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Abstract

In many computer vision tasks, for example saliency pre-
diction or semantic segmentation, the desired output is a
foreground map that predicts pixels where some criteria
is satisfied. Despite the inherently spatial nature of this
task commonly used learning objectives do not incorporate
the spatial relationships between misclassified pixels and
the underlying ground truth. The Weighted F-measure, a
recently proposed evaluation metric, does reweight errors
spatially, and has been shown to closely correlate with hu-
man evaluation of quality, and stably rank predictions with
respect to noisy ground truths (such as a sloppy human an-
notator might generate). However it suffers from compu-
tational complexity which makes it intractable as an op-
timization objective for gradient descent, which must be
evaluated thousands or millions of times while learning a
model’s parameters. We propose a differentiable and effi-
cient approximation of this metric. By incorporating spa-
tial information into the objective we can use a simpler
model than competing methods without sacrificing accu-
racy, resulting in faster inference speeds and alleviating the
need for pre/post-processing. We match (or improve) per-
formance on several tasks compared to prior state of the
art by traditional metrics, and in many cases significantly
improve performance by the weighted F-measure.

1. Introduction

When optimizing a predictive model it is important that
the objective function not only encode the ideal solution
(zero mistakes), but also quantify the relative severity of
mistakes. A common dimension of preference is the desired
tradeoff between precision and recall. One can capture this
tradeoff with a Fj3 metric, where /3 reflects the relative im-
portance of recall compared to precision. While this metric
can quantify the relative importance of false positives and
false negatives, it cannot capture differing severity between
two false positives, or two false negatives. One domain
where differentiating between such errors becomes impor-
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Figure 1: A comparison of the previous saliency prediction
state of the art with our SZN model predictions with the
traditional log-loss (SZ N¢g) and our proposed AF 5 loss
(SZNpw). The top row demonstrates that our loss heav-
ily penalizes for large spatially co-occurring false negatives.
The bottom row demonstrates that the proposed loss heavily
penalizes false positives far from the true object boundary.

tant is the prediction of foreground maps, where the out-
put has many desired properties not captured by notions of
precision or recall, such as smoothness, accuracy of bound-
aries, contiguity of the predicted mask, etc. As a result, two
predictions with the same number of mistakes, or with the
same score on a measure which treats false positives and
false negatives equally (e.g. intersection over union, IoU),
may differ substantially in their perceived spatial quality.
Loss functions derived from per-pixel classification-based
surrogates, such as log-loss are almost universally used in
existing work, but fail to capture both the precision-recall
tradeoff and the spatial sensibilities of this kind.

Margolin et al. [23] proposed a method to quantify these
distinctions when predicting foreground maps. Their Fg’
measure formalizes two notions. First, false detections are
less severe when close to the object’s true boundary; Sec-
ond, missing an entire section of an object is worse than
missing the same number of pixels scattered across the en-
tire object. These alterations closely match human intuition
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and perceptual judgements, and have the additional bene-
fits of being robust to small annotation errors (such as mi-
nor differences between multiple human annotators). The
F’ measure is also able to reliably rank generic foreground
maps, such as centered geometric shapes, lower than state
of the art predictions (They show traditional metrics, such
as AUC, lack this property). Despite these positive traits,
their formulation has O(n?) memory and computational re-
quirements where n the number of pixels in the image.

This computational cost poses a particular problem if
the Fi3’ metric were used as the training objective for deep
neural networks (DNNs). Normally trained with stochas-
tic gradient descent over large training sets, DNNs require
computing the gradient of the loss many, many, times. This
means that the loss function must be differentiable, and ef-
ficient — two criteria which Fj§’ does not meet.

Our primary contribution is a differentiable and compu-
tationally efficient approximation of the Fg” metric, which
can be used directly as the loss function of a convolutional
neural network (CNN). As a secondary contribution, we
propose a memory-efficient CNN architecture which is ca-
pable of producing high resolution pixel-wise predictions,
taking full advantage of the spatial information provided by
our proposed loss. By combining these two components
we are able to produce high-fidelity, spatially cohesive pre-
dictions, without relying on complex, often expensive pre-
processing (such as super-pixels) or post-processing (such
as CRF inference), resulting in inference speeds an order of
magnitude faster than state of the art in multiple domains.
We do not sacrifice accuracy, achieving competitive or state
of the art accuracy on benchmarks for salient object detec-
tion, portrait segmentation, and visual distractor masking.

2. Background

In this section we discuss the prior work on incorporating
spatial consideration into learning objectives. While multi-
ple objectives have been proposed to capture spatial prop-
erties of prediction maps [2, 25, 26], these have been lim-
ited to structured prediction methods using random fields,
and adds significant complexity when incorporated into a
feed-forward prediction framework like that of CNNs. We
focus on the Fi’ metric, which is decoupled from the pre-
diction framework and upon which we directly build our
approach. We review it below, and also survey the related
work on the segmentation tasks on which we evaluate our
contributions: salient object detection, distractor detection,
and portrait segmentation.

2.1. The F3 metric family

In a binary classification scenario, with labels y &
{0,1}, when the predicted label y is a mistake y # y, it
is either a false positive (FP, y = 1) or a false negative (FN,
y = 0). Performance of any classifier on an evaluation set

can be characterized by its precision #T P/(#T P+#F P)
and its recall #TP/(#TP + #FN).

While precision and recall each only tell part of the story,
one can summarize a classification algorithm’s performance
in a single number, using the F3 metric

- (1 + %) * Precision x Recall 0
A= B2Precision + Recall

[ captures the relative importance of precision compared to
recall (e.g. if precision is twice as important as recall, we
use F5). The well known F} metric is a special case corre-
sponding to equal importance between precision and recall.
The Fg metrics is a common benchmark in *information ex-
traction’ tasks, and in [ 1] Jansche outlines a procedure to
directly optimize it. This formulation applies to any sce-
nario when F3 is meaningful, but it cannot encode differ-
ences within the categories of false positive, and false neg-
ative, which are quite meaningful in the highly structured
domain of natural images.

2.2. The Fy metric

The standard Fj is extended in [23] in two ways. First,
it is generalized to handle continuous predictions, § € [0, 1]
(the ground truth y remains binary). The adjusted defini-
tions of the true positive, false positive, true negative, and
false negative are as follows:

E=|y -Y]

TP=(1-E)-Y
TN=(1-E)-(1-Y) 2
FP=E-(1-Y)
FN=E.Y

This holds in the case of predicting a set of values; Y is the
vector of ground truth labels , Y is the vector of predictions,
and - denotes the dot product

The second modification proposed in [23] addresses the
unequal nature of mistakes in binary segmentation (y = 1
implying foreground, y = 0 background), as determined
by the spatial configuration of predictions vs. ground truth.
The authors of [23] suggest a number of criteria for evalu-
ating foreground maps.

First consider false negatives, missed detections of fore-
ground pixels. If random foreground pixels across an object
are undetected, leaving small holes in the foreground, this
is easily corrected via post-processing. However, concen-
trating the same number of errors in one part of the object is
much more perceptually severe and difficult to correct. See
the top row of Figure 1. This is captured by by re-weighting
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E € R” with a matrix A € R":

1 _dGp)? .
We 202 ) VZa]‘Z/? = 17y] =1
A=4q1, Vi, jly;i =0,i=4 )
0, otherwise

This definition of A means that FN error at any given
pixel is calculated by summing over all FN errors in the im-
age, weighted by a gaussian centered at the pixel of interest.
Intuitively, if there are many spatially co-occurring FN pre-
dictions, they will all contribute to each others loss, heavily
penalizing larger sections of missed foreground.

False positives, or erroneous foreground detections, are
treated differently. A false positive near the true boundary
of the object is more acceptable than a distant one. Even hu-
man annotators often do not precisely agree on the bound-
aries of an object. See the bottom row of Figure 1. Mar-
golin et al. [23] quantify this as follows:

B= 4
{2 — e*Bi otherwise X
EY =min(AE,E) -B 5)

Where A; = miny, —; d(i,j), and o = (05 Intu-

itively this gives false positives a weight B € (1,2)", where
false positives spatially distant from any true positive ap-
proach weight 2, and false positives next to true positives
have weight approximately 1. This penalizes more heavily
far spurious false detection.

TPY TNY FPY and FN" are then defined by sub-
stituting £ in place of E in Eq. 2. and use these terms
to define weighted precision, weighted recall, and the F'g’
metric.

w TPvY
 TPw 4 Fpw
TPY
RY= ———
TPv + FN® ©
w (14+3%) %« PYxRY
Fﬁ ==
BQPw + Rw

2.3. Salient Object Detection

Traditionally salient object detection models have been
constructed by applying expert domain knowledge. Some
methods rely on feature engineering combined with center-
surround contrast concepts motivated by human perception,
where the features are based on color, intensity and tex-
ture [30, 1, 6]. A more advanced perception model was used
in [22] to generate object detections from attended points.
Another approach is using high-level object detectors to
determine local ’objectness’ [14].Many methods combine
both approaches [12, 5, 14, 28]. Other techniques make

BT
T

Input SZNpw Retouched

Figure 2: Examples of distractor detection and removal
(MTurk data set, Sec. 5.4). Ground truth was obtained
by aggregating crowdsourced annotations. Our method
(SZNpw) detects distractors which are then retouched
(hole filled) using Photoshop’s Content Aware Fill.

predictions hierarchically [33], or based on graphical mod-
els [12,20]. Other expert knowledge includes re-weighting
the model predictions based on the image center or bound-
aries [20, 14, 13, 35].

Deep networks were used in [3 1] to learn local patch fea-
tures to predict the saliency score at the center of the patch.
However, lack of global information might lead to failure
to detect the interior of large objects. In [16] Kokkinos
combines the task of salient object detection with several
other vision tasks, demonstrating a general multi-task CNN
architecture.

CNNs were used to extract features around super-
pixels [18, 34], as well as combining them with hand-
crafted ones [18]. Li et al. [17] propose a two stream
method that fuses coarse pixel-level prediction, based
on concatenated multi-layer features similar to [24], and
then fusing these with super-pixel predictions (reminiscent
to [18]). The results of [17] and [18] also rely on post-
processing with a CRF.

Our method differs from [18, 17] in two important ways.
Instead of relying upon spatial supervision provided by
super-pixel algorithms, our architecture directly produces a
high resolution prediction. Our proposed spatially sensitive
loss function encourages the learned network to make pre-
dictions that snap to object boundaries and avoid “holes”
in the interior of objects, without any post-processing (e.g.,
CRF). Our model achieves competitive or state-of-the-art
results on all benchmarks. Additionally, training our model
is three times faster than competitive saliency methods,
making it much easier to scale to larger training sets. Per-
forming inference with our model is almost an order of
magnitude faster than any competitive method, and can be
used in a real-time application.

2.4. Distractor Detection

Another task where it is vital to predict accurate and high
resolution foreground maps is distractor detection as pro-
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: Over-Prediction

Under-Prediction

Figure 3: A vizualization on a synthetic example of how
our loss function re-weights mistakes. In the top row we
visualize the down-weighting of false positives near the
true object border. In the bottom-row we show the down-
weighting of false-negatives do not spatially co-occur many
other false-negatives and the increased weight of false neg-
atives which spatially co-occur. True positives are marked
by green, and mistakes are marked in red.

posed by [8]. Distractors are defined as visually salient
parts of an image which are not the photographer’s intended
focus. This task is somewhat similar to salient object detec-
tion, but successful algorithms must go beyond simply de-
tecting all salient objects, and model the image at a global
level to discriminate between the intended focus of the im-
age and the distractors. In [8] Fried et al. propose an
SVM based approach, trained on a relatively small dataset,
which classifies super-pixels extracted by Multiscale Com-
binatorial Grouping (MCG) based on a set of hand-crafted
features. To test the robustness of their approach we gath-
ered a larger dataset with crowdsourced labels. While their
method is able to detect large and well defined distractors, it
struggles to detect non-object distractors such as shadows,
lights and reflections as well as select small objects.

2.5. Portrait segmentation

Portraits are highly popular art form in both photogra-
phy and painting. In most instances, artists seek to make
the subject stand out from its surrounding, for instance, by
making it brighter or sharper or by applying photographic
or painterly filters that adapt to the semantics of the image.
Shen et al. [27] presented a new high quality automatic por-
trait segmentation algorithm by adapting the FCN-8s frame-
work [21]. They also introduced a portrait image segmenta-
tion dataset and benchmark for training and testing.

3. Our Approximate 5’ loss (AF’)

There are three issues that prevent the F'5’ metric as de-
fined in Section 2.2 from being directly optimized as a loss
function. The first is that while the metric is differentiable
almost everywhere, it is not differentiable when y = ¢, be-

cause % §; — ;| is undefined. In practice, we observed
difficulties optimizing the error using SGD due to the con-
stant value of the gradient for §j # y (intuitively, because the
gradient doesn’t decrease as the error decreases). We solve
this by replacing the L; norm with Lo: E; = (§; — vi)?,
which we find to be much easier to optimize.

The second problem is that constructing A (not to men-
tion computing EA) has O(n?) time and space complexity.
However, we can overcome this problem by leveraging con-
volutions. When we unpack the definition of matrix multi-
plication in Equation (3), we can write F'A at pixel ¢ as:

(EBA); = [EjAs;] =

J

= in[ijjW

J

—d(i,j)

Note that if d(i,5) > 4o then \/;76 202~ 0. We

then define y, 4 and E,, , as the ground truth and error re-
spectively at pixel (p, ¢), and can approximate (FA); as

(BA); ~ (1 —y)+
4o

1 Vi
t Yit(p.a) Z v Elit(p,0) e 2°
4o V2ro?
(®)

If we let o = %, we can define a (26 + 1) x

Gaussian convolutional kernel K, yielding

(20 + 1)

EA~Y O (Y ®E)x K*) 4 (1—Y), where
A 1 /CoEreeny ©)

= 202

K vV 2#02

Where © is element-wise multiplication. Now we don’t
need to store any entries of A, only a(20+1) x (20+1) ker-
nel and we skip most of the original summation over pixels
j. So the time and space complexity is reduced to O(n+6?).
In practice, we use § = 9.

The final problem is that constructing B has complexity
O(n?), because computing A; requires finding the mini-
mum d(¢, j) over all pixels j, such that y; = 1. However,
if d(i,7) > 25, then B; = 2 — e*?i ~ 2 in Equation (4).
Our intuition is that B is modeling the region of uncertainty
about an object’s boundary, for which we believe 25 pixels
to be too generous. So we redefine A; as:

L
min; d(4,

Squaring the distance so that the region of uncertainty is
assumed to be approximately 5 pixels instead of 25. Now

if min; d(¢,j) > 5

j)2\yj =1, otherwise
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the time complexity is O(n + ¢?) where ¢ = 5. We can
approximate E ®B using a convolution with the kernel KB,
a tensor of size ¢ x ¢ x ¢2, defined at each index (zero
indexed) as:

o {(—¢+z’>2 +(=6+7)%,

gk = -
d 0, otherwise
and we can rewrite B as:

BaY + (1-Y)@erminkl(Y=K?) (10)

By reformulating the local search for the true object
boundary as a convolution followed by an argmin, we can
leverage the efficient implmentations of these operations al-
ready available in many packages. While our current ar-
chitecture does not suffer from speed or memory issues,
more complicated architectures might benefit from a more
optimized implementation, namely a custom *minimization
convolution’ that would not store the intermediary result of
(Y * KB), and takes advantage of the sparsity of K®.

These changes yield a spatially informed loss function
that can easily be implemented in an existing DNN frame-
work such as Tensorflow. It fully utilizes the GPU, does
not increase training wall clock time noticeably, and yields
better results than more commonly used loss functions for
foreground maps. Compared to an unoptimized implemen-
tation of the original formulation in python, our approxi-
mation takes two orders of magnitude less time to compute
on the CPU, and three orders of magnitude less time on the
GPU, to compute our loss on a 224x224 pixel image, See
section 5.5.

4. Network Architecture

In order to produce accurate foreground maps each pixel
must have a rich feature representation. To achieve this
we utilize Zoomout features [24], which have been ef-
fectively utilized in the semantic segmentation community.
Zoomout features are extracted from a CNN by upsampling
and downsampling the features computed by each convolu-
tional filter to be the same spatial resolution, then concate-
nating the features computed at all layers of the CNN. In
this way, each spatial location is richly described by both
the weakly localized semantic features computed at higher
layers, the strongly localized edge and color detectors com-
puted in the first layers, and everything in between.

4.1. Squeeze Layers

Zoomout features are expressive but have a large mem-
ory footprint, limiting the spatial resolution of predictions
that can be made using them. In tasks like distractor detec-
tion, where the end goal is to precisely localize distractors

ifk=i%(20+1)+]

Squeeze Module

%

Upsampling

Block Legend:
Width = Spatial
Height = # Features

Figure 4: Architecture Diagram, note that because the blue
squeeze module is applied to a fully connected layer, it uses
only 1x1 convolutions.

and remove them, a low resolution prediction leads to spa-
tial ambiguity and lower precision. To remedy this prob-
lem we adapt the insights of [10], introducing what we call
Squeeze Modules to our network. A Squeeze Module con-
sists of 2n convolutional filters, n of which are 1 x 1 con-
volutions and n of which are 3 x 3 convolutions. Applying
Squeeze Modules to each convolutional layer acts as a di-
mensionality reduction with learned parameters, allowing
us to make predictions at essentially arbitrary resolutions
by setting n to be sufficiently small. In practice we produce
224 x 224 predictions, and set n = 64. We refer to our full
architecture as a Squeezed Zoomout Network (SZN ).

S. Experiments

We report on experiments with three tasks where we can
expect spatial sensitivity to be important for quality of the
output: salient object detection, portrait segmentation, and
distractor detection. See Sec. 2 for background.

5.1. Training Details

In all experiments we train our SZN using a CNN
(from which the squeezed zoomout features are derived)
pre-trained on ImageNet. As the base CNN we use VGG-
16 [29] for saliency, portraits, and distractors. We train
the SZN architecture using ADAM [15], and train in 3
stages. In the first stage we set the learning rate to 3e-4
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for 8 epochs, In the second we set the learning rate to be le-
4 for 4 epochs. The base CNN is kept fixed (not fine-tuned)
in the first two stages. In the third stage we set the learn-
ing rate to le-5 for 14 epochs, fine-tuning the weights of
the base CNN as well. We augment the training images by
randomly permuting standard data transformations as de-
scribed in [7]: image flips, random noise, changing contrast
levels, and global color shifts.

5.2. Salient Object Detection

We consider four standard data sets for this task:

MSRA-B - 5000 images with pixel level annotations
provided by [13]. Widely used for salient object detec-
tion. Most images contain a single object on a high contrast
background.

HKU-IS - 4447 images with pixel level annotations pro-
vided by [18]. All images with at least one of the following
attributes: multiple salient objects, salient objects touching
boundary, low color contrast, complex background.

ECSSD - 1000 challenging images with pixel level an-
notations provided by [33].

PASCAL-S 850 images from the PASCAL VOC 2010
segmentation challenge with pixel level annotations pro-
vided by [19]. Following the convention of [19] we thresh-
old the soft labels at 0.5.

Evaluation Metrics

Following the convention of [17] [18] we report the F{ 3
measure (with oracle access to the optimal threshold for the
soft predictions), area under the receiver-operator charac-
teristic curve (AUROC), and mean absolute error (M AE =
e iy S [Vij — Vi) While the first two metrics
evaluate whether we rank pixels correctly, MAE captures
absolute classification error. We report the mean of each
metrics on the test set. We also report the £/ metric almost
exactly as formulated by [23], except that for tractibility we
drop terms tied to spatially distant pixels, which are very
expensive to all compute and have a negligable effect on
the loss. While other measures give all errors equal weight,
and a small percentage of pixels predicted differently barely
affects their value, those mislabeled pixels can be perceptu-
ally vital. This is captured by the F}“ metric, we provide
examples of this phenomenon in Figure 6
Results and Comparison Following the convention of
[17] [18] we train on 2500 images from MSRA-B, validate
on 500, and test on the remaining 2000. We then use the
same model trained on MSRA-B to generate predictions for
all other datasets. To evaluate our proposed loss function we
compare the performance of our Squeezed Zoomout Net-
work trained with the commonly used cross-entropy loss
function (SZN¢g), against the same architecture trained
with the exact same training procedure, but replacing the
cross entropy with our AF§’ loss function. The latter is our
proposed method and we denote it SZNpw from now on.

MC | HDHF |DCL |SZNcEk SZNFiw
[34] [18] | [17] ours ours
MAE |0.054 | 0.053 |0.047| 0.052 0.051
AUC (0975 | 0.982 [0.983| 0.987 0.988
Fgs'® 10.984 | 0.899 {0916 0.913 0.919
FY - - 0.816| 0.829 0.856
MAE [0.102 | 0.066 [0.049| 0.057 0.057
AUC [0.928 | 0.972 [0.981| 0.985 0.987

MSRA-B

HKU-IS 5 10.798 | 0.878 [0.904] 0.891 | 0.904
Froo|- - |0.768| 0.788 | 0.826
MAE [0.100 | 0.098 [0.075| 0.069 | 0.073
Ecssp | AUC [0.948 10960 [0.968] 0.981 | 0.980
Fo¥® 10.837 | 0.856 |0.924] 0.905 | 0.908
Fr - - 10.767| 0.796 | 0.827
MAE [0.145 | 0.142 [0.108 0.106 | 0.109
AUC [0.907 | 0.922 [0.924| 0.954 | 0.954
PASCAL-S Fo$= 0.740 | 0.781 [0.822] 0.833 | 0.839
Froo- - |0.670| 0.657 | 0.680
Train Speed  |I9H | 12H [I5H 4H

0.094s

Test Speed 1.1s 2.5s |0.88s

Table 1: Quantitative comparisons between our approach
and other leading methods. MAE and - lower is better;
AUC, Fjs*®, and F}” - higher is better. Italics indicate a
projected training speedup of 1.67 if run on our hardware

We also compare both these models against other compet-
itive techniques, MC [34], HDHF [18], and DCL [17],
these results are summarized in Table 1, and we provide a
qualitative comparison in Figure 5. While [16], [32],and
[4] report competitive results on some of the same test sets,
they train on 10,000 images, while we only train on 2500,
making the results not directly comparable, and we omit
those methods from 1.

We also use saliency to explore the effectiveness of the
proposed objective function, compared to other reweight-
ing schemes. These include: Dropping either the reweight-
ing by the matrix A or B, using a weighted Cross-Entropy
loss, with double weight given to correctly classifying the
foreground or background, and standard cross entropy, but
ignoring the labels of all pixels in a 3-pixel band around
the borders of the foreground. Each of these reweighting
schemes reduces AUROC by close to 1%, but effect on F}"
varies. Most interesting is the large drop in performance
caused by ignoring a 3-pixel border during training, which
seems to indicate that these border pixels contain extremely
important information for learning a higher quality model.

All inference timing results were gathered using a Ti-
tan X GPU and a 3.5GHz Intel Processor. For training
MC [34] used a Titan GPU and a 3.6GHz Intel Processor,
HDHF [18] and DCL [17] both use a Titan Black GPU and
a 3.4GHz Intel Processor.
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MC [34] MDF [18] DCL [17] SZNcE (our)  SZNpw (our) GT Input

Figure 5: A qualitative comparison of our method with other leading methods on object saliency. SZN¢pg: our network
trained with cross-entropy loss; SZNpy: our network trained with the proposed AFy’.

SZNcE SZNpp . Image

Figure 6: A visualization of the perceptual importance of the F'5” metric on object saliency. On each image, after thresholding
prediction maps at 0.5, there is a less than 5% difference in the IOU score of the outputs of SZN¢cg and SZN, Fs but at least
a 20% percent difference in their Fé“ score. Artifacts present in SZ Ncg outputs but alleviated in SZ N, Fw outputs include
large interior holes, isolated blobs, and poorly defined outlines.
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MTurk| Dist9 )
[2] 0.81 |0.67
Ours |0.84 |0.87 g ors
Human |0.89 |- g | I I I i I
Table 2: Comparison

with Fried et al. [8] on Figure 7: Distractor detection results across dif-

distractor detection. ferent categories in Dist9 dataset

sign

AUROC | FV
Proposed 0.988 0.856
Proposed, no A 0.976 0.836
Proposed, no B 0.975 0.835
Cross-Entropy, 2x foreground weight 0.976 0.834
Cross-Entropy, 2x background weight 0.974 0.797
Cross-Entropy, 3pix ' DNC’ band 0.973 0.807

Table 4: Objective function comparison, see text for details

5.3. Portrait Segmentation

Dataset We use the dataset from [27], consisting of 1800
human portrait images gathered from Flickr. A face detec-
tor is run on each image, producing a centered crop scaled to
be an 800x600. The crop is manually segmented using Pho-
toshop’s “quick select”. This dataset focuses on portraits
captured using a front-facing mobile camera (through the
choice of Flickr queries), but includes other portrait types
as well. The dataset is split into 1500 training images and
300 test images. There is a wide variety in the subjects’ age,
clothing, accessories, hair-style, and background.

Results Table 3 shows that by MIoU both our models sig-
nificantly outperform PFCN (PortraitFCN), which uses
only RGB input; and PFC N+, which requires substan-
tial preprocessing (fiducial point detection, computing an
average segmentation mask and aligning it to the input face
location) and additional input channels. While our SZ Npw
model achieves significantly higher F* scores than PFC'N
and SZ N¢g, they are only slightly better than PFC N +.
We believe this is due to the spatial guidance used by
PFCN+.

5.4. Distractor Detection

Datasets

MTurk - A dataset of 403 images, with accurate, pixel
level annotations averaged over many (on average 27.8 [8])
humans through Mechanical Turk.

Dist9 - A dataset of 4019 images, gathered via a free
app which removed regions highlighted by users. Because
the ground truth was gathered based on thumb swipes it is
often inexact, and has only weak correspondence with ob-
ject boundaries. To rectify this we used ground truth with

MIoU | F}* |Test Speed
o PFCN [27] ]94.20/0.965| 0.114s
o PFCN+4+ (27119591 10.972| 1.125s
I I SZNcE 96.53 [0.965| 0.036s
. MI SZNpw 97.13 ({0.973| 0.036s
Table 3: Portrait segmentation results.

PortraitFCN+ [27] augments images
with 3 extra channels, See text for details.

scores averaged over super pixels generated with MCG [3],
where the boundary threshold is set to be 0.1. In this dataset
each pixel is labeled with either one of 9 foreground classes
corresponding to different types of distractors (light, object,
person, clutter, pole, trash, sign, shadow, and reflection) or
background.

Evaluation We evaluate our performance on the MTurk
dataset through 10 fold cross validation, and compare
against the performance of [8] using leave-one-out cross
validation. Note that this disadvantages our method, be-
cause while each model they use for validation is trained on
402 images, each model we use is trained on 362 or 363
images. We also compare against [8] on the Dist9 dataset,
training 10 separate models, one on the entire dataset, and
one each of the 9 small datasets corresponding to one of
the foreground classes. We split the dataset randomly, us-
ing 90% to train and 10% to test. Following the convention
of [8], we measure AUROC on all datasets. The results are
summarized in Table 2, and Figure 7. Note the final col-
umn in Figure 7 averages across categories, while Table 2
averages over the entire dataset.

5.5. Approximation speed

To evaluate the relative speed of our approximation we
compute wall clock time of computing the F5’, and AFZf
scores, averaged on fifteen random images from ECSSD.
While the original Fg’ takes 37 minutes, our approximation
takes 8.7 seconds on a cpu, and 0.33 seconds on a GPU.

6. Discussion and Future Work

We propose a differentiable and efficient objective func-
tion which directly encoding multiple widely desirable spa-
tial properties of a foreground mask. We use this objec-
tive to learn the parameters of a novel “squeezed zoomout™
architecture. resulting in high fidelity foreground maps,
which match or surpass state of the art results for a range
of binary segmentation tasks. Notably, we achieve these
results without relying on any pre-processing (e.g., super-
pixel segmentation) or post-processing (e.g., CRF). An in-
teresting direction for fugure work is to generalize our loss
function to a multi-class setting, for instance semantic seg-
mentation.
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