply use the asymmetric Laplacian.

4Here we use z instead of f , to stress its role as a variable. Note that the
ambient Euclidean metric in Equation 13 is replaced by the KL-divergence.

this approach to cast a deterministic classification function

into a probability distribution [23]. As shown shortly (in

Equation 19), this leads to measuring the distance between

z and hi in the function space by weighting the confidence

of hi’s prediction. In general, calculating the KL-divergence

between two (infinite-dimensional) Gaussian processes is

challenging, especially when we do not have direct access to

the functional form of f or hi. However, even in this case, we

can still make empirical evaluations of f and hi on a sample.

We use a set of data points U = {x1, ... ,xu} sampled

from pX to construct the sample evaluations {hi :=hi|U},

{Ki := ki|U×U}, z := z|U , and f := f |U . Due to the

marginalization property of GPs, once hi and its empirical

covariance matrix Ki are given, a consistent infinite-

dimensional GP hi can be identified by simply assigning

a zero-mean function hi
∗ := hi|X\U and unit covariance

δ(·, ·) everywhere except for U .5 With this construction,

the KL-divergence between z and hi can be calculated

by decomposing the function variables z and hi into the

observed (on U ) and unobserved (on X \U ) parts [25, 29]:

KL(z |hi)

=

∫ ∫

pz(g)pz(g∗|g)ln

(

pz(g)pi(g∗|g)

pi(g)pi(g∗|g)

)

dgdg∗ (16)

=

∫

pz(g)ln

(

pz(g)

pi(g)

)

dg (17)

=
1

2

(

(hi−z)⊤(Ki)−1(hi−z)+ln

(

detKz

detKi

)

+tr[(Ki)−1Kz]−u

)

(18)

=1−z⊤(Ki)−1hi, (19)

where pz is the distribution of z, g= g|U , and g∗= g|X\U .

In Equations 16 and 17, we used

pz(g,g∗)=pz(g)pi(g∗|g), (20)

taking the covariance operator of z from Ki. Equation 19

is obtained from the normalization condition in Equation 3.

Due to this normalization, z⊤(Ki)−1hi is bounded in [0,1]
and E can be minimized by maximizing the sum of the

normalized correlations z⊤(Ki)−1hi for hi∈H on the con-

dition that the updated variable z (equivalently, z) does not

deviate significantly from the original estimate f t (the first

term in E , Equation 14). The interpretation of the normal-

ization in Equation 19 becomes more straightforward when

Ki is a diagonal matrix containing the predictive variances

of hi on U : the correlation between z and hi is weighted

based on confidence in the predictions {hi(xj)}. This also

facilitates the application of the denoising algorithm to

5A less trivial case is when hi is originally constructed by combining
an explicit GP prior and a likelihood evaluated on U , rendering it into a
predictive distribution defined on the entire domain X .
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large-scale datasets U , as the construction and inversion of

the dense matrix Ki can be computationally demanding.

To train z (and equivalently z), which is originally not

in M , we explicitly normalize it before the correlation is

calculated (Equation 19, where z replaces f to stress its role

as a variable). We minimize the resulting objective function

E using gradient descent with f t=f t|U initialization:

E(z)=‖z−f t‖22+δ
∑

i

w(i)(Ci)2, with (21)

w(i)=
w
(

1−(f t)⊤(Ki)−1hi,σ2
f

)

∑

jw
(

1−(f t)⊤(Kj)−1hj ,σ2
f

) , and (22)

Ci=
z⊤S(Ki)−1hi

√

z⊤S(Ki)−1Sz
, (23)

where S= I− 1
u
11⊤, 1= [1, ... ,1]⊤, and {hi} and f t are

pre-normalized. Note that calculating the energy E and

its derivative ∂E/∂z both have computational complexity

linear in the number u of sample points given the diagonal

covariance matrix Ki. In the energy E , the weighting

function w measures the similarity between the estimate

f t and each reference hi based on the sample U . The

hyper-parameter δ controls the overall contribution of

the regularizer (the second term in Equation 21), while

σf (Equation 9) determines the relative amount of the

contribution of each reference predictor in refining f : when

σf =∞, all references contribute equally to the refinement

of f , whereas only the most strongly related references

contribute to the regularizer for σf →0. In practice, inverting

the covariance matrices {Ki} can be ill-conditioned. We

explicitly stabilize them by adding I before the inversion.

Discussion. Our algorithm is unsupervised: it refines

the initial predictor f0 given unlabeled data points

U and reference predictors H . However, if the initial

estimate f0 is trained based on labeled data points

S= {(xu+1,yu+1), ... ,(xu+l,yu+l)}, the entire process of

constructing the noisy sample estimate f0, and denoising it,

can be regarded as semi-supervised learning (see Section 4).

We adopt this setting to facilitate fair comparison with other

methods as well as for automatic tuning of hyper-parameters.

The effect of using the computationally efficient diagonal

covariance Ki is that our energy functional E does not

take into account the spatial smoothness of z. This can be

enforced by constructing an additional spatial regularization

term based on a domain graph Laplacian LX constructed

from the sparsified covariance Ki, as commonly used in

semi-supervised learning and spectral clustering [8, 35]:

R(z)=δLz
⊤LXz, (24)

with LX =I−D−1K
i
, hyper-parameter δL, and K

i

jk=Ki
jk

if ‖xj−xk‖≤θ and 0, otherwise, for a threshold parameter

θ. Our initial tests indicated that this additional regularizer

could help improve performance; however, this requires

tuning two more hyper-parameters, δL and θ. For simplicity,

we thus do not use this approach.

Our algorithm is constructed from a geometric intuition of

manifold denoising. In the supplemental material, we present

an alternative interpretation based on the assumption that

our references are constructed explicitly as GP predictive

distributions, i.e., from a PAC-Bayesian perspective.

4. Experiments

As our approach allows combination of predictors of un-

known parametric form, existing approaches which require

known parametric forms are not applicable. To enable ex-

perimental comparison with multi-task or transfer learning,

we thus devise a scenario in which existing algorithms are

provided with explicit parametric forms while our algorithm

is not. To facilitate the objective assessment of our algorithm

in this case, we include the training process of f (based on S)

in the evaluation of the algorithm. This also facilitates auto-

matic tuning of hyper-parameters σf and δX (Equation 9).6

Our setup. Our algorithm starts with an initial target pre-

dictor f and the set of reference predictors H , and produces

a denoised target predictor f∗. For each problem, the initial

estimate f is obtained as a GP regressor with standard Gaus-

sian covariance kernel k(x1,x2) = exp(−‖x1−x2‖/σ
2
X )

with scale parameter σX , trained based on a labeled data

set S={(xu+1,yu+1),...,(xu+l,yu+l)}. The mean function

f is obtained as a minimizer of the energy functional

EGP(f)=

(

∑

(x,y)∈S

(f(x)−y)2
)

+δX ‖f‖2k, (25)

where ‖f‖k is the reproducing kernel Hilbert space (RKHS)

norm of f corresponding to the covariance kernel k [25],

and δX represents the noise model. As our denoising

algorithm uses the unlabeled dataset U , the entire training

process, including hyper-parameter tuning (using the labeled

dataset S), becomes semi-supervised.

Baseline setup. We adapt Evgeniou and Pontil’s graph

Laplacian-based algorithm [11] (GL{1,2}) and Pentina et

al.’s curriculum learning algorithm (CL) [23], plus baseline

independent GP predictions (Ind). Note that in our predictor

combination problem setting, the first approach [11] is

equivalent to transfer learning [4, 17, 32], while Pentina et

al.’s algorithm corresponds to choosing the best reference

in H that minimizes the generalization error bound [23].

We implemented two different versions of Evgeniou and

Pontil’s algorithm: the first version (GL1) uses the graph

Laplacian (see Equation 1) with the uniform weight matrix

W = 11⊤, while the second version (GL2) computes

weights using the Euclidean distance between parameter

vectors. This can be regarded as a parametric version of our

6As our denoising algorithm is unsupervised, in practice the
hyper-parameters would be adjusted by the user to suit the application.
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KL-divergence-based similarity (see Equations 10 and 14):

Wij=w(‖wi−wj‖,σ
2
w), (26)

with σw being a hyper-parameter.

Datasets. We compute results on four regression datasets:

CAESAR, SARCOS, MOCAP and School. We report perfor-

mance for all algorithms with varying numbers of labeled

training data points. We repeat each experiment 10 times

with different training and test set splits, and average the

results. Due to the large number of experiments, we cannot

include all results in the main paper. As such, Figure 1 shows

two predictor combinations per datasets which produce a

large reduction in error. While not all predictor combinations

show such marked improvement, our approach in general

outperforms or matches state-of-the-art baselines which

make additional assumptions. Our supplemental material

shows all combinations, including where the combination

does not help. Even in these cases, the results demonstrate

that combination never degrades the performance compared

to the baselines. We also demonstrate the utility of non-

parametric predictor combination in the context of facial

landmark detection (Landmarks dataset) where traditional

parametric combination algorithms are futile to apply.

Complexity. Given the initial predictor f , our algorithm it-

eratively minimizes E (Equation 21). The complexity of each

gradient evaluation is linear in the number u of data points,

and the number |H| of reference predictors. For the SARCOS

dataset, with 44,484 data points and 21 attributes (predictors),

each gradient evaluation computation took 10 ms.

4.1. CAESAR dataset

This dataset contains 4,258 3D scans of human bodies along

with 6 ground-truth measurements: arm length, age, sitting

height, weight, shoulder breadth, and foot length [24, 26].

Each body scan is represented as a 20-dimensional feature

vector by fitting a statistical body model [24]. Our goal

is to refine the initial target predictor f of each body

measurement by using the remaining 5 measurements as

reference predictors H . This constitutes 6 different predictor

combination problems.

For our algorithm, each of the 5 observed measurements

is used directly as a reference predictor. The corresponding

GPs are constructed by using the unit covariance δ(·, ·)
(Section 3.1). This corresponds to the simplest and least

restrictive application case, where no model assumption on

H is imposed.7 However, this setting is not applicable to

baselines GL1, GL2 and CL as they require explicit represen-

tations of the reference predictors H . Therefore, for them,

the reference predictors H={hi} are explicitly constructed

as GP regressors trained on the observed reference variables.

7We provide additional experimental results, where we use simple (or
less sophisticated) linear regressors (instead of Gaussian process regressors),
which demonstrate that our combination works even in this case.

Results. In realistic applications, not all predictors are

relevant. Age, for example, is not strongly correlated with

body length measurements. However, two predictors (arm

and foot length) benefit significantly from the combinations

obtained by our algorithm (Figure 1). Predictor combinations

for the other variables are on par with baseline algorithm

Ind. The other baseline algorithms GL1, GL2, CL show no

noticeable improvement over Ind for any combination.

4.2. SARCOS dataset

This kinematics dataset contains 44,484 points collected

from a robot arm. The input consists of 7 joint positions,

7 velocities and 7 accelerations, and the output consists

of 7 torques [34]. The experimental setting is the same

as CAESAR: we aim to refine the predictor of each output

attribute given the remaining 6 attributes as references.

For our algorithm, the reference predictors are obtained

in the same way as CAESAR. For GL1, GL2 and CL, GP

regressors are constructed. Due to the large size of the

SARCOS dataset, training the full GP reference models is

infeasible, so we adopt Snelson and Ghahramani’s sparse

GP approximation [30] using 1000 inducing data points.

Results. Four out of seven predictors significantly benefit

from our predictor combinations; we show the fourth

and seventh predictors in Figure 1. This is in accordance

with the measured (inverse) KL-divergences shown in

Table 1: target variables 2, 3, 4 and 7 have particularly

small KL-divergences (large 1−KL) with each other, which

indicates their mutual relevance. The other algorithms show

no significant improvement compared to Ind.

4.3. MOCAP dataset

Human body poses are captured with an optical marker

system across 50,000 data points [5]. Each data point

describes the 3D location of 62 skeletal joint locations

(i.e. 62×3=186 output dimensions). We estimate these

joint locations from the 3D locations of five end effectors

(left/right hand, left/right foot, and head), i.e., a 5×3=15

dimensional mid-level representation as inputs. We removed

redundant variables from the original 186-dimensional space,

leaving an 87-dimensional data representation. We randomly

sample eight of these as target predictors. The experimental

setting follows CAESAR and SARCOS except that, for our

algorithm, we adopt the explicit GP model assumption for

the reference predictors H in the same way as GL1, GL2

and CL. All reference predictors are explicitly constructed

based on sparse GP approximation with 1000 inducing data

points. This facilitates direct (model-based) comparison. In

this setting, our algorithm further benefits from the available

predictive variances, which improve the estimation of the

KL-divergences. Using GP predictive variances reduced

the average error rate by 11.34% from the model-free case

of using the unit covariance δ(·,·). However, this reduction

is achieved at the expense of making an explicit model as-

sumption, which may restrict the application domain of our
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Figure 1. Mean squared error in parameter units (lower is better; error bars are std. deviation). Not all predictor combinations should be

expected to be informative, and so for each dataset, we show two predictor combinations with the largest reductions in error over baseline

independent predictions. Our supplemental material shows all combinations. In summary, our approach without known parametric form

is comparable to or better than existing MTL and TL algorithms with known parametric form. First three rows: Regression results across

different algorithms on the MOCAP, SARCOS and CAESAR datasets, showing residual error of learning a target predictor f i given the

remaining reference predictors. The horizontal axis shows the number l of labeled data points. Last row: Facial landmark detection error,

in pixels vs. annotated ground truth. Horizontal axis: indices of six 2D facial landmarks (left: x-coordinates; right: y-coordinates). We

compare to: (Ind) baseline independent predictions; (GL1 and GL2) adaptations of Evgeniou and Pontil [11]; (CL) curriculum learning [23].

algorithm (similar to existing algorithms). For comparison,

we also provide the combination results obtained based on

deep neural network reference predictors optimized based

on stochastic gradient descent (Ours–DNN reference).

Results. All eight target predictors show improvement; we

show two in Figure 1. GL1 did not show noticeable improve-

ment over Ind, indicating that not all variables are relevant.

GL2 and CL show noticeable improvements, but the improve-

ments achieved by our algorithms are much more significant.

4.4. Landmarks dataset

The task is to detect 6 facial landmarks (the corners of both

eyes and the mouth) from a face image extracted from the

BioID Face Database [15]. Three sliding-window-based

non-linear SVM detectors (exploiting facial symmetry) are

trained, and the detections are made at the highest responses.

We apply our algorithm to detected (x,y)-coordinate values,

representing 12 attributes. Detailed description of the SVM

detectors, experimental settings, and additional experiments

are provided in the supplemental document. Traditional

MTL cannot be applied in this setting, as it assumes a shared

parametric form for the predictors. We hence apply MTL

at the level of the SVM detectors.

Results. For 50 training and 500 test images, over 10 set

combinations, we can see that traditional MTL does not help

(Figure 1). Enforcing similarity of ‘eye-corner’ detector and

‘mouth’ detector actually degrades the performance over

individual detectors, as these are not anatomically connected.

Our algorithm better exploits predictor dependencies

through the detected spatial coordinates.
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Table 1. Pairwise 1−KL-divergence values for the SARCOS dataset.

The target variables 2, 3, 4 and 7 have small KL-divergences

leading to mutual improvement by combination.

1 2 3 4 5 6 7

1 0.00 0.00 0.01 0.26 0.03 0.00 0.17

2 0.00 0.00 0.69 0.33 0.09 0.01 0.41

3 0.01 0.69 0.00 0.47 0.31 0.03 0.54

4 0.26 0.33 0.47 0.00 0.05 0.00 0.93

5 0.03 0.09 0.31 0.05 0.00 0.05 0.09

6 0.00 0.01 0.03 0.00 0.05 0.00 0.01

7 0.17 0.41 0.54 0.93 0.09 0.01 0.00

4.5. School dataset

This dataset consists of examination records of 15,362

students in 139 schools from the Inner London Education

Authority [6]. The goal is to predict the exam scores of the

students based on 27 input features, such as the year of the

exam and gender. Our goal is to estimate the exam scores

of each school based on the predictors of the remaining

138 schools as references. This constitutes 139 different

combinations of target and reference predictors. We perform

experiments on each set trained based on 20 labeled data

points, and report the average error rate. Similarly to

MOCAP, for all combination algorithms, the reference

predictors are explicitly constructed as (full) GP predictors.

Results. All four algorithms significantly improved

upon Ind (Table 2). However, our method shows the least

improvement. For this dataset, all tasks are strongly related.

All target and reference variables correspond to a single

attribute—exam scores—but are sampled from different

schools. Thus, only the data sampling distributions are

different. This is in contrast to the three other datasets,

where each output variable has a different characteristic.

For this dataset, all combination algorithms improve

upon independent predictions (Ind): Using all parametric

references uniformly (GL1) led to the best results, followed

by GL2, CL, and our algorithm. Our algorithm suffered from

the lack of data points: the maximum number u of available

data points U for each task is 251, with around half of the

tasks having less than 100 data points. This demonstrates

a limitation of our approach in that data-driven estimation

of KL-divergences (Equation 19) can be unreliable versus

explicit parametric form modeling (Equation 26). However,

even in this case, our result still improves over independent

predictions without requiring explicit parametric forms.

5. Discussion

We derived our combination approach from a manifold

denoising perspective, which does not model the combi-

nation process probabilistically. A probabilistically more

rigorous way of combining predictors H = {hi} would

look at the joint distribution p(y∗ |x∗,f∗)p(f∗ |H) (where

Table 2. Mean squared error (standard deviation in parentheses)

on the School dataset. All combination approaches improve on

independent prediction (Ind), although our approach fails to

outperform the baselines as the number of unlabeled data points

(maximum 251) is too small to reliably estimate KL-divergences.

Ind GL1 GL2 CL Ours

11.86 (2.03) 10.80 (1.82) 11.07 (1.95) 11.18 (1.86) 11.24 (1.86)

f∗ := f(x∗)): Classical independent Gaussian process

(GP)-based regression has a prior distribution p(f) and

data likelihood p(Y | X, f) corresponding to a training

data set (X,Y ) = {(x1,y1), ... ,(xl,yl)}. We predict at x∗

by computing the predictive distribution p(y∗ | x∗,X,Y )
by marginalizing f∗ and f from the joint distribution

p(y∗ |x∗,f∗)p(f∗ |f)p(f |X,Y ). Extending this framework

to test-time combination can be achieved by using the distri-

bution p(y∗ |x∗,f∗)p(f∗ |f,H)p(f |X,Y ) and marginalizing

over f∗ and f , where p(f∗ |f,H) is a conditional Gaussian

distribution. Thus, our approach can be regarded as an

indirect way of estimating and using p(f∗ |f,H).

6. Conclusions

We presented an algorithm for test-time combination of a set

of reference predictors with unknown parametric forms. As

there is no guarantee that all reference predictors are relevant

to a given task, our algorithm exploits only the relevant

predictors by automatically estimating their dependencies at

test time. Then, the target predictor is refined using manifold

denoising. This makes our algorithm independent of the

parametric form of the underlying predictors, unlike existing

multi-task and transfer learning algorithms. Crucially, this

uniquely enables our algorithm to refine predictors that lack

any parametric form, such as human predictors.

Existing algorithms cannot be applied to test-time

combination when the parametric forms of predictors are not

known. For comparison, when we prepare experiments in

which we provide the parametric form to existing multi-task

and transfer learning algorithms, our approach is competitive

or superior even when it does not know the parametric

form. For this reason, our algorithm is more flexible, more

versatile, and has wider application potential than existing

multi-task and transfer learning algorithms.
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