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Abstract

In this paper we present new techniques for constructing

compact and robust minimal solvers for absolute pose esti-

mation. We focus on the P4Pfr problem, but the methods we

propose are applicable to a more general setting.

Previous approaches to P4Pfr suffer from artificial de-

generacies which come from their formulation and not the

geometry of the original problem. In this paper we show

how to avoid these false degeneracies to create more robust

solvers. Combined with recently published techniques for

Gröbner basis solvers we are also able to construct solvers

which are significantly smaller. We evaluate our solvers on

both real and synthetic data, and show improved perfor-

mance compared to competing solvers.

Finally we show that our techniques can be directly ap-

plied to the P3.5Pf problem to get a non-degenerate solver,

which is competitive with the current state-of-the-art.

1. Introduction

Estimating the pose of a camera from minimal 2D-3D

point correspondences is an important problem in geomet-

ric computer vision, as the minimal solvers often form the

building blocks for 3D reconstruction frameworks. For

estimating a calibrated camera only three points are re-

quired [11, 15]. If the intrinsic parameters are only par-

tially known, more point correspondences are necessary.

The most common situation in practice is that all intrin-

sic parameters except the focal length are known and the

camera has some radial distortion. For the setting with

unknown focal length and known or zero radial distortion,

there have been many proposed minimal solvers using four

points [23, 4, 25] and recently Wu [24] presented the first

truly minimal solver using 3.5 points (by ignoring one im-

age coordinate).

The absolute pose problem with unknown radial distor-

tion and unknown focal length becomes minimal with four

points and is usually called P4Pfr. It was first solved by

Josephson and Byröd [14], however the elimination tem-

Figure 1. The camera pose, focal length and radial distortion are

estimated from four 2D-3D correspondences. The examples above

are from the Rotunda dataset (Section 4.4).

plate for this solver was quite large (1134 × 720), which

limits its practical use. In [5] Bujnak et al. presented poly-

nomial solvers with much smaller elimination templates by

considering the planar and non-planar problems separately.

In [17] Kukelova et al. presented a non-minimal solver

which uses five point correspondences. The solver is very

fast but has the drawbacks of requiring more data and solv-

ing an overconstrained problem.

The P4Pfr problem becomes degenerate when the 3D

points lie in a plane parallel to the image plane. In this case

there exist infinitely many solutions by translating the cam-

era towards the plane and changing the focal length. This

degeneracy is inherent to the problem itself and cannot be

avoided. However the previous solvers from [14] and [5]

both suffer from additional degeneracies which are artificial

in the sense that they come from the specific formulation

used, instead of the geometry of the original problem.

In this paper we show how to avoid these unnecessary

degeneracies and construct minimal solvers which are both

more robust and have better performance. We focus on

the problem of pose estimation in the case of unknown fo-

cal length and radial distortion. However the methods we

present are not specific to this case and they are applicable

to a more general setting.

The main contributions of this paper are

• We present new polynomial solvers for P4Pfr which
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outperform the current state-of-the-art.

• Using clever parameterizations we avoid the nullspace

and rotation degeneracies which are present in compet-

ing methods.

• Using the recently proposed elimination ideal tech-

nique [21] we are able to find significantly smaller

elimination templates.

• Using a new template merging method we construct a

solver that works for both planar and non-planar data.

• We also apply our approach to the P3.5Pf problem and

get results comparable to the current state-of-the-art.

2. Background and Previous Work

2.1. Unknown Radial Distortion and Focal Length

If the image has undergone radial distortion, the stan-

dard pinhole camera model is no longer valid, and more

complicated models are required. To handle this, different

models have been proposed, e.g. [9, 10, 7]. One of the more

popular models ([2, 13, 14, 5, 18]) is the one parameter divi-

sion model presented by Fitzgibbon [10], since it provides a

good trade-off between representation accuracy and model

complexity.

The model assumes the undistorted image coordinates

(uu, vu) are given by

(uu, vu) =
1

1 + k(u2

d + v2d)
(ud, vd) (1)

where (ud, vd) are the distorted image coordinates observed

in the image. The strength of the distortion is controlled by

the parameter k, which is typically negative in the presence

of barrel distortion.

In this model the projection equations can be written as

λi
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(2)

where di = u2

i + v2i . We assume that the camera has zero

skew, unit aspect ratio and that the principal point lies in the

center of the image. The camera matrix must then satisfy

P ∼ K[R t], K = diag(f, f, 1), RTR = I (3)

Since the camera matrix has 7 degrees of freedom and the

radial distortion parameter k is unknown, the problem be-

comes minimal with four 2D-3D point correspondences.

2.2. Minimal Solver from Josephson and Byröd

The first solution to the P4Pfr problem was presented in

[14] by Josephson and Byröd. In the paper they proposed to

parametrize the problem directly using quaternions for the

rotation matrix. The scale of the camera matrix was fixed

by setting the first element of the quaternion to one. Finally,

by using a clever choice of coordinate systems, they were

able to eliminate the translation. This formulation leads to

5 equations in the 5 remaining unknowns (three quaternion

parameters, the inverse focal length and the distortion pa-

rameter).

Using the techniques from [6] they constructed a

Gröbner basis based solver for this system. The solver per-

forms linear elimination on a matrix of size 1134 × 720
followed by eigendecomposition of a 24 × 24 matrix. The

large template results in poor numerical stability and long

running time, both of which make the solver unsuitable for

practical applications.

The solver works for both planar and non-planar 3D

points, but has a non-trivial degeneracy for any 180◦ ro-

tation introduced by setting the first quaternion element to

one. In addition, the number of solutions from this solver

(24) is unnecessarily doubled, because of a hidden symme-

try between the focal length and the rotation [24].

2.3. Minimal Solver from Bujnak et al.

In [5] Bujnak et al. presented another minimal solver for

the P4Pfr problem. Their solver is based on the observation

that if we eliminate the depth λi from the first two equations

in (2), we get

viP1Xi − uiP2Xi = 0, i = 1, 2, 3, 4 (4)

which is linear in the first two rows of the camera matrix

and does not contain the radial distortion parameter k. Since

there are four such equations, this can be rewritten as

Mv = 0, M ∈ R
4×8 (5)

where v = [p11, p12, p13, p14, p21, p22, p23, p24]. This is

used to parametrize the first two rows of the camera matrix

using only four parameters,

v = α1v1 + α2v2 + α3v3 + α4v4. (6)

where {vi}
4

i=1
⊂ R

8 is a basis for the nullspace of M .

Since the reprojection equations are homogeneous in the

camera matrix, the scale is fixed by setting α4 = 1. From

(2) the remaining linearly independent equations can be

written as

(1 + kdi)P1Xi − uiP3Xi = 0, i = 1, 2, 3, 4 (7)

Collecting the terms properly will lead to

A[p31, p32, p33, p34]
T = B[α, kα, k, 1]T (8)

where A ∈ R
4×4, B ∈ R

4×8 and α = [α1, α2, α3]
T . Mul-

tiplying with the inverse of A, the third camera row is ex-

pressed in the four unknowns α1, α2, α3 and k.
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The left-most 3 × 3 part of the camera matrix should

correspond to KR (3). This gives constraints that the rows

should be pairwise orthogonal and that the first two rows

should have the same norm, as follows

p21p31 + p22p32 + p23p33 = 0 (9)

p11p31 + p12p32 + p13p33 = 0 (10)

p11p21 + p12p22 + p13p23 = 0 (11)

p2
11

+ p2
12

+ p2
13

− p2
21

− p2
22

− p2
23

= 0 (12)

Using these equations Bujnak et al. [5] created a solver

which performs Gaussian elimination on a template of size

136 × 152. Once the camera matrices are found, the focal

length can be recovered by solving a quadratic polynomial.

This formulation has 16 solutions, but only 12 of these are

geometrically valid for the original problem.

This solver greatly reduces the template size compared

to the solver from Josephson and Byröd [14]. However,

it only works for non-planar 3D points. In the paper, the

authors proposed a special solver to handle the planar case

separately. The planar solver has an elimination template of

size 12× 18.

3. Our Approach for P4Pfr

Now we will present our approach for solving the P4Pfr

problem. It builds on the formulation from Bujnak et al. [5],

but improves it in three key aspects:

• The artificial degeneracy introduced by fixing the scale

with α4 = 1 is removed.

• Using the recent elimination ideal technique [21] we

get a significantly smaller elimination template.

• We remove the planar degeneracy and create a uni-

fied solver that works for both planar and non-planar

scenes.

3.1. Removing Nullspace Degeneracy

In the solver by Bujnak et al. [5], the scale is fixed by

setting α4 = 1 in (6). This has the benefit of reducing

the number of unknowns by one. However it introduces

a degeneracy for any camera matrix which correspond to

α4 = 0. Since the nullspace is only determined up to a

4 × 4 change of variables, this essentially excludes a ran-

dom set of camera matrices. It is unlikely in practice that

the true solution has α4 = 0 exactly, however any solutions

close to these degenerate configurations can result in bad

numerics (see Section 4.3 for experiments on this).

To avoid this degeneracy we propose a simple method for

ensuring that the camera matrices which are excluded are

geometrically uninteresting. To accomplish this we instead

fix the scale by setting the first depth to one, i.e. λ1 = 1.

Then for the first point the projection equations become

(

u1, v1, 1 + kd1
)T

= PX1 (13)

Using this technique the first point now gives two linear

constraints on the first two camera rows, P1 and P2. The

homogeneous linear system in (5) now becomes inhomoge-

neous,

Mv = b, M ∈ R
5×8, b ∈ R

8 (14)

and has one additional row. The solutions to this system can

be parametrized as

v = v0 + α1v1 + α2v2 + α3v3 (15)

where Mv0 = b and {vi}
3

i=1
⊂ R

8 forms a basis for the

nullspace of M .

Note that this is essentially the same parametrization as

before, but we have made sure that the degeneracy now in-

stead occurs when the first point has zero depth, i.e. the first

3D point coincides with the camera center, an unrealistic

scenario that never occurs in practice.

3.2. New Camera Matrix Constraints

In [21] Kukelova et al. presented a new technique for

using elimination ideals to construct smaller polynomial

solvers. The approach is based on the observation that

for many problems the equations can be divided into two

groups; linear equations which depend on the data and non-

linear equations which are independent of the data. By com-

puting elimination ideals [8] for the non-linear equations, it

is possible to eliminate some of the unknowns before con-

structing the elimination template. For a more detailed de-

scription of the process see [21]. In [21] the elimination

ideal technique was applied to three relative pose problems

and one homography estimation problem. Here we show

how to apply this technique to absolute pose problems.

In the P4Pfr problem the nonlinear equations are1

P = diag(f, f, 1)
[

R t
]

, RTR = sI (16)

Computing the elimination ideal which eliminates all un-
knowns except for P yields the following set of equations

p
2

13p32 − p
2

21p32 − p
2

22p32 − p12p13p33 − p22p23p33 = 0 (17)

p12p13p32 + p22p23p32 − p
2

12p33 + p
2

21p33 + p
2

23p33 = 0 (18)

p11p13p32 + p21p23p32 − p11p12p33 − p21p22p33 = 0 (19)

p
2

13p31 − p
2

22p31 + p21p22p32 − p11p13p33 = 0 (20)

p12p13p31 + p22p23p31 − p11p12p33 − p21p22p33 = 0 (21)

in addition to the constraints (9)–(12). These constraints

ensure that the first 3 × 3 part of the camera matrix can be

1We add the unknown s since the camera matrix is only determined up

to scale.
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factorized as diag(f, f, 1)R, where R is a scaled rotation.

To the best of our knowledge, the constraints (17)–(21) are

new and have not been used in the computer vision literature

before.

After adding these new equations, the formulation now

correctly has 12 solutions, in contrast to 16 in [5] and 24 in

[14]. Using the automatic solver generator from [16], we

generate a polynomial solver with an elimination template

of size 28×40. While the solver is significantly smaller than

the non-planar solver from [5] (136 × 152), it also suffers

from the same planar degeneracy.

In [21] the authors also considered radial distortion, but

for relative pose. To avoid the extra non-linearity introduced

by the radial distortion they used a lifting approach. We

tried to apply the same technique for our problem and also

eliminate the radial distortion, but the resulting solvers were

too large for practical use (296× 330).

3.3. Removing Planar Degeneracy

In this section we will extend the formulation to handle

both planar and non-planar scenes.

For planar scenes we can without loss of generality as-

sume that all zi = 0, i.e. the 3D points lie in the xy−plane.

As was noted in Bujnak et al. [5], for such scenes the third

column of the A matrix in (8) becomes zero, and it is im-

possible to eliminate p33 this way. To avoid this situation

we instead add p33 as an additional unknown. Then using

only three of the four points we can express p31, p32 and p34
in the unknowns α, k and p33, i.e.

A[p31, p32, p34]
T = B[α, kα, k, p33, 1]

T (22)

where A ∈ R
3×3 and B ∈ R

3×9. Note that this works

for both planar and non-planar data. Since we have only

used three of the four equations (7), we need add the last

projection equation separately. Using the first point (which

was used to fix the scale (13)) this equation is simply

1 + kd1 = P3X1 (23)

Studying the equations in Macaulay2 [12] we found that

this formulation also has 12 solutions. Using the automatic

generator from [22] we generated a solver with template

size 38 × 50. To our surprise this solver did not directly

work for planar data.

Further investigations of the problem in Macaulay2 [12]

revealed that for planar instances, the monomial basis,

{1, α1, α2, α3, k, p33, α1α3, α
2

2, α2α3, α
2

3, α3k, α3p33} (24)

which was used for the quotient space C[X]/I became lin-

early dependent (in the quotient space). Thus making it im-

possible to express the action matrix using it. Furthermore

we found that if we added the monomial α1α2k to the basis,

it would span the quotient space for both planar and non-

planar data. Since the structure of the ideal is different for

the two types of instances, different monomials are needed

in the elimination template. Using the automatic generator

[22] we created elimination templates for both planar and

non-planar instances and then constructed a single template

by taking the union of all the necessary equations. Since

the ideals are very similar for both cases, we were able to

find a merged template which is only slightly bigger than

the template created using non-planar data only.

The final solver performs gaussian elimination on a sin-

gle template of size 40×50 and then solves a 13×13 eigen-

value problem (due to the extra basis element). However

for any instance only 12 of the eigenvectors correspond to

actual solutions. This solver does not suffer from any of

the artificial degeneracies present in previous solvers and it

works for both planar and non-planar data. Compared to the

current state-of-the-art general solver from Josephson and

Byröd [14] the size is orders of magnitude smaller (40× 50
vs. 1134× 720).

4. Experimental Evaluation

4.1. Numerical Stability

To evaluate the stability and accuracy of the new P4Pfr

solvers we use a similar experiment setup as was used in

[25, 24]. We generate synthetic scenes by uniformly sam-

pling four 3D points in the box [−2, 2]×[−2, 2]×[2, 8] in the

camera’s local coordinate system. The 3D points are then

transformed by a random rotation and translation. The focal

length is randomly chosen in the interval fgt ∈ [0.5, 2.5].
Radial distortion using the division model [10] was added

to all image points to generate noiseless distorted points.

The radial distortion parameter was randomly drawn from

the interval kgt ∈ [−0.45, 0].

To perform the experiment we generated 10000 random

scenes as described above. Figure 2 shows the histograms

of the log10 relative errors in the estimated focal length and

radial distortion parameter obtained by selecting the real

root closest to the ground truth values fgt and kgt. We

also ran the same experiment for planar scenes, generated

by projecting the four 3D points to the closest plane using

SVD. The results are shown in Figure 3.

We can see that the new general P4Pfr (40x50) solver

(blue) is stable for both the planar and non-planar setting.

Moreover, the new solver is more stable than the state-

of-the-art general solver from Josephson and Byröd [14]

(green) for non-planar setting. The same holds true for the

new non-planar solver (red) compared with the state-of-the-

art non-planar solver from Bujnak et al. [5] (cyan).
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Figure 2. Histograms of log10 relative errors of the estimated focal lengths (left) and radial distortions (right) for non-planar scenes.
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Figure 3. Histograms of log10 relative errors of the estimated focal lengths (left) and radial distortions (right) for planar scenes.

4.2. Noise Experiment

In the next experiment we studied the performance of

the new solvers in the presence of image noise. We again

compare both presented solvers (the general solver (blue)

and the non-planar solver (red)) with the the state-of-the-art

general solver from Josephson and Byröd [14] (green) and

the state-of-the-art non-planar solver from Bujnak et al. [5]

(cyan).

In this experiment we used the same setup as was used

in the previous stability experiment, however with the fixed

ground truth focal length fgt = 1.5 and the fixed radial dis-

tortion kgt = −0.4. For each noise level 1000 estimates

for random scenes and camera positions were made. Fig-

ure 4 (Left) shows the median focal length errors for dif-

ferent noise levels. Figure 4 (Right) shows the errors for

the focal lengths using the Matlab boxplot function which

shows values 25% to 75% quantile as a box with horizon-

tal line at median. The crosses show data beyond 1.5 times

the interquartile range. The errors for the radial distortion

parameter can be found in the supplementary material.

All minimal solvers perform equally well. This is caused

by the fact that these solvers are all algebraically equivalent.

The only difference is caused by numerical instabilities.

This is e.g. visible in Figure 4 (Right) by the green crosses

for the state-of-the-art solver by Josephson and Byröd [14]

in the noiseless case.

4.2.1 Estimation from Non-Minimal Point Sets

In [17] Kukelova et al. presented a non-minimal solver

which uses five point correspondences. To perform a com-

parison with this solver we generated a fifth point for each

of the scenes. The results are included in Figure 4 and we

can see that in the presence of noise the performance is su-

perior compared to the four point solvers, which is reason-

able since more data is used.

Since our solver is based on a nullspace parametrization

it is possible to use five points in our solver as well. For

estimation with non-minimal point sets the only changes we

need to make is to compute an approximate nullspace in

(14) using SVD and to solve (22) in a least squares sense. In

Figure 4 we can see that our solver using 5 points (magenta)

is more accurate for noisy data compared to the solver from

[17] (yellow).

4.3. Stability Close to Degenerate Configurations

In this section we evaluate the stability of the polynomial

solvers close the degenerate configurations. First we con-

sider the quaternion based degeneracy in the solver from

Josephson and Byröd [14]. We generated random scenes

where the ground truth camera pose was close to the de-

generate configuration (i.e. first element of the quaternion

representing the rotation is close to zero). Figure 5 shows

the median relative error in the focal length as the first ele-

ment of the quaternion tends to zero.

Next we consider the nullspace based degeneracy from

Section 3.1. To perform the experiment we randomly gen-

erate a scene and computed a basis for the nullspace (as

in (5)). We then find the coefficients α which correspond

to the ground truth camera matrix. Next we perform a

random rotation in the nullspace which brings α4 close to

zero. Figure 6 shows the result for our solver both using the

2320



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−3

0

2

4

6
·10−2

noise

m
ed

ia
n

fo
ca

l
le

n
g

th
er

ro
r

0 0.1 0.5 1 2
0

2

4

6
·10−2

noise

fo
ca

l
le

n
g
th

er
ro

r

SOTA general 1134x720 [14] SOTA non-planar 136x152 [5] NEW non-planar 28x40 NEW general 40x50 NEW general 40x50 (5p) Kukelova et al. [17] (5p)

Figure 4. Comparison of the errors in the focal length estimated by different solvers for varying levels of noise. The ground truth values

were set to fgt = 1.5 and kgt = −0.4. Left: Median focal length error. Right: Boxplot of focal length errors.
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Figure 5. The relative focal length error as the first element of the

quaternion approaches zero. Each point shows the median error

over 1000 instances.
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Figure 6. The relative focal length error as the last nullspace co-

efficient α4 approaches zero. Each point shows the median error

over 1000 instances. For our solver we show the results both with

and without the scale fixing in Section 3.1.

parametrization from Section 3.1 and using the degenerate

nullspace created as above. Since this degeneracy is also

present in the solver from Bujnak et al. [5] we include the

results of running their solver with the degenerate nullspace

basis as well.

Finally we consider close-to-planar degeneracy. To eval-

uate the performance of our new P4Pfr solvers on close-

to-planar scenes we use a similar experiment setup as was
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Figure 7. Mean of the number of inliers for a near planar scene.

used in [5]. We created a synthetic scene where we were

able control the scene planarity by a scalar value a. First,

we generated three random non-collinear 3D points. These

three points defines our plane. Then we randomly generated

the fourth point at the distance sa from the plane, where

the scale s was the maximum distance from the first three

points to their center of gravity. The fourth point was gener-

ated such that its distance from the center of gravity was not

greater than s. This means that for a = 0 we got four points

on the plane and for a = 1 we got a well defined non-planar

four-tuple of 3D points. For each given planarity value a
we created a scene consisting of these four 3D points and an

additional 100 random 3D points. Each 3D point was pro-

jected by a camera with random feasible orientation and po-

sition, fgt = 1.5 and kgt = −0.4. The first four points were

kept noise free, while we added some small noise (standard

deviation of 0.5 pixels) to the remaining 100 points.

For each given planarity value a we computed the cam-

era pose, focal length and radial distortion from the first

four-tuple of correspondences. This four-tuple was not af-

fected by a noise and hence the only deviation from the

ground truth solutions comes from the numerical instabil-
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ity of the solvers itself. To evaluate the impact of this in-

stability we used the estimated camera pose, focal length

and radial distortion to project all remaining 3D points to

the image plane. Then we measured the number of inliers,

i.e. the number of points that were projected closer than one

pixel to its corresponding 2D image point.

In this experiment, for each given planarity value a we

created 100 random scenes. Figure 7 shows the mean num-

ber of inliers found by different solvers. It can be seen

that the new non-planar solver (red) performs better than

the state-of-the-art non-planar solver from Bujnak et al. [5]

(cyan) for close-to-planar scenes and is therefore more suit-

able for a “joined general solver” presented in [5]. The

new general P4Pfr solver (blue) doesn’t have problems with

close-to-planar or planar scenes and this solver was able

to find all inliers. The state-of-the-art general solver [14]

(green) has some problems with numerical stability due the

decomposition of a huge template matrix (1134 × 720).

Therefore, the average number of inliers returned by this

solver was less than 100.

4.4. Evaluation on Real Images

Finally we evaluate our method on real image data. We

consider the Rotunda dataset [19] and the “planar” Graf-

fiti dataset [20]. The Rotunda dataset consists of 62 images

captured using a GoPro Hero4 camera with significant ra-

dial distortion. The Graffiti dataset consists of 12 images

captured using GoPro Hero3 camera and 7 images captured

using a HTC Desire 500 mobile phone. Some example im-

ages are shown in Figure 8. Using the RealityCapture soft-

ware [1] we built a 3D reconstructions of both scenes. The

Rotunda reconstruction contains 170994 3D points and the

average reprojection error was 1.4694 pixels over 549478

image points. The Graffiti reconstruction contains 26078

3D points and the average reprojection error was 1.0778

pixels over 91518 image points.

Then to perform the experiment we used the 3D model

to estimate the pose of each image using the new minimal

solver (40×50) in a RANSAC framework. Since the dataset

only contains image data, we used the camera and distortion

parameters obtained from RealityCapture as ground truth

for the experiment. Table 1 shows the errors for the fo-

cal length and radial distortion, as well as the camera pose.

Overall the errors are quite small, with slightly larger errors

for the more difficult planar dataset (Graffiti).

5. Our Approach for P3.5Pf

Now we show how to apply our approach to the closely

related problem of pose estimation with unknown focal

length. This problem has 7 degrees of freedom and is over-

constrained with four points. In [24] Wu presented a mini-

mal solver using 3.5 points (i.e. ignoring one of the image

coordinates for one of the points). This solver works for

Dataset Rotunda Graffiti

avg. med. max avg. med. max

Focal (%) 0.08 0.07 0.29 0.44 0.33 1.76

Distortion (%) 0.51 0.45 1.85 2.16 1.23 8.85

Rotation (degree) 0.03 0.03 0.10 0.12 0.11 0.27

Translation (%) 0.07 0.07 0.26 1.30 0.70 5.06

Table 1. Errors for the real datasets. The errors are relative to the

ground truth for all except rotation which is shown in degrees.

both planar and non-planar data but has a degeneracy intro-

duced by setting one quaternion element to one.

In this section we develop a new solver for this prob-

lem which has comparable performance to [24], but does

not introduce any artificial degeneracies. The approach is

essentially the same as for our P4Pfr solver, but the formu-

lation is simplified slightly since the projection equations

(2) become completely linear when the radial distortion is

removed. Each point correspondence now gives us two lin-

early independent equations in the camera matrix,

P1Xi − uiP3Xi = 0, P2Xi − viP3Xi = 0 (25)

for i = 1, 2, 3, 4. Ignoring one of these eight equations

gives a minimal problem. Using the same trick as in Sec-

tion 3.1, we fix the scale by setting the first depth to one,

u1 = P1X1, v1 = P2X1, 1 = P3X1 (26)

Rewriting the linear constraints as

Mv = b, M ∈ R
8×12, (27)

we can parametrize the problem with only four unknowns

using the nullspace of M . Note that for this problem the

constraints on the camera matrix are exactly same as in Sec-

tion 3.2. Using these 9 equations in the four unknowns,

we generated a polynomial solver using the automatic gen-

erator from [16]. The resulting solver has a template of

size 25× 35, comparable to the current state-of-the-art [24]

(20×30). However in contrast to [24] this formulation does

not contain any additional degeneracies.

In this formulation the problem has 10 solutions for gen-

eral data, and 8 solutions for planar data. For this prob-

lem the quotient basis and template we found from the non-

planar instances works for planar instances as well. In the

case of planar data the solver still returns 10 solutions, but

only 8 will correspond to actual solutions.

5.1. Experiment

To evaluate the stability and accuracy of the polynomial

solver we use a similar experiment setup as was used in

[25, 24]. We generated random instances by uniformly sam-

pling four 3D points in the box [−2, 2] × [−2, 2] × [2, 8]
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Figure 8. Some examples of the images in the Rotunda and Graffiti datasets. Top: Original images. Bottom: Undistorted images.

in the camera’s local coordinate system. The points were

transformed by a random rotation and translation. The fo-

cal length was chosen uniformly in the interval [200, 2000].
Figure 9 shows the log10 relative focal length error for 1000

instances for both planar and non-planar data. For compar-

ison we include the results for the best ratio and distance

based solvers from Bujnak [3] and the GP4Pf solver from

Zheng et al. [25]. We can see that the new P3.5Pf solver

(blue) is stable for both the planar and non-planar setting.

We were unable to directly compare with the solver from

[24], since the code has not been made available. However

in [24] they report comparable results to the solver from

Zheng et al. [25].
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Figure 9. Stability of the P3.5Pf solver. The figure shows the rela-

tive focal length errors over 1000 random instances. Top: General

3D data. Bottom: Planar 3D data.

6. Conclusions

In this work we have presented new tricks for minimal

absolute pose solvers. We have applied them to two prob-

lems, P4Pfr and P3.5Pf, but we believe that they could be

applicable to more problems.

First we removed the degeneracy introduced by fix-

ing the scale in the nullspace parametrization by manually

choosing which camera matrices to exclude. It is possible

that this trick could be applied for other problems as well,

e.g. in relative pose problems where nullspace parametriza-

tions are commonly used.

Next we applied the elimination ideal techniques from

[21] to get new constraints on the camera matrix. These

constraints are satisfied whenever the focal length is the

only unknown intrinsic parameter. It is possible that this

technique could be applied to settings with other partial cal-

ibrations as well.

Finally we were able to construct a solver which worked

for both planar and non-planar scenes. The key idea was to

make sure that the monomial basis spanned both quotient

spaces and then creating a single merged elimination tem-

plate which contains the equations necessary to solve for

both types of instances. We believe that this template merg-

ing strategy could be applied to other problems as well. Not

only for planar/non-planar degeneracies, but any time the

structure of the problem depends on the input data.
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