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Figure 1: Random examples of people generated with our model. For each row, sampling is conditioned on the silhouette

displayed on the left. Our proposed framework also supports unconditioned sampling as well as conditioning on local

appearance cues, such as color.

Abstract

We present the first image-based generative model of

people in clothing for the full body. We sidestep the com-

monly used complex graphics rendering pipeline and the

need for high-quality 3D scans of dressed people. Instead,

we learn generative models from a large image database.

The main challenge is to cope with the high variance in hu-

man pose, shape and appearance. For this reason, pure

image-based approaches have not been considered so far.

We show that this challenge can be overcome by splitting the

generating process in two parts. First, we learn to generate

a semantic segmentation of the body and clothing. Second,

we learn a conditional model on the resulting segments that

creates realistic images. The full model is differentiable and

can be conditioned on pose, shape or color. The result are

samples of people in different clothing items and styles. The

proposed model can generate entirely new people with re-

alistic clothing. In several experiments we present encour-

aging results that suggest an entirely data-driven approach

to people generation is possible.

* This work was performed while P. V. Gehler was with the BCCN1

and MPI-IS2.

1. Introduction

Perceiving people in images is a long standing goal in

computer vision. Most work focuses on detection, pose and

shape estimation of people from images. In this paper, we

address the inverse problem of automatically generating im-

ages of people in clothing. A traditional approach to this

task is to use computer graphics. A pipeline including 3D

avatar generation, 2D pattern design, physical simulation to

drape the cloth, and texture mapping is necessary to render

an image from a 3D scene.

Graphics pipelines provide precise control of the out-

come. Unfortunately, the rendering process poses vari-

ous challenges, all of which are active research topics and

mostly require human input. Especially clothing models re-

quire expert knowledge and are laborious to construct: the

physical parameters of the cloth must be known in order to

achieve a realistic result. In addition, modeling the complex

interactions between the body and clothing and between dif-

ferent layers of clothing presents challenges for many cur-

rent systems. The overall cost and complexity limits the

applications of realistic cloth simulation. Data driven mod-

els of cloth can make the problem easier, but available data

of clothed people in 3D is scarce.
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Figure 2: Sample results for virtual humans from existing

approaches (ltr., ttb.): [35], [34], local warping. [16], [47],

animated 3D scans in real environments. [48], 3D avatars in

virtual environments. [5], 3D avatars in real environments.

Here, we investigate a different approach and aim to

sidestep this pipeline. We propose ClothNet, a genera-

tive model of people learned directly from images. Cloth-

Net uses task specific information in the form of a 3D

body model, but is mostly data-driven. A basic version

(ClothNet-full) allows to randomly generate images of peo-

ple from a learned latent space. To provide more control we

also introduce a conditional model (ClothNet-body). Given

a synthetic image silhouette of a projected 3D body model,

ClothNet-body produces random people with similar pose

and shape in different clothing styles (see Fig. 1).

Learning a direct image based model has several advan-

tages: firstly, we can leverage large photo-collections of

people in clothing to learn the statistics of how clothing

maps to the body; secondly, the model allows to dress peo-

ple fully automatically, producing plausible results. Finally,

the model learns to add realistic clothing accessories such

as bags, sunglasses or scarfs based on image statistics.

We run multiple experiments to assess the performance

of the proposed models. Since it is inherently hard to eval-

uate metrics on generative models, we show representative

results throughout the paper and explore the encoded space

in a principled way in several experiments. To provide an

estimate on the perceived quality of the generated images,

we conducted a user study. With a rate of 24.7%or more,

depending on the ClothNet variant, humans take the gener-

ated images for real.

2. Related Work

2.1. 3D Models of People in Clothing

There exists a large and diverse literature on the topic

of creating realistic looking images of people. They can be

grouped into rendering systems and systems that attempt to

modify existing real photographs (warping pixels).

Warping pixels. Xu et al. [50] pose the problem as one

of video retrieval and warping. Rather than synthesizing

meshes with wrinkles, they look up video frames with the

right motions. Similarly, in [18, 56] an unclothed body

model is fit to multi-camera and monocular image data. The

body is warped and the image reshaped accordingly.

Two prominent works that aim to reshape people in pho-

tos are [34, 35] (c.f . Fig. 2). A number of different synthetic

sources has been used in [35] for improvement of pedestrian

detection. The best performing source is obtained morphing

images of people, but requires data from a multi-view cam-

era setup; consequently only 11 subjects were used. Subse-

quent work [34] reshaped images but required significant

user interaction. All aforementioned approaches require

manual input and can only modify existing photographs.

Rendering systems. Early works synthesizing people

from a body model are [37, 42, 45]. Here, renderings

were limited to depth images with the goal of improving

human pose estimation. The work of [5] combines real

photographs of clothing with a SCAPE [2] body model to

generate synthetic people whose pose can be changed (c.f .

Fig. 2). The work of [38] proposes a pose-aware blending

of 2D images, limiting the ability to generalize.

A different line of works use rendering engines with dif-

ferent sources of inputs. In [16], a mixed reality scenario

is created by rendering 3D rigged animation models into

videos, but it is clearly visible that results are synthetic (c.f .

Fig. 2). The work of [47] combines a physical rendering en-

gine together with real captured textures to generate novel

views of people. All these works use 3D body models with-

out clothing geometry, hence the quality of the results is

limited. One exception is [12] where only the 2D contour

of the projected cloth is modeled.

3D clothing models. Much of the work in the field of

clothing modeling is focused on how to make simulation

faster [9, 30], particularly by adding realistic wrinkles to

low-resolution simulations [20, 22]. Other approaches have

focused on taking off-line simulations and learning data

driven models from them [7, 13, 22, 44, 49]. The authors of

[39] simulate clothing in 3D and project back to the im-

age for augmentation. All these approaches require pre-

designed garment models. Furthermore, current 3D models

are not fully automatic, restricted to a set of garments or not

photorealistic. The approach of [36] automatically captures

real clothing, estimates body shape and pose [55] and re-

targets to new body shapes. The approach does not require

predefined 3D garments but requires a 3D scanner.

2.2. Generative Models

Variational models and GANs. Variational methods are

a well-principled approach to build generative models.

Kingma and Welling developed the Variational Autoen-

coder [25], which is a key component of our method.
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In their original work, they experimented with a multi-

layer perceptron on low resolution data. Since then, mul-

tiple projects have designed VAEs for higher resolutions,

e.g., [51]. They use a CVAE [24, 43] to condition generated

images on vector embeddings.

Recurrent formulations [11, 32, 46] enable to model

complex structures, but again only at low resolution.

With [8], Denton et al. address the resolution issue explic-

itly and propose a general architecture that can be used to

improve network output. This strategy could be used to en-

hance ClothNet. Generative Adversarial Networks [10] use

a second network during the training to distinguish between

training data and generated data to enhance the loss of the

trained network. We use this strategy in our training to in-

crease the level of detail of the generated images. Most of

the discussed works use resolutions up to 64x64 while we

aim to generate 256x256 images. For our model design we

took inspiration from encoder-decoder architectures such as

the U-Net [40], Context Encoders [33] and the image-to-

image translation networks [17].

Inpainting methods. Recent inpainting methods achieve

a considerable level of detail [33, 52] in resolution and

texture. To present a comparison with a state-of-the art

encoder-decoder architecture, we provide a comparison

with [33] in our experiments. [41] works directly on a tex-

ture map of a 3D model. Future work could explore to com-

bine it with our approach from 2D image databases.

Deep networks for learning about 3D objects. There are

several approaches to reason about 3D object configuration

with deep neural networks. The work of Kulkarni [26] use

VAEs to model 3D objects with very limited resolution and

assume that a graphics engine and object model are avail-

able at learning time. In [6] an encoder-decoder CNN in

voxel space is used for 3D shape completion, which requires

3D ground truth. The authors of [31] develop a generative

model to create depth training data for articulated hands.

This avoids the problem of generating realistic appearance.

3. Chictopia made SMPL
To train a supervised model connecting body parame-

ters to fashion, we need a dataset providing information

about both. Datasets for training pose estimation sys-

tems [1, 16, 19] capture complex appearance, shape and

pose variation, but are not labeled with clothing informa-

tion. The Chictopia10K dataset [27] contains fine-grained

fashion labels but no human pose and shape annotations. In

the following sections, we explain how we augmented Chic-

topia10K in an automatic manner so that it can be used as a

resource for generative model training.

Fitting SMPL to Chictopia10K. The Chic-

topia10K dataset consists of 17,706 images collected

from the chictopia fashion blog1. For all images, a fine-

1http://www.chictopia.com/

Figure 3: Example images from the Chictopia10K

dataset [27], detected joints from DeeperCut [14] and the

final SMPLify fits [3]. Typical failure cases are foot and

head orientation (center). The pose estimator works reli-

ably even with wide clothing and accessories. (right).

Figure 4: Example annotations from the Chictopia10K

dataset [27] before and after processing (for each pair left

and right respectively). Holes are inpainted and a face

shape matcher is used to add facial features. The rightmost

example shows a failure case of the face shape matcher.

grained segmentation into 18 different classes (c.f . [27])

is provided: 12 clothing categories, background and 5

features such as hair and skin, see Fig. 4. For shoes,

arms and legs, person centric left and right information

is available. We augment the Chictopia10K dataset with

pose and shape information by fitting the 3D SMPL body

model [28] to the images using the SMPLify pipeline [3].

SMPLify requires a set of 2D keypoint locations which are

computed using the DeeperCut [14] pose estimator.

Qualitative results of the fitting procedure are shown in

Fig. 3. The pose estimator has a high performance across

the dataset and the 3D fitting produces few mistakes. The

most frequent failures are results with wrong head and foot

orientation. To leverage as much data as possible to train

our supervised models, we refrain from manually curating

the results. Since we are interested in overall body shape

and pose, we are using a six-part segmented projection of

the SMPL fits for conditioning of ClothNet-body. Due to

the rough segmentation, segmented areas are still represen-

tative even if orientation details do not match.

Face Shape Matching and Mask Improvement. We fur-

ther enhance the annotation information of Chictopia10K

and include facial landmarks to add additional guidance to

the generative process. With only a single label for the en-

tire face, we found that all models generate an almost blank

skin area in the face.
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We use the dlib [23] implementation of the fast facial

shape matcher [21] to enhance the annotations with face in-

formation. We reduce the detection threshold to oversam-

ple and use the face with the highest intersection over union

(IoU) score of the detection bounding box with ground truth

face pixels. We only keep images where either no face pix-

els are present or the IoU score is above a certain threshold.

A threshold score of 0.3 was sufficient to sort out most unus-

able fits and still retain a dataset of 14,411 images (81,39%).

Furthermore, we found spurious “holes” in the segmen-

tation masks to be problematic for the training of generative

models. Therefore, we apply the morphological “close” and

“blackhat” operations to fill the erroneously placed back-

ground regions. We carefully selected the kernel size and

found that a size of 7 pixels fixes most mistakes while re-

taining small structures. You can find examples of original

and processed annotations in Fig. 4.

4. ClothNet

Currently, the most visually appealing technique to cre-

ate fine-grained textures at 256× 256 resolution are image-

to-image translation networks [17]. An encoder-decoder

structure with skip connections between their respective

layers allows the model to retain sharp edges.

However, applying image-to-image translation networks

directly to the task of predicting dressed people from SMPL

sketches as displayed in Fig. 1 does not produce good re-

sults (we provide example results from such a model in

Fig. 10b). The reason is that there are many possible com-

pletions for a single 3D pose. The image-to-image trans-

lation model can not handle such multi-modality. Further-

more, its sampling capabilities are poor. Variational Au-

toencoders, on the other hand, excel at encoding high vari-

ance for similar inputs and provide a principled way of sam-

pling.

We combine the strengths of both, Variational Autoen-

coders and the image-to-image translation models, by stack-

ing them in a two-part model: the sketch part is variational

and deals with the high variation in clothing shape. Its out-

put is a semantic segmentation map (sketch) of a dressed

person. The second portray part uses the created sketch to

generate an image of the person and can make of use of skip

connections to produce a detailed output. In the following

sections, we will introduce the modules we experimented

with.

4.1. The Latent Sketch Module

The latent sketch module is a variational auto-encoder

which allows to sample random sketches of people.

The Variational Auto-Encoder [25] consists of two

parts, an encoder to a latent space, and a decoder from the

latent space to the original representation. As for any latent

variable model, the aim is to reconstruct the training set x

from a latent representation z. Mathematically, this means

maximizing the data likelihood p(x) =
∫
pθ(x|z)p(z)dz.

In high dimensional spaces, finding the decoder parame-

ters θ that maximize the likelihood is intractable. How-

ever, for many values of z the probability pθ(x|z) will be

almost zero. This can be exploited by finding a function

qφ(z|x), the encoder, parameterized by φ. It encodes a

sample xi and produces a distribution over z values that

are likely to reproduce xi. To make the problem tractable

and differentiable, this distribution is assumed to be Gaus-

sian, qφ(z|x
i) = N (µi,Σi). The parameters µ

i,Σi are

predicted by the φ-parameterized encoding neural network

Encφ. The decoder is the θ parameterized neural network

Decθ.

Another key assumption for VAEs is that the marginal

distribution on the latent space is Gaussian distributed with

zero mean and identity covariance, p(z) = N (0, I). Under

these assumptions, the VAE objective (see [25] for deriva-

tions) to be maximized is
∑

i

Ez∼q[log pθ(x
i|z)]−DKL(qφ(z|x

i)||p(z)), (1)

where Ez∼q indicates expectation over distribution q and

DKL denotes Kullback-Leibler (KL) divergence. The first

term measures the decoder accuracy for the distribution pro-

duced by the encoder qφ(z|x) and the second term penalizes

deviations of qφ(z|x
i) from the desired marginal distribu-

tion p(z). Intuitively, the second term prevents the encod-

ing from carrying too much information about the input xi.

Since both qφ(z|x
i) and p(z) are Gaussian, the KL diver-

gence can be computed in closed form [25]. Eq. (1) is max-

imized using stochastic gradient ascent.

Computing Eq. (1) involves sampling; constructing a

sampling layer in the network would result in a non dif-

ferentiable operation. This can be circumvented using the

reparameterization trick [25]. With this adaptation, the

model is deterministic and differentiable with respect to

the network parameters θ, φ. The latent space distribution

is forced to follow a Gaussian distribution N (0, I) during

training. This implies that at test time one can easily gener-

ate samples x̄i by generating a latent sample zi ∼ N (0, I)
and pushing it through the decoder x̄i = Decθ(z

i). This

effectively ignores the encoder at test time.

Sketch encoding: we want to encode images x ∈
R

256×256 of sketches of people into a 512-D latent space,

z ∈ R
512. This resolution requires a sophisticated en-

coder and decoder layout. Hence, we combine the recently

proposed encoder and decoder architecture for image-to-

image translation networks [17] with the formulation of the

VAE. We use a generalized Bernoulli distribution to model

pθ(x
i|z). The architecture is illustrated in Fig. 5(a).
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Figure 5: ClothNet modules: (a) the latent sketch module consists of a variational auto-encoder, (b) the conditional sketch

module consists of a conditional variational auto-encoder and (c) the portray module is an image-to-image translation network

that fills a sketch with texture. The modules in (a) and (c) are concatenated to form ClothNet-full and modules (b) and (c)

are concatenated to form ClothNet-body. The learned latent representation z in (a) and (b) is a 512-D random variable that

follows a multivariate Gaussian distribution. The variable y is a deterministic latent encoding of the body model silhouette

that we use to condition on pose and shape. At test time in (a) and (b) one can generate a sample from the multivariate

Gaussian zi ∼ N (0, I) and push them through the decoder network to produce random sketches of people in different

clothing. We show in (a) and (b) the input to the encoder in gray color, indicating that they are not available at test time.

4.2. The Conditional Sketch Module

For some applications it may be desirable to generate

different people in different clothing in a pose and shape

specified by the user. To that end, we propose a module that

we call conditional sketch module.

The conditional sketch module gives control of pose and

shape by conditioning on a 3D body model sketch as illus-

trated in Fig. 5(b). We use a conditional variational autoen-

coder for this model (for a full derivation and description

of the idea, we refer to [24]). To condition on an image

Y ∈ R
256×256 (a six part body model silhouette), the model

is extended with a new encoding network CondΦ, with sim-

ilar structure as Encφ. Since the conditioning variable is

deterministic, the encoding is y = CondΦ(Y). To provide

the conditioning input to the encoder, we concatenate the

output of the first layer of CondΦ to the output of the first

layer of Encφ. To train the model, we use the same objective

as in Eq. (1). Here, the decoder reconstructs a sample using

both, z and y, with x̄i = Decθ(y
i, zi) and the minimization

of the KL-divergence term is only applied to z.

4.3. The portray Module

For applications requiring a textured image of a person,

the sketch modules can be chained to a portray module. We

use an image-to-image translation model [17] to color the

results from the sketch modules. With additional face infor-

mation, we found this model to produce appealing results.

4.4. ClothNetfull and ClothNetbody

Once the sketch part and the portray part are trained, they

can be concatenated to obtain a full generative model of im-

ages of dressed people. We refer to the concatenation of the

latent sketch module with the portray module as ClothNet-

full. The concatenation of the conditional sketch module

with the portray module is named ClothNet-body. Several

results produced by ClothNet-body are illustrated in Fig. 1.

All stages of ClothNet-full and ClothNet-body are differen-

tiable and implemented in the same framework. We trained

the sketch and portray modules separately, simply because

it is technically easier; propagating gradients through the

full model is possible2.

4.5. Network Architectures

Adhering to the image-to-image translation network ar-

chitecture for designing encoders and decoders, we make

use of LReLUs [29], batch normalization [15] and use frac-

tionally strided convolutions [54]. We introduce weight pa-

rameters for the two loss components in Eq. (1) and balance

the losses by weighing the KL component with factor 6.55.

Then, the KL objective is optimized sufficiently well to cre-

ate realistic samples z
i from N (0, I) after training. Full

network descriptions are part of the supplementary mate-

rial3.

5. Experiments

5.1. The Latent Sketch Module
Variational Autoencoders are usually evaluated on the

likelihood bounds on test data. Since we introduced weights

into our loss function as described in Sec. 4.5, these would

not be meaningful. However, for our purpose, the recon-

struction ability of the sketch modules is just as important.

2To propagate gradients through the full model, it must represent

sketches as 256 × 256 × 22 probability maps instead of 256 × 256 × 3

color maps since applying the color map function is not differentiable in

general. The portray module results presented in the following sections

have been created with color maps as inputs. The published code contains

portray models for both, color map and probability map inputs.
3http://files.is.tue.mpg.de/classner/gp

857

http://files.is.tue.mpg.de/classner/gp


Figure 6: A walk in latent space along the dimension with the highest variance. We built a PCA space on the 512 dimensional

latent vector predictions of the test set and walk -1STD to 1STD in equidistant steps.

Model Part Accuracy Precision Recall F1

LSM
Train 0.958 0.589 0.584 0.576

Test 0.952 0.540 0.559 0.510

CSM
Train 0.962 0.593 0.591 0.587

Test 0.950 0.501 0.502 0.488

Table 1: Reconstruction metrics for the Latent Sketch Mod-

ule (CSM) and Conditional Sketch Module (CSM). The

overall reconstruction accuracy is high. The other metrics

are dominated by classes with few labels. The CSM overfits

faster.

We provide numbers on the quality of reconstruction in

Tab. 1. The values are averages of the respective metrics

over all classes. The overall reconstruction accuracy is high

with a score of more than 0.95 in all settings. The other

metrics are influenced by the small parts, in particular facial

features. The CSM overfits faster than the LSM due to the

additional information from the conditioning.

For a generative model, qualitative assessment is impor-

tant as well. For this, we provide a visualization of a high

variance dimension in latent space in Fig. 6. To create it, we

produced the latent encodings zi of all test set images. To

normalize their distribution, we use the cumulative distribu-

tion function (CDF) values at their positions instead of the

plain values. We then used a principal component analysis

(PCA) to identify the direction with the most variance. In

the PCA space, we take evenly spaced steps from minus one

to plus one standard deviations; the PCA mean image is in

the center of Fig. 6. Even though the direction encoding the

most variance in PCA space only encodes roughly 1% of the

full variance, the complexity of the task becomes obvious:

this dimension encodes variations in pose, shape, position,

scale and clothing types. The model learns to adjust the face

direction in plausible ways.

5.2. The Conditional Sketch Module

As described in Sec. 4.2, we use a CVAE architecture to

condition the generated clothing segmentations. We use the

SMPL body model to represent the conditioning. However,

instead of using the internal SMPL vector representation of

shape and pose, we render the SMPL body in the desired

(a) (b) (c)

Figure 7: Per row: (a) SMPL conditioning for pose and

shape, (b) sampled dressed sketches conditioned on the

same sample in (a), (c) the nearest neighbor of the right-

most sample in (b) from the training set. The model learns

to add various hair types, style and accessories.

configuration. We use six body parts: head, central body,

left and right arms, left and right legs, to give the model

local cues about the body parts.

We found the six part representation to be a good trade-

off: using only a foreground-background encoding may

convey too little information, especially about left and right

parts. A too detailed segmentation introduces too much

noise, since the data for training our supervised models has

been acquired by automatic fits solely to keypoints. These

fits may not represent detailed matches in all cases. You can

find qualitative examples of conditional sampling in Fig. 1

and Fig. 7.

At test time, we encode the model sketch (Fig. 7(a))

to obtain yi = CondΦ(Y), sample from the latent space

zi ∼ p(z) = N (0, I) and obtain a clothed sketch with

x̄i = Decθ(y
i, zi). For every sample zi a new sketch x̄i is

generated with different clothing but roughly the same pose

and shape. Notice how different samples produce different

hair and cloth styles as well as different configurations of

accessories such as bags.
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Figure 8: Conditioning on color: (left) sketch input to the

network. (right) Four different outputs for four different

color combinations. Color conditioning for the regions are

shown in the boxes below the samples (boxes below, ltr):

lower dress, upper dress, jacket, hat.

5.3. Conditioning on Color

As another example, we describe how to condition our

model on color. During training, we compute the median

color in the original image for every segment of a sketch.

We create a new image by coloring the sketch parts with the

respective median color. The concatenation of the colored

image and the sketch are the new input to our portray mod-

ule which is retrained on this input. Conditioning can then

be achieved by selecting a color for a sketch segment. An

example result is shown in Fig. 8. The network learns to

follow the color cues, but still does not only generate plain

color clothing, but places patterns, texture and wrinkles.

5.4. ClothNet

With the following two experiments, we want to provide

an insight in how realistic the images are that are generated

from the ClothNet-full pipeline.

5.4.1 Generating an Artificial Dataset

In the first experiment, we generate an artificial dataset and

train a semantic segmentation network on the generated

data. By comparing the performance of a discriminative

model trained on real or synthetic images we can asses how

realistic the generated images are.

For this purpose, we generate an equally sized dataset

to our enhanced subset of Chictopia10K. We store the se-

mantic segmentation masks generated from the latent sketch

module as artificial ‘ground truth’ and the outputs from the

full ClothNet-full pipeline as images. To make the im-

ages comparable to the Chictopia10K images, we add arti-

ficial background. Similar to [47], we sample images from

the dining room, bedroom, bathroom and kitchen categories

of the LSUN dataset [53]. Example images are shown in

Fig. 9.

Even though the generated segmentations from our VAE

model look realistic at first glance, some weaknesses be-

come apparent when completed by the portray module:

Train

Test
Full Synth. Synth. Text. Real

Full Synth.
0.566

0.978

0.437

0.964

0.335

0.898

Synth. Text.
0.503

0.968

0.535

0.976

0.411

0.915

Real
0.448

0.955

0.417

0.957

0.522

0.951

Table 2: Segmentation results (per line: intersection over

union (IoU), accuracy) for a variety of training and testing

datasets. Full Synth. results are from the ClothNet-full

model, Synth. Text. from the portray module on ground

truth sketches.

Model Real image rated gen. Gen. image rated real

ClothNet-full 0.154 0.247

portray mod. 0.221 0.413

Table 3: User study results from 12 participants. The first

row shows results for the full ClothNet-full model, the sec-

ond for the portray module used on ground truth sketches.

bulky arms and legs and overly smooth outlines of fine

structures such as hair. Furthermore, the different statistics

of facial landmark size to ground truth sketches lead to less

realistic faces.

We train a DeepLab ResNet-101 [4] segmentation model

on real and synthetic data and evaluate on test images from

all data sources. Evaluation results for this model can be

found in Tab. 2. As expected, the models trained and tested

from the same data source perform best. The model trained

on the real dataset reaches the highest performance and can

be trained longest without overfitting. The fully synthetic

datasets lose at most 5.3 accuracy points compared to the

model trained on real data. The IoU scores, however, suffer

from fewer fine structures present in the generated data such

as sunglasses and belts.

5.4.2 User Study

We performed a user study to quantify the realism of im-

ages. We set up an experiment to evaluate both stages of our

model: one for images generated from the portray module

on ground truth sketches and once for the full ClothNet-full

model. For each of the experiments, we asked users to label

150 images for being a photo or generated from our model.

75 images were real Chictopia images, 75 generated with

our model. Every image was presented for 1 second akin

to the user study in Isola et al. [17]. We blanked out the

faces of all images since those would be dominating the de-

cision of the participants: this body part still provides the

most reliable cues for artificially generated images. The

first 10 rated images are ignored to let users calibrate on

image quality.
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Figure 9: Results from ClothNet with added random backgrounds. First row: results from ClothNet-full (i.e., sketch and

texture generation), second row: results from the portray module on ground truth sketches.

(a) (b)

Figure 10: Example results from (a) the context encoder

architecture [33] from a ground truth sketch. Without skip

connections, the level of predicted detail remains low. (b)

Results from an image-to-image network trained to predict

dressed people from six part SMPL sketches directly. With-

out the proposed two-stage architecture, the model is not

able to determine shape and cloth boundaries.

With this setup we follow the setup of Isola et al. [17].

They use a forced choice between two images, one ground

truth, one sketched by their model on ground truth segmen-

tation. Since we do not have ground truth comparison im-

ages, we display one image at a time and ask for a choice.

This setting is slightly harder for our model, since the user

can focus on one image. The results for the 12 participants

of our study are presented in Tab. 3. Even by the fully gen-

erative pipeline, users are fooled 24.7% of the time, by the

portray module on ground truth sketches even 41.3% of the

time. We observe a bias of users to assume that 50% of

images are generated, resulting in a higher rate of misclas-

sified real images for the stronger model. We used 50% fake

and real images but did not mention this in the task descrip-

tion. For comparison: Isola et al. [17] report fooling rates

of 18.9% and 6.1%, however on other modalities.

6. Conclusion

In this paper, we developed and analyzed a new approach

to generate people with accurate appearance. We find that

modern machine learning approaches may sidestep tradi-

tional graphics pipeline design and 3D data acquisition.

This study is a first step and we anticipate that the results

will become better once more data is available for training.

We enhanced the existing Chictopia10K dataset with

face annotations and 3D body model fits. With a two-stage

model for semantic segmentation prediction in the first,

and texture prediction in the second stage, we presented

a novel, modular take on generative models of structured,

high-resolution images.

In our experiments, we analyzed the realism of the gener-

ated data in two ways: by evaluating a segmentation model

trained on real data, on our artificial data and by conducting

a user study. The segmentation model achieved 85% of its

segmentation performance of the real data on the artificial,

indicating that it ‘recognized’ most parts of the generated

images equally well. In the user study, we could in 24.7%

trick participants into mistaking generated images for real.

With this possibility to generate large amounts of train-

ing data at a very low computational and infrastructural cost

together with the possibility to condition generated images

on pose, shape or color, we see many potential applications

for the presented method. We will make data and code

available for academic purposes.
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