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Figure 1: Dense 3D reconstruction of a complex dynamic scene from two perspective frames using our method. Here, both the subject

and the camera are moving with respect to each other. (MPI Sintel [5] alley 1 frame 1 and 10).

Abstract

This paper proposes a new approach for monocular

dense 3D reconstruction of a complex dynamic scene from

two perspective frames. By applying superpixel over-

segmentation to the image, we model a generically dynamic

(hence non-rigid) scene with a piecewise planar and rigid

approximation. In this way, we reduce the dynamic recon-

struction problem to a “3D jigsaw puzzle” problem which

takes pieces from an unorganized “soup of superpixels”.

We show that our method provides an effective solution

to the inherent relative scale ambiguity in structure-from-

motion. Since our method does not assume a template prior,

or per-object segmentation, or knowledge about the rigid-

ity of the dynamic scene, it is applicable to a wide range

of scenarios. Extensive experiments on both synthetic and

real monocular sequences demonstrate the superiority of

our method compared with the state-of-the-art methods.

1. Introduction

Accurate recovery of dense 3D structure of dynamic

scenes from images has many applications in motion cap-

ture [19], robot navigation[11], scene understanding [12],

computer animation [5] etc. In particular, the proliferation

of monocular camera in almost all modern mobile devices

has elevated the demand for sophisticated dense reconstruc-

tion algorithm. When a scene is rigid, its 3D reconstruction

can be estimated using conventional rigid-SfM (structure-

from-motion) techniques [13]. However, real-world scenes

are more complex containing not only rigid motions but

also non-rigid deformations, as well as their combination.

For example, a typical outdoor traffic scene consists of both

multiple rigid motions of vehicles, and non-rigid motions of

pedestrians etc. Therefore, it is highly desirable to develop

a unified monocular 3D reconstruction framework that can

handle generic (complex and dynamic) scenes.

To tackle the problem of monocular 3D reconstruction

for dynamic scenes, a straightforward idea is to first pre-

segment the scene into different regions, each correspond-

ing to a single rigidly moving object or a rigid part of an ob-

ject, then apply rigid-SfM technique to each of the regions.

This idea of object-level motion segmentation has been used

in previous work for non-rigid reconstruction [22][23], and

for scene-flow estimation [20]. Russel et al. [24] proposed

to simultaneously segment a dynamic scene into its con-
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stituent objects and reconstruct a 3D model of the scene.

Ranftl et al. [22] developed a two-stage pipeline (segmen-

tation and then reconstruction) for monocular dynamic re-

construction. However, in a general dynamic setting, the

task of densely segmenting rigidly moving objects or parts

is not trivial. Consequently, inferring motion models for

deforming shapes becomes very challenging. Furthermore,

the success of object-level segmentation builds upon the as-

sumption of multiple rigid motions, which fails to handle

more general scenarios such as e.g. when the objects them-

selves are nonrigid or deformable.

This motivates us to ask a natural question: “Is object-

level motion segmentation essential for the dense 3D recon-

struction of a complex dynamic scene?”. In this paper, we

will justify our stance by proposing an approach that is free

from object-level motion segmentation. We develop a uni-

fied method that is able to recover a dense and detailed 3D

model of a complex dynamic scene, from its two perspec-

tive images, without assuming motion types or segmenta-

tion. Our method is built upon two basic assumptions about

the scene, which are: 1) the deformation of the scene be-

tween two frames is locally-rigid, but globally as-rigid-as-

possible, 2) the structure of the scene in each frame can be

approximated by a piecewise planar. We call our new al-

gorithm the SuperPixelSoup algorithm, for reasons that will

be made clear in Section 2. Fig-1 shows some sample 3D

reconstruction by our proposed method.

The main contributions of this work are:

1. We present a unified framework for dense two-frame

3D reconstruction of a complex dynamic scene, which

achieves state-of-the-art performance.

2. We propose a new idea to resolve the inherent relative

scale ambiguity for monocular 3D reconstruction by

exploiting the as-rigid-as-possible (ARAP) constraint.

1.1. Related work

For brevity, we give a brief review only to previ-

ous works for monocular dynamic reconstruction that are

mostly related to our work. The linear low-rank model has

been used for dense nonrigid reconstruction. Garg et al.

[10] solved the task with an orthographic camera model as-

suming feature matches across multiple frames. Fayad et al.

[7] recovered deformable surfaces with a quadratic approx-

imation, again from multiple frames. Taylor et al. [25] pro-

posed a piecewise rigid solution using locally-rigid SfM to

reconstruct a soup of rigid triangles. While their method is

conceptually similar to ours, there are major differences: 1)

We achieve two-view dense reconstruction while they need

multiple views(N ≥ 4); 2) We use the perspective camera

model while they rely on an orthographic camera model.

Many real-world images such as a typical driving scene

(e.g., KITTI) cannot be well explained by orthographic pro-
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Figure 2: Reconstructing a 3D surface from a soup of un-scaled

superpixels via solving a 3D Superpixel Jigsaw puzzle problem.

jection; 3) We solve the relative scale indeterminacy issue,

which is an inherent ambiguity for 3D reconstruction under

perspective projection, while Taylor et al.’s method does

not suffer from this, at the cost of being restricted to the

orthographic camera model. Russel et al. [24] and Ran-

ftl et al. [22] used object-level segmentation for dense dy-

namic reconstruction. In contrast, our method is free from

object segmentation, hence circumvents the difficulty as-

sociated with motion segmentation in a dynamic setting.

The template-based approach is yet another method for de-

formable surface reconstruction. Yu et al. [29] proposed

a direct approach to capturing dense, detailed 3D geom-

etry of generic, complex non-rigid meshes using a single

RGB camera. While it works for generic surfaces, the need

of a template prevents its wider application to more gen-

eral scenes. Wang [28] introduced a template-free approach

to reconstruct a poorly-textured, deformable surface. How-

ever, its success is restricted to a single deforming surface

rather than the entire dynamic scene. Varol et al. [27] re-

constructed deformable surfaces based on a piecewise re-

construction, by assuming overlapping pieces.

2. Overview of the proposed method

In this section, we present a high-level overview of our

“SuperPixel Soup” algorithm for dense 3D scene recon-

struction of a complex dynamic scene from two frames.

Given two perspective images (denoted as the reference

image I and the next image I
′) of a generally dynamic

scene, our goal is to recover the dense 3D structure of the

scene. We first pre-segment the image into superpixels, then

model the deformation of the scene by the union of piece-

wise rigid motions of its superpixels. Specifically, we di-

vide the overall non-rigid reconstruction into small rigid

reconstruction for each individual superpixel, followed by

an assembly process which glues all these local individual

reconstructions in a globally coherent manner. While the

concept of the above divide-and-conquer procedure looks

simple, there is, however, a fundamental difficulty (of rel-

ative scale indeterminacy) in its implementation. Relative

scale indeterminacy refers to the well-known fact that us-

ing a moving camera one can only recover the 3D struc-

ture up to an unknown scale. In our method, the individual

rigid reconstruction of each superpixel can only be deter-

mined up to an unknown scale, the assembly of the entire
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Figure 3: Flow diagram of the proposed approach. Left column: The inputs for our algorithm a) Two input frames b) SLIC superpixels

[1] of the reference frame c) Dense optical flow between two frames. Middle column: Each individual superpixel is represented by an

anchor node (in dark red). Every anchor node constrains the motion of K other anchor node (Earap) in both frames. The depth continuity

term (Econt) is defined only for neighboring superpixels that shares the common boundary. Right column: The dense 3D point clouds of

the reference frame and the next frame, where each individual plane in the next frame is related to the reference frame via a rigid motion.

non-rigid scene is only possible if and only if these relative

scales among the superpixels are solved –which is, however,

a challenging open task itself.

In this paper, we show how this can be done, under two

very mild assumptions (about the dynamic scene and about

the deformation). Specifically, these assumptions are:

• Basic Assumption-1: The transformation (i.e. defor-

mation) between the two frames are locally piecewise-

rigid, and globally as rigid as possible. In other

words, the deformation is not arbitrary but rather reg-

ular in terms of rigidity.

• Basic Assumption-2: The 3D scene surface to

be reconstructed is piecewise-smooth (or moreover,

piecewise-planar) in both frames.

Under these assumptions, our method solves the unknown

relative scales and obtains a globally-coherent dense 3D re-

construction of a complex dynamic (hence generally non-

rigid) scene from its two perspective views.

Intuitively, our new method can be understood as the fol-

lowing process: Suppose every individual superpixel corre-

sponds to a small planar patch moving rigidly in 3D space.

Since the correct scales for these patches are not deter-

mined, they are floating in 3D space as a set of unorganized

superpixel soup. Our method then starts from finding for

each superpixel an appropriate scale, under which the entire

set of superpixels can be assembled (glued) together coher-

ently, forming a piecewise smooth surfaces, as if playing the

game of “3D jig-saw puzzle”. Hence, we call our method

the “SuperPixel Soup” algorithm (see Figure 2 for a con-

ceptual visualization).

The overall procedure of our method is presented in

Algorithm-1.

Algorithm 1 : SuperPixel Soup

Input: Two monocular image frames and dense optical

flow correspondences between them.

Output: 3D reconstruction of both image.

1. Divide the image into N superpixel and construct

a K-NN graph to represent the entire scene as a graph

G(V,E) defined over superpixels §4.

2. Employ the two-view epipolar geometry to recover the

rigid motion and 3D geometry for each 3D superpixel.

3. Optimize the proposed energy function to assemble

(or glue) and align all the reconstructed superpixels (“3D

Superpixel Jigsaw Puzzle”).

3. Problem Statement

To implement the above idea of piecewise rigid re-

construction, we first partition the reference image I
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into superpixels {s1, s2, .., si, .., sN}, where each super-

pixel si is parametrized by its boundary pixels {xbi =
[ubi, vbi, 1]

T |b = 1, ..., Bi} in the image plane. We fur-

ther define an anchor point xai for each superpixel, as the

centroid point of the superpixel. Such a superpixel parti-

tion of the image plane naturally induces a piecewise pla-

nar segmentation of the corresponding 3D scene surface.

We call each of the 3D segments as a 3D superpixel, and

denote its boundary coordinates (in 3D space) as {Si} in

capital S. Although surfel is perhaps a better term, we

nevertheless call it “3D superpixel” for the sake of easy

exposition. We further assume each 3D superpixel is a

small 3D planar patch, parameterized by surface normal

ni ∈ R
3, 3D anchor-point Xai, and 3D boundary-points

{Xbi} (i.e. these are the pre-images of xai and {xbi}).

We assume every 3D superpixel si moves rigidly according

Mi =
(

Ri λit̂i
0 1

)

∈ SE(3), where Ri represents rotation, t̂i
is the translational direction, and λi is the unknown scale.

Now we are in a position to state the problem in a more

precise way: Given two intrinsically calibrated perspective

images I and I
′ of a generally dynamic scene and the cor-

responding dense correspondences, i.e., optical flow field,

our task is to reconstruct a piecewise planar approximation

of the dynamic scene surface. We need a dense flow field,

but do not require it to be perfect because it is only used to

initialize our algorithm, and as the algorithm runs, the final

flow field will be refined. The deformable scene surface in

the reference frame (i.e., S) and the one in the second frame

(i.e., S′) are parametrized by their respective 3D superpix-

els {Si} and {S′
i}, where each Si is described by its surface

normal ni and an anchor point Xai. Any 3D plane can be

determined by an anchor point Xai and a surface normal

ni. If one is able to estimate all the 3D anchor points and

all the surface normals, the problem is solved.

4. Solution

Build a K-NN graph. We identify a 3D superpixel by its

anchor point. The distance between two 3D superpixels

is defined as the Euclidean distance between their anchor

points in 3D space.

By connecting K nearest neighbors, we build a K-NN

graph G(V,E) (e.g. as illustrated in Fig. 3 and Fig. 4). The

graph vertices are anchor points, connecting with each other

via graph edges. Overloading notation, we let Xai =
[Xai, Yai, Zai]

T represent 3D world coordinates of the i-
th superpixel. Suppose that we know the perfect Mi, ni for

each individual Si, then S can be mapped to S
′ by mov-

ing each individual superpixel based on its corresponding

locally rigid motion. The world and the image coordinates

in the subsequent frames can be inferred by X
′
ai = MiXai

and s
′
i = K

(

Ri −
tin

T

i

di

)

K
−1

si, where the latter repre-

sents a plane-induced homography [13], with di as the depth

of the plane.

As-Rigid-As-Possible (ARAP) Energy Term. Our new

method is built upon the idea that the correct scales of

3D superpixels can be estimated by enforcing prior as-

sumptions that govern the deformation of the dynamic sur-

face. Specifically, we require that, locally, the motion that

each 3D-superpixel undergoes is rigid, and globally the en-

tire dynamic scene surface must move as-rigid-as-possible

(ARAP). In other words, while the dynamic scene is glob-

ally non-rigid, its deformation must be regular in the sense

that it deforms as rigidly as possible. To implement this

idea, we define an ARAP-energy term as:

Earap =

N
∑

i=1

∑

k∈Ni

w1(sai, sak)‖Mi −Mk‖F+

w2(sai, sak).
∣

∣

∣
‖Xai −Xak‖2 − ‖X′

ai −X
′
ak‖2

∣

∣

∣

1
.

(1)

Here, the first term favors smooth motion between local

neighbors, while the second term encourages inter-node dis-

tances between the anchor node and its K nearest neighbor

nodes (denoted as k ∈ Ni) to be preserved before and after

motion (hence as-rigid-as-possible). We define the weight-

ing parameters as:

w1(sai, sak) = w2(sai, sak) = exp(−β‖sai − sak‖). (2)

These weights are set to be inversely proportional to

the distance between two superpixels. This is to reflect

our intuition that, the further apart two superpixels are,

the weaker the Earap energy is. Although there may be

redundant information in these two terms, we keep both

nonetheless for the sake of flexibility in algorithm design.

Note that, this term is only defined over anchor points,

hence it enforces no depth smoothness along boundaries.

The weighting term in Earap advocates the local rigidity by

penalizing over the distance between anchor points. This

allows immediate neighbors to have smooth deformation

over time. Also, note that Earap is generally non-convex.

Planar Re-projection Energy Term. With the as-

sumption that each superpixel represents a plane in 3D,

it must satisfy corresponding planar reprojection error

in 2D image space. This reprojection cost reflects the

average dissimilarity in the optical flow correspondences

across the entire superpixel due to its motion. Therefore,

it helps us to constrain the surface normals, rotation and

translation direction such that they obey the observed

planar homography in the image space.

Eproj =

N
∑

i=1

w3

|si|

|si|
∑

j=1

‖(sji )
′ −K

(

Ri −
tin

T
i

di

)

K
−1(sji )‖F .

(3)

4652



a) b) c) d)
Figure 4: a) Superpixelled reference image b) Individual superpixel depth with arbitrary scale (unorganised superpixel soup) c) recovered

depth map using our approach (organised superpixel soup) d) ground-truth depth map.

where |si| represents the total number of pixel inside the

ith superpixel 1.

3D Continuity Energy Term. To favor a contin-

uous/smooth surface reconstruction, we require two

neighboring superpixels to have a smooth transition at their

boundaries. We define a 3D continuity energy term as:

Econt =
N
∑

i=1

∑

k∈Ni

w4(sbi, sbk)
(

‖Xbi −Xbk‖F+

ρ(‖X′
bi −X

′
bk‖F )

)

.

(4)

This term ensures the 3D coordinates across superpixel

boundaries to be continuous in both frames. The neighbor-

ing relationship in Econt is different from Earap term. Here,

the neighbors share common boundaries with each other.

For each boundary pixel of a given superpixel, we consider

its 4-connected neighboring pixels. w4 is a trade-off scalar,

which is defined as:

w4(sbi, sbk) = exp(−β‖I(sbi)− I(sbk)‖F ), (5)

i.e. weighting the inter-plane transition by the color differ-

ence. Here, subscript ’bi’ and ’bk’ indicate that the involved

pixels shares the common boundary (’b’) between ith and

kth superpixel in the image space. ρ is a truncation function

defined as ρ = min(., σ) to allow piecewise discontinuities.

Here, β is a trade-off constant chosen empirically.

Combined Energy Function. Recall that our goal is to

estimate piecewise rigid motion (Ri, ti), depth di, surface

normal ni and scale λi for each planar superpixel in 3D,

given initialization. The key is to estimate the unknown

relative scale λi. We solve this by minimizing the following

energy function E = Earap + α1Eproj + α2Econt, namely,

min
λi,ni,di,Ri,ti

E = Earap + α1Eproj + α2Econt,

s. t.
∑

i=1..N

λi = 1, λi > 0.
(6)

The last equality constraint fixes the unknown freedom of a

global scale. λi > 0 enforces the cheriality constraint [13].

1For brevity, we slightly abuse notation; both terms in Eq:-3 represent

inhomogeneous image coordinate.

Optimization. The above energy function (Eq.- 6) is non-

convex. We first solve the relative scales λi efficiently by

minimizing the ARAP term in Eq.-(1) using interior-point

methods [4]. Although the solutions found by the interior

point method are at best local minimizers, empirically they

appear to give good 3D reconstructions. In our experiments,

we initialized all λi with an initial value of 1
N

.

Assigning superpixels to a set of planes can lead to non-

smooth blocky effect at their boundaries. To smooth these

blocky effects, we employ a refinement step to optimize

over the surface normals, rotations, translations, and depths

for all 3D superpixels using Eq.- 3 and Eq.-4. We solved the

resultant discrete-continuous optimization with the Max-

Product Particle Belief propagation (MP-PBP) procedure

by using the TRW-S algorithm [16]. In our implementation,

we generated 50 particles as proposals for the unknown pa-

rameters. Repeating the above strategy for 5-10 iterations,

we obtained a smooth and refined 3D structure of the dy-

namic scene.

Implementation details. We partitioned a reference im-

age into about 1,000-2,000 superpixels [1]. We used a state-

of-the optical flow algorithm [3] to compute dense corre-

spondences across two frames. Parameters like α1, α2, β,

σ were tuned differently for different datasets. However,

β = 3 and σ = 15 are fixed for all our tests on MPI Sintel

and on VKITTI. To initialize the iteration, local rigid mo-

tion is estimated using traditional SfM pipeline [13]. Our

current implementation in C++/MATLAB takes around 10-

12 minutes to converge for images of size 1024× 436 on a

regular desktop with Intel core i7 processor.

5. Experiments

We evaluated the performance of our method both quali-

tatively and quantitatively on various bedatasets that contain

dynamic objects: the KITTI dataset [11], the virtual KITTI

[9], the MPI Sintel [5] and the YouTube-Objects [21]. We

also tested our method on some commonly used non-rigid

deformation data: Paper, T-shirts and Back sequence [27]

[26][10]. Example images and our reconstruction results

are illustrated in Fig. 5.

Evaluation Metrics: For quantitative evaluation, the er-

rors are reported in i.e. mean relative error (MRE), defined
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Figure 5: 3D reconstruction and depth map obtained using our algorithm on different benchmarking datasets. The first three columns

demonstrate the reconstruction of the entire scene that is composed of rigid and complex motion. The last three columns show the accurate

reconstruction of deformable objects on real non-rigid benchmark datasets.

as 1
P

∑P

i=1 |z
i
gt − ziest|/z

i
gt. Here, ziest, z

i
gt denotes the es-

timated, and ground-truth, depth respectively with P as the

total number of 3D points. The error is computed after re-

scaling the recovered shape properly, as the reconstruction

is only made up to an unknown global scale. We used MRE

for the sake of consistency with previous work [22]. Quan-

titative evaluations for the YouTube-Objects dataset and the

Back dataset are missing because for them no ground-truth

results are provided.

Baseline Methods: The performance of our presented

method is compared to several monocular dynamic recon-

struction methods, which include the Block Matrix Method

(BMM) [6], Point Trajectory Approach (PTA) [2], and

Low-rank Reconstruction (GBLR) [8]), Depth Transfer

(DT) [15], and (DMDE) [22]. 2

In Fig-(6) we show the recovered depth map along with

scene surface normals. These results highlight the effective-

ness of our method in handling diverse scenarios.

MPI Sintel: This dataset is derived from an animation

movie with complex dynamic scenes. It contains highly

dynamic sequences with large motions and significant il-

lumination changes. It is a challenging dataset particularly

for the piece-wise planar assumption due to the presence

of many small and irregular shapes in the scene. We se-

lected 120 pairs of images to test our method, which in-

cludes alley 1, ambush 4, mountain 1, sleeping 1 and tem-

ple 2. Fig-8(a) gives quantitative comparisons against sev-

eral other competing methods. As observed in the figure,

our method outperforms all the competing methods on all

the testing sequences shown here.

Virtual KITTI: The Virtual KITTI dataset contains

computer rendered photo-realistic outdoor driving scenes

which resemble the KITTI dataset. The advantage of us-

ing this dataset is that it provides perfect ground-truths

for many measurements. Furthermore, it helps to simu-

2We did not compare our method with [24] due to the code provided by

the authors of [24] crashed unexpectedly on several of the test sequences.

late algorithm related to dense reconstruction with noise

free and distortion-free images, facilitating quick experi-

mentation. We selected 120 images from 0001 morning,

0002 morning, 0006 morning and 0018 morning. The re-

sults obtained are shown in Figure 8(a). Again, our method

outperforms all the competing methods with a clear margin

on all the test sequences.

KITTI: We tested real KITTI to evaluate our method’s

performance for noisy real-world sequences. We used the

KITTI’s sparse LiDAR points as the 3D ground-truth for

evaluation. We also used other sequences for qualitative

analysis (see Figure 5). Figure 8(b) demonstrates the ob-

tained depth accuracy. Our method achieves the best per-

formance for all the testing sequences.

YouTube-Objects: We tested our method on se-

quences from the Youtube-Objects Dataset [21]. These

are community-contributed videos downloaded from the

YouTube. Due to the lack of ground truth 3D reconstruc-

tion, we only show the results in Fig. 7 visually.

Non-rigid datasets (Paper, T-shirt, Back): We bench-

marked our method in commonly used deformable ob-

ject sequences, namely, Kinect Paper and Kinect Tshirt

[26]. Table-1 presents the mean depth error obtained on

these sequences. Note that all the benchmarking non-

rigid structure-from-motion methods reported in Table-1

(GLRT [8], BMM [6], and PTA [2]) used multi-frame while

our method only used two frames. Qualitative results are

demonstrated in Fig. 5.

Comparison: Table 1 provides a statistical compari-

son between our method and other competing methods. It

shows that our method delivers consistently superior recon-

struction accuracy on these benchmarking datasets, even

better than those methods which use multiple image frames.

Effect of K: Under our method, the ARAP energy term

3Intrinsic matrix was obtained through personal communication.
3Intrinsic matrix for the Back sequence is not available with dataset.

We made an approximate estimation.
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Input Image Ground truth depth Ours Depth Reconstructed Scene Normal 
Figure 6: Depth map and scene normals on MPI and VKITTI dataset.

Input Image Obtained depth map Dense point cloud (view 1) Dense point cloud (view 2)
Figure 7: Depth and 3D reconstruction results for the cat sequence taken from YouTube-Objects Dataset[21]3. For this experiment, we

used 10,000 superpixels.

Method →
(Method type)

DT [15]

(Single frame)

GLRT [8]

(Multi-frame)

BMM [6]

(Multi-frame)

PTA [2]

(Multi-frame)

DMDE [22]

(Two-frame)

Ours

(Two-frame)

MPI Sintel 0.4833 0.4101 0.3121 0.3177 0.297 0.1669

Virtual KITTI 0.2630 0.3237 0.2894 0.2742 - 0.1045

KITTI 0.2703 0.4112 0.3903 0.4090 0.148 0.1268

kinect paper 0.2040 0.0920 0.0322 0.0520 - 0.0476

kinect tshirt 0.2170 0.1030 0.0443 0.0420 - 0.0480

Table 1: Performance Comparison: This table lists the MRE errors. For DMDE [22] we used its previously reported result as its imple-

mentation is not available publicly.

is evaluated within K nearest neighbors, different K may

have a different effect on the resultant 3D reconstruction.

We conducted an experiment to analyze the effect of vary-

ing K on the MPI Sintel dataset and the results are illus-

trated in Fig. 9. With the increase of K, the recovered scene

becomes more rigid, as the neighborhood size increases.
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(a) (b)

Figure 8: Quantitative evaluation on benchmark datasets. The depth error is calculated by adjusting the numerical scale of obtained depth

map to ground-truth value, to account for global scale ambiguity. (a)-(b) comparison on MPI, Virtual KITTI and KITTI dataset. PTA [2],

BMM [6], GLRT[8], DT [15]. These numerical values show the fidelity of reconstruction that can be retrieved on benchmark datasets

using our formulation.

a) b) c) d)
Figure 9: Effect of parameter K in building the K-NN graph. Our algorithm results in good reconstruction if a suitable K is chosen, in

accordance with levels of complexity of the dynamic scene. b) Ground-truth depth-map (scaled for illustration purpose). c) when K=4, a

reasonable reconstruction is obtained. d) when K=20, regions tend to grow bigger. (Best viewed in color.)

When k=20, the dragon region was absorbed into the sky re-

gion, which results in an incorrect reconstruction. In most

of our experiments, we used a K in the range of 15 − 20,

which achieved satisfactory reconstructions.

Our approach may disappoint if the neighboring rela-

tions between superpixels do not hold in the successive

frame due to the substantial motion. A couple of examples

for such situations are discussed and shown in the supple-

mentary material for better understanding. Furthermore, we

encourage the readers to go through the supplementary ma-

terial for few more analysis and possible future works.

6. Conclusion

To reconstruct a dense 3D model of a complex, dynamic,

and generally non-rigid scene from its two images captured

by an arbitrarily-moving monocular camera is often consid-

ered as a very challenging task in Structure-from-Motion.

In contrast, the reconstruction of a rigid and stationary scene

from two views is a mature and standard task in 3D com-

puter vision, which can be solved easily if not trivially.

This paper has demonstrated that such a dense 3D re-

construction of dynamic scenes is, in fact possible, pro-

vided that certain prior assumptions about the scene geom-

etry and about the dynamic deformation of the scene are

satisfied. Specifically, we only require that 1) the dynamic

scene to be reconstructed is piecewise planar, and 2) the de-

formation itself between the two frames is locally-rigid but

globally as-rigid-as-possible. Both assumptions are mild

and realistic, commonly satisfied by real-world scenarios.

Our new method dubbed as the SuperpixelSoup algorithm is

able to solve such a challenging problem efficiently, leading

to accurate and dense reconstruction of complex dynamic

scenes. We hope in theory our method offers a valuable

new insight to monocular reconstruction, and in practice,

it provides a promising means to perceive a complex dy-

namic environment by using a single monocular camera.

Finally, we want to stress that the rigidity assumption (and

the ARAP constraint) used by the paper is a powerful tool

in multi-view geometry research—careful investigation of

which may open up new opportunities in the development

of advanced techniques for 3D reconstruction.
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