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Figure 1: Representative examples for fixation prediction. Fixations are colored depending on whether they are better predicted by the

high-level deep object features (DeepGaze II) model (blue) or the low-level intensity contrast features (ICF) model (red). This separates

the images into areas where fixations are better predicted by high-level and low-level image features respectively. DeepGaze II is very good

at predicting the human tendency to look at text and faces (first and second image), while ICF is better at predicting fixations driven by

low-level contrast (third image). In particular, DeepGaze II fails if fixations are primarily driven by low-level features, although high-level

features like text are present in the image (fourth image).

Abstract

Understanding where people look in images is an im-

portant problem in computer vision. Despite significant re-

search, it remains unclear to what extent human fixations

can be predicted by low-level (contrast) compared to high-

level (presence of objects) image features. Here we ad-

dress this problem by introducing two novel models that

use different feature spaces but the same readout architec-

ture. The first model predicts human fixations based on

deep neural network features trained on object recognition.

This model sets a new state-of-the art in fixation predic-

tion by achieving top performance in area under the curve

metrics on the MIT300 hold-out benchmark (AUC = 88%,

sAUC = 77%, NSS = 2.34). The second model uses purely

low-level (isotropic contrast) features. This model achieves

better performance than all models not using features pre-

trained on object recognition, making it a strong baseline

to assess the utility of high-level features. We then evaluate

and visualize which fixations are better explained by low-

level compared to high-level image features. Surprisingly

we find that a substantial proportion of fixations are bet-

ter explained by the simple low-level model than the state-

of-the-art model. Comparing different features within the

same powerful readout architecture allows us to better un-

derstand the relevance of low- versus high-level features in

predicting fixation locations, while simultaneously achiev-

ing state-of-the-art saliency prediction.

1. Introduction

Humans make several eye movements per second, fixat-

ing their high-resolution fovea on things they want to see.

Understanding the factors that guide these eye movements

is therefore an important component of understanding how

humans process visual information and thus has a wide

range of applications in image processing. In computer vi-

sion this problem is framed as saliency prediction1: predict-

ing human fixation locations for a given image [21, 26, 25].

Saliency prediction performance has rapidly improved in

the last few years, driven by the advent of models based on

pre-trained deep neural networks. The models make use of

convolutional filters that have been learned on other tasks,

most notably object recognition in the ImageNet dataset

[10]. The success of these saliency prediction models sug-

gests that the high-level image features encoded by deep

networks (e.g. sensitivity to faces, objects and text) are ex-

tremely useful to predict human fixation locations.

Despite recent advances, state-of-the-art models remain

below the gold standard model of predicting one human’s

fixations from all others. Given the success of deep learn-

ing approaches, it may be tempting to believe that achiev-

ing gold standard performance simply requires employing

even deeper, more abstracted feature sets. Here, we instead

suggest that saliency prediction models may be neglecting

low-level image features (local contrast) and overweighting

1 Note that the term saliency prediction is sometimes also used in dif-

ferent context not related to eye movements.
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Figure 2: (a) The architecture of our models. Each model has a fixed feature space that feeds into the readout network: DeepGaze II uses

VGG-19 features, ICF uses simple local intensity and contrast at different scales and the pixel model uses the raw pixel values. These

feature activations are passed to a second neural network (the readout network) that is trained for fixation prediction. The readout network

consists of four layers of 1 × 1 convolutions implementing a pixelwise nonlinear function. This results in a saliency map, which is then

blurred, combined with a center bias and converted into a probability distribution by means of a softmax. (b) The ICF feature space. The

network projects an RGB image onto the luminance and two color channels. For each channel we compute local intensities on 5 different

scales using Gaussian convolutions. Additionally we square and blur the high-pass residuals from each scale to extract local contrast. The

resulting 30 output channels are concatenated and constitute the input to the readout network.

the contribution of high-level features (the presence of ob-

jects such as faces or text) in explaining human fixations.

We come to this conclusion via three novel contributions:

• A new state-of-the-art model for saliency prediction

(the DeepGaze II model) that is based on deep neu-

ral network features pre-trained on object recognition

[39].The model achieves top performance in area un-

der the curve metrics on the MIT300 hold-out bench-

mark (AUC = 88%, sAUC = 77%, NSS = 2.34).

• A strong low-level baseline model for saliency predic-

tion (Intensity Contrast Feature or ICF) that is based

on local intensity and contrast. The model achieves

top performance among all models not using features

pre-trained on object recognition.

• Extensive quantitative and qualitative analysis to com-

pare the predictions of these models. While DeepGaze

II tends to perform better on images containing faces

or text, the ICF model still performs better than

DeepGaze II on about 10% of the images in the dataset.

Importantly, because both models use the same well-

constrained readout architecture (see below), our compar-

ison only reflects differences in the feature spaces (low- vs

high-level).

2. Related Work

Beginning with the seminal image-computable model by

Itti and Koch [21], many models have been proposed to

predict fixations using local low-level features [52, 27], in-

corporating global features and statistics [15, 47, 18, 6, 14,

12, 37, 36], using simple heuristics [51] or combinations

of low- and high-level features [26] (see [3] for a com-

prehensive review of saliency models before the advent of

pre-trained deep features). In parallel, the effects of biases

[42, 43, 45, 7] and tasks [38, 28, 44] on fixation placement

have been studied. While these considerations are crucial,

in this paper we are concerned not with top-down influences

such as task, but rather we seek to understand to what extent

fixations in free viewing are driven by low-level features or

by high-level features [49, 11, 4, 9, 20, 5].

The state-of-the-art in saliency prediction improved

markedly since 2014 with the advent of models using deep

neural networks. The first model to use deep features (eDN;

[48]) trained them from scratch to predict saliency. Subse-

quently, the DeepGaze I model showed that DNN features

trained on object recognition (AlexNet [29] trained on the

ImageNet dataset [10]) could significantly outperform train-

ing from scratch [32]. The success of this transfer-learning

approach is exciting because it captializes on the presum-

ably tight relationship between high-level tasks such as ob-

ject recognition and human fixation location selection.

Since the initial success of transfer learning for saliency
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prediction, a variety of new models followed this example

to further improve saliency prediction performance. The

SALICON model [19] fine tunes a mixture of deep fea-

tures from AlexNet [29], VGG-16 [39] and GoogLeNet

[41] for saliency prediction using the SALICON and OSIE

[50] datasets. DeepFix [30] and PDP [22] fine-tune fea-

tures from the VGG-19 network [39] for saliency prediction

using the SALICON and the MIT1003 dataset. FUCOS

[5] finetunes features trained on PASCAL-Context. SAL-

ICON and DeepFix substantially improved performance

over DeepGaze I in the MIT benchmark ([8]; see below).

The main difference of the new state-of-the art model we

introduce here is that rather than fine-tuning the VGG-19

features for saliency prediction, we train a read-out network

that uses a point-wise nonlinear combination of deep fea-

tures. Furthermore we train our model in a probabilistic

framework optimising the log-likelihood [31] and model the

center bias as an explicit prior (as in Deep Gaze I [32]).

3. Models

We formulate our models as probabilistic models that

predict fixation densities. Building on previous work ap-

plying probabilistic modelling to fixation prediction [2, 49],

Kümmerer et al. [31, 33] recently showed that formulat-

ing existing models appropriately can remove most of the

inconsistencies between existing model evaluation metrics.

Furthermore, they argued that using log-likelihood as an

evaluation criterion represents a useful and intuitive loss

function for model evaluation, with close ties to information

theory (though other loss functions may have advantages for

some use cases [22]). Therefore we train and evaluate our

models using the framework of log-likelihood (specifically

reported as information gain explained, see [31]) and addi-

tionally report key metrics (AUC, sAUC and NSS) on the

MIT1003 dataset and from the MIT Saliency Benchmark.

3.1. Deep Object Features (DeepGaze II) model

Here we describe the architecture of our saliency predic-

tion model that is based on deep features that are trained on

object recognition (Fig. 2). A given input image is subsam-

pled by a factor 2 and passed through the normalized VGG-

19 network for which all filters have been rescaled to yield

feature maps with unit mean over the ImageNet dataset

[13]. Next, the feature maps of a selection of high-level

convolutional layers (conv5 1, relu5 1, relu5 2, conv5 3,

relu5 4; selected via random search, see supplement) are

up-sampled by a factor of 8 such that spatial resolution is

sufficient for precise prediction. These feature maps are

then combined into one 3-dimensional tensor with 2560

(5×512) channels, which is used as input for a second neu-

ral network that we term the readout network. This readout

network consists of four layers of 1 × 1 convolutions fol-

lowed by ReLu nonlinearities. The first three layers use 16,

32, and 2 features (see supplement for details). The last

layer has only one output channel O(x, y). Crucially, the

readout network is only able to represent a point-wise non-

linearity in the VGG features. This means that the readout

network is only able to learn interactions between existing

features across channels but not across pixels—i.e. it cannot

learn new spatial features.

The final output from the readout network is convolved

with a Gaussian to regularize the predictions:

S(x, y) = O(x, y) ⋆ Gσ (1)

Fixations tend to be near to the center of the image in

a way which is strongly task and dataset dependent [42].

Therefore we explicitly model the center bias as a prior dis-

tribution that is added to S:

S′(x, y) = S(x, y) + log pbaseline(x, y) (2)

We use a Gaussian Kernel density estimate over all fixations

from the training dataset for pbaseline (for more details see

3.4). Finally, S′(x, y) is converted into a probability dis-

tribution over the image by the means of a softmax (as for

DeepGaze I and for PDP):

p(x, y) =
exp(S′(x, y))∑
x,y exp(S

′(x, y))
(3)

3.2. Intensity Contrast Feature (ICF) model

The architecture of our low-level ICF model closely fol-

lows that of DeepGaze II (Fig. 2). The main difference

is that we replace the VGG features that were trained on

object recognition by a feature space that can only extract

purely low-level image information (intensity and intensity

contrast).

To that end we first subsample the image by a factor of

2 and project the RGB color channels onto their principal

components for natural images (computed on the MIT1003

dataset, see supplement), which yields the luminance chan-

nel and two color channels. For each of these channels we

independently compute local intensity and contrast at dif-

ferent spatial scales. For local intensity we simply compute

a Gaussian Pyramid with 5 different scales. The standard

deviations the Gaussian kernels are 5,10,20,40,80 px and

the window size is 171 px. We use nearest-padding so that

the output feature map has the same spatial dimensions as

the input feature map. For local contrast we first compute

5 high-pass residuals by subtracting each level of the Gaus-

sian Pyramid from the input channel. Then we square these

residuals to compute pixel-wise contrast and finally we blur

the squared residuals with the same Gaussian kernel that

was used to compute the residual (Fig. 2). This procedure

yields 5 intensity and 5 contrast feature maps for each input

channel and thus results in 30 feature maps that constitute
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the input to the readout network. The readout network and

the following stages (blurring and adding of center bias) are

the same as for DeepGaze II.

3.3. Pixel model

To compute a baseline that evaluates how powerful the

readout network is on its own, we also trained a model that

applies the readout network and the following stages di-

rectly to the RGB pixel values. This model computes no

spatial features and can only learn non-linear combinations

of the color channels.

Our models are implemented using Lasagne and Theano

[1]. For the computation of the VGG features we used the

caffe toolbox [23].

3.4. Model Training

Our models are trained using maximum likelihood learn-

ing (see [31] for an extensive discussion of why log-

likelihoods are a meaningful metric for saliency modelling).

If p(x, y | I) denotes the probability distribution over coor-

dinates x and y predicted by our model for an image I , the

log-likelihood of a dataset is

1

N

N∑

i

log p(xi, yi|Ii), (4)

where i indexes the N fixations in the groundtruth data: The

ith fixation occured in the image refered to by Ii, at location

(xi, yi). For both models we minimize this loss function

only with respect to the parameters of the readout network

and the kernel size of the Gaussian used to regularize the

prediction. Since the loss function is differentiable in these

parameters, we can use the of-the-shelf Sum-of-Functions-

Optimizer (SFO, [40]), a mini-batch-based version of L-

BFGS.

The feature representations that feed into the readout net-

work (VGG for the high-level and local mean and contrast

for the low-level model) are kept fixed during training.

In the pretraining phase, the readout network is ini-

tialized with random weights and trained on the SALI-

CON dataset [24]. This dataset consists of 10000 images

with pseudofixations from a mouse-contingent task and has

proven to be very useful for pretraining saliency models

[19, 22, 30]. All images are downsampled by a factor of

two. We use 100 images per mini-batch for the SFO. All

fixations from the SALICON dataset are used to compute

the centerbias.

The MIT1003 dataset is used to determine when to stop

the training process. After each iteration over the whole

dataset (one epoch) we calculate the performance of the

model on the MIT1003 (test) dataset. We wish to stop train-

ing when the test performance starts to decrease (due to

overfitting). We determine this point by comparing the per-

formance from the last three epochs to the performance five

Model AUC sAUC NSS

DeepGaze I [32] 84% 66% 1.22

DSCLRCN [34] 87% 72% 2.35

DeepFix [30] 87% 71% 2.26

SALICON [19] 87% 74% 2.12

DeepGaze II 88% 77% 2.34

Table 1: DeepGaze II performance in the MIT300 Saliency Bench-

mark. DeepGaze II achieves top performance in both AUC and

sAUC, and comes a close second in NSS. Note that we use saliency

maps without center bias for the sAUC result (see text for more de-

tails).

epochs before those. Training runs for at least 20 epochs,

and is terminated if all three of the last epochs show de-

creased performance or if 800 epochs are reached. As it is

more expensive to use images of many different sizes, we

resized all images from the MIT1003 dataset to either a size

of 1024× 768 or 768× 1024 depending on their aspect ra-

tio, before downsampling by a factor of two. All fixations

from the MIT1003 dataset except the ones from the image

in question are used to compute the centerbias.

After pre-training, the model is fine-tuned on the

MIT1003 dataset and performance is cross-validated over

images: the images from the dataset are randomly split into

10 parts of equal size. Then ten models are trained start-

ing from the result of the pre-training, each one using 8 of

the 10 parts for training, one part for the stopping criterion

(following the stopping criterion as above) and keeping one

part for testing. All fixations from the training set are used

to compute the centerbias for training, validation and test

purposes. We use 10 images per mini-batch in the SFO. For

evaluation on the MIT300 benchmark dataset we train on

MIT1003 using a ten-fold 9-1 training-validation split and

average the predictions from the resulting models, using all

fixations from the MIT1003 dataset for the centerbias.

3.5. Model Evaluation

To evaluate model performance we focus on comput-

ing information gain for its intuitive information-theoretic

properties. We additionally report more classic metrics

(AUC, sAUC and NSS) to compare to other recent mod-

els. Finally, we also report the performance of DeepGaze II

on the MIT300 hold-out test set [8].

Information gain tells us what the model knows about

the data beyond a given baseline model [31], for which we

use the image-independent center bias, expressed in bits /

fixation:

IG(p̂‖pbaseline) =
1

N

∑

i

log p̂(xi, yi|Ii)−log pbaseline(xi, yi)

(5)

Here p̂(x, y|I) is the density of the model at location (x, y)
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Model IG IGE AUC sAUC NSS

Centerbias 0.00 0.0 79.6 50.0 1.22

Pixel 0.13 10.7 81.2 60.2 1.38

IttiKoch [16] 0.23 18.6 82.3 64.1 1.41

AIM [6] 0.27 22.6 82.9 65.6 1.50

eDN [48] 0.38 31.1 83.8 68.7 1.61

ICF 0.45 37.2 84.4 70.1 1.74

DeepGaze I [32] 0.56 46.1 85.8 73.0 1.92

OpenSALICON [46] 0.73 59.7 86.4 74.2 2.14

DeepGaze II 0.98 80.3 88.3 77.7 2.48

Gold Standard 1.22 100.0 89.9 81.2 2.82

(a) (b)

Figure 3: Performance on the MIT1003 dataset. (a) Ranking of the models according to information gain explained. Our models are

marked by the colored bars. All models to the right of ICF use pre-trained deep features. (b) Detailed results for a larger set of metrics. IG

= information gain (bits / fixation), IGE = information gain explained (%), AUC = area under the ROC curve (%), sAUC = shuffled area

under the ROC curve (%), NSS = normalized scanpath saliency.

when viewing image I , and pbaseline is the density of the

baseline model.

To evaluate the absolute performance of a model we

also compute information gain explained. This relates the

model’s performance to the performance of a gold standard

model that predicts one subject’s fixations for a given im-

age from the fixations of all other subjects using a Gaussian

kernel density estimate.

In particular, it is the proportion of the gold standard in-

formation gain accounted for by the model:

IG(p‖pbaseline)

IG(pgold‖pbaseline)
(6)

where pgold is the density of the gold standard model. Thus

it intuitively ranks a model on a scale from 0 to 1, where 0

is a model that does not know the image and 1 is a perfect

model that is only limited by inter-subject variablility.

Additionally, we evaluate the traditional area under the

ROC curve metrics AUC and sAUC and the more recent

Normalized Scanpath Saliency (NSS, [35]). For AUC and

NSS the model’s density prediction is the right saliency map

to use for evaluation. For sAUC we need to divide the den-

sity prediction by the center bias density (which is the non-

fixation density in that case) [33].

In all our results we report the test performance of

the models. Specifically, for each image in the MIT1003

dataset there is exactly one model from the fine-tuning

crossvalidation procedure that did not use that image for

training or validation. We use the density prediction

from this model to evaluate model performance for that

image. For the gold standard model we report leave-

one-subject-out crossvalidation performance (which is an

image-specific prediction crossvalidated over subjects).

To obtain meaningful results for other models on the in-

formation gain metric, we applied the procedure suggested

by [31] to convert them to probabilistic models. Specifi-

cally, this involves optimizing a pointwise nonlinearity and

a center bias (unlike [31], here we do not optimize a blur

kernel for the models because all state-of-the-art models

produce smooth saliency maps). The conversion usually

improves the performance of the models also on the clas-

sic metrics. Thus we only report the post-conversion model

performances for these models below.

4. Results

4.1. MIT300 Saliency Benchmark

Here we report the performance of our Deep Object

Feature model DeepGaze II on the MIT saliency bench-

mark (the held-out MIT 300 set) (Table 1). DeepGaze

II beats the nearest competitors SALICON, DeepFix and

DSCLRCN [34] by one percent in AUC. For shuffled AUC,

our model beats the nearest competitors by a larger mar-

gin. DSCLRCN beats our model by a small margin on NSS

(note that this model was optimized for NSS).

Because the MIT Benchmark requires submission of

model predictions as JPEG images, one must decide how

to store the saliency maps as JPEG images. For AUC,

we quantized the density for each image into 256 values

such that each value receives the same number of pix-

els. For sAUC, we divided the density by the density

of the MIT1003 center bias and quantized as above. For

NSS we quantized the density without histogram normal-

ization. Note that this does not mean we report the results

of three different models. The different metrics interpret

the saliency maps differently and we translated the predic-
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Figure 4: Example images and predictions. For both DeepGaze II and the ICF model we present the best (left) and worst (right) four images

with respect to information gain. Ground-truth fixations are plotted in blue over the images. Below each image we show the prediction of

the corresponding model. Above each stimulus we report the information gain performance of the model on this image.

tions of our model into the language of the different metrics

(without any retraining, see [33] for details). This could par-

tially explain the larger difference between our model and

competitor models on sAUC: most state-of-the-art models

include a center bias and evaluate sAUC on the saliency

maps with a center bias, resulting in a penalty.

4.2. MIT1003 dataset

The MIT300 hold-out set determines the state-of-the-

art in saliency prediction. However, precisely because its

ground-truth fixations are not publicly available, it is not

useful for understanding why models perform the way they

do. To develop a deeper understanding of the performance

of DeepGaze II and compare it to the ICF model, we there-

fore evaluate test performance for the MIT1003 dataset.

This also allows us to compare models using the intuitive

information gain measure described above. Unfortunately

we cannot include some recent and competitive models in

this analysis (SALICON and DeepFix) because their code

is not publicly available. To give at least an approximate re-

sult for the previous state-of-the-art, we include results for

the OpenSALICON implementation [46].

We evaluate a number of important saliency models us-

ing information gain explained (Fig. 3). We display the

ranking of the models in Figure 3(a). Our Pixel Model

performs the worst, but still remarkably well, accounting

for 10% of the information gain of the gold standard over

the center bias. Next are models that use hand-crafted low-

level features (AIM and BMS) and a convolutional network

that is trained from scratch (eDN). Our low-level baseline,

the ICF model performs best among all models that do not

use pre-trained deep features and accounts for a remarkable

37% of the information gain. Top performance is achieved

by models that use pre-trained deep neural network features

such as DeepGaze I, OpenSALICON and our new state-of-

the-art model DeepGaze II, which can explain 81% of the

information gain. Additionally we report the classic mea-

sures, AUC, sAUC and NSS to show their consistency with

information gain (Fig. 3(b)).

See the supplement for details on how the readout net-

work, the VGG features and pretraining on SALICON con-

tribute to the performance of DeepGaze II.

4.3. What features drive human fixation locations?

Here we compare our low-level ICF and high-level

DeepGaze II saliency models to improve our understanding

of the features that can explain human fixation locations.

First we look at the images for which each model per-

forms best and worst compared to the center bias and show

the respective saliency predictions of the models (Fig. 4).

We find that the ICF model performs best on images for

which fixations are localized in high contrast regions, for

example when there is a single plane in the blue sky (Fig.

4, bottom left panel, first image). At the same time it per-

forms worst when there is a high contrast region that does

not attract human fixations or attracts them only in part. For

example, it expects people to fixate exclusively on the col-

ored sticker on the bike whereas true fixations are more scat-

tered in the image (Fig. 4, bottom right panel, first image).

Note that even though the model only extracts low-level fea-
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Figure 5: Images for which DeepGaze II has the largest improve-

ment over ICF. Fixations that are better explained by DeepGaze

II are colored in blue. Fixations that are better explained by ICF

are colored in red. Fixations best explained by the center bias are

omitted. Predicted fixation densities for both models are plotted

below the images. Above each stimulus we report the difference

in information gain between DeepGaze II and ICF for this image.
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Figure 6: Images for which ICF has the largest improvement over

DeepGaze II. Other elements as in Figure 5.

tures, it can still perform well on images where fixations

are driven by high-level features such as human faces—if

the presence of a face is correlated with the local intensity

or contrast of the image (Fig. 4, bottom left panel, second

image).

We find that DeepGaze II excels at predicting fixations

that are driven by the presence of objects, such as controls

in a car, a roadsign or human faces (Fig. 4, top left panel).

It fails for images where high-level content is not associated

with fixations (e.g. the text in Fig. 4, top right panel, first

and last image) or images that are texture-like without any

particular objects (Fig. 4, top right panel, second image).

Even though the best images for ICF and DeepGaze II

are partly the same, the predicted saliency maps clearly sep-

arate the models. While DeepGaze II is extremely accurate

0.08 bit/fix 0.10 bit/fix 0.20 bit/fix 0.44 bit/fix

D
e

e
p

G
a

z
e

II
IC

F

Figure 7: Images for which DeepGaze II and ICF show similar

performances but predict the fixations in different locations, sep-

arating the image into areas of low-level and high-level fixations.

Other elements as in Figure 5, except that in the second image ICF

fixations are colored orange and DeepGaze II light blue to better

separate them from the blue and red elements in the image.
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Figure 8: Performances of DeepGaze II and ICF on MIT1003.

Each point corresponds to one image, with the performance of

DeepGaze II (y-axis) and the ICF model (x-axis) on that image

expressed as information gain relative to the center bias. For im-

ages above the diagonal (blue dots) DeepGaze II is better than the

ICF model, while for images below the diagonal (red dots) the ICF

model is better.

at predicting fixations at the location of the important high-

level objects (faces, text), the ICF model also predicts fixa-

tions at other high-contrast locations in the images.

The difference between the models is made more explicit

by looking at the images for which DeepGaze II is maxi-

mally better than ICF (Fig. 5). One advantage of training

two separate models is that we can easily assess which in-

dividual fixations within an image are better explained by

each of the models. This allows us to better understand

which features drive fixations. In Figure 5, DeepGaze II

correctly predicts a concentration of fixations over text (two

leftmost images) and faces (two rightmost images) whereas
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the ICF model is ‘distracted’ by high-contrast regions of

the image that do not correspond to the presence of objects

[49]. For example, ICF strongly predicts fixations in the

high-contrast gap between the stacks of papers in the sec-

ond image. It also predicts high fixation probability for skin

on a dark background no matter whether it is the face or the

hand of a person (third image). In contrast, DeepGaze II

only predicts high fixation probability for the face, in agree-

ment with the ground-truth data.

On the other hand, in Figure 6, we show images where

the ICF model performs better than DeepGaze II. In two

examples (first and fourth images), DeepGaze II seems to

be distracted by high-level features that humans tend not to

fixate. For example, in the first image, DeepGaze II predicts

that humans will look at the text printed in the book whereas

ICF correctly predicts that humans will fixate the padlock

lying over the page (forming a high-contrast region). Simi-

larly, in the fourth image, DeepGaze II predicts fixations on

the text on the runner’s shirt whereas the runner’s head and

shoulders happen to correspond to higher-local-contrast re-

gions (which are picked up by the ICF model). The middle

two images show abstract patterns (motion blur and clouds)

for which human fixations appear to be better explained by

local contrast in the absence of high-level features.

Finally, we show a sample of images in which DeepGaze

II and ICF show similar performance at the image level

but predict fixations in different locations (Figure 7). In

the first image, DeepGaze II correctly predicts fixations to

the baby’s eyes and to the text on the arm, but ICF cor-

rectly predicts fixations to the pacifier. In the second image,

ICF correctly predicts fixations to the color-singleton search

item (blue element amongst red) but fails to predict fixa-

tions elsewhere. DeepGaze II predicts fixations to the glass

window whereas ICF predicts fixations to the high-contrast

border of the escalator in the third image, and DeepGaze II

predicts fixations to text but not the needle of the speedome-

ter in the fourth image.

The comparison images we have highlighted above show

that DeepGaze II can correctly predict fixations to high-

level features such as text and faces (see also examples in

Figure 1), in accordance with its status as a far more power-

ful model than ICF (more parameters with pre-trained fea-

tures). However, there are striking failure cases when com-

paring against the ICF model, in particular when high-level

features are present in the image but are not fixated (e.g.

the text and padlock image in Figure 6). On the MIT1003

dataset as a whole, we find that there is a substantial subset

of images (94 of 1003) for which the ICF model produces

better predictions than DeepGaze II (Figure 8). In terms

of individual fixations this proportion is even higher, with

around 25% of the fixations in the dataset being better ex-

plained by ICF than either DeepGaze II or the center bias.

Given the simplicity of the ICF model relative to DeepGaze

II, this is remarkable. Because in principle DeepGaze II

should also have access to low-level features [17], this re-

sult suggests that DeepGaze II may be underweighting the

importance of low-level features in guiding fixations.

5. Discussion

In this paper we compare the predictive performance

of low- and high-level features for saliency prediction by

introducing two new saliency models that use the same

readout architecture on top of different feature spaces.

DeepGaze II uses transfer learning from the VGG-19 deep

neural network to achieve state-of-the-art performance on

the MIT300 benchmark. The ICF model uses simple inten-

sity contrast features to achieve better performance than all

models that do not use pre-trained deep features.

While the high-level DeepGaze II model significantly

outperforms low-level ICF for the dataset as a whole, we

find a surprisingly large set of images for which the ICF

model is better than DeepGaze II. Thus, while high-level

features (the presence of objects, faces and text) are very

important for explaining free viewing behaviour in natural

scenes [11, 44], our results show that low-level local con-

trast features do make a small but dissociable contribution

over a representative scene database (see also [7, 5]).

The fact that the simple ICF model outperforms all mod-

els before transfer learning of deep features shows that the

predictive value of low-level features has been historically

underestimated. One possible reason for this is that many

historical models were not trained on data but rather hand-

tuned. On the other hand, the ICF model is isotropic—

it does not even have access to orientation filters—which

makes its performance improvement relative to earlier mod-

els even more remarkable.

Our results suggest that explicitly modelling low-level

contributions to saliency could be used to improve the ro-

bustness of saliency models. In future work it may prove

fruitful to train the DeepGaze II and ICF models jointly, re-

ducing DeepGaze II’s tendency to over-emphasize the im-

portance of high-level image structure. Ultimately how-

ever, we believe that improvements will come from a better

understanding of what features causally drive fixation be-

haviour, including different task constraints [44, 28].

We provide a webservice to test our models on arbitrary

stimuli at deepgaze.bethgelab.org.
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