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Abstract

This paper addresses the problems of feature representa-

tion of skeleton joints and the modeling of temporal dynam-

ics to recognize human actions. Traditional methods gen-

erally use relative coordinate systems dependent on some

joints, and model only the long-term dependency, while ex-

cluding short-term and medium term dependencies. Instead

of taking raw skeletons as the input, we transform the skele-

tons into another coordinate system to obtain the robustness

to scale, rotation and translation, and then extract salient

motion features from them. Considering that Long Short-

term Memory (LSTM) networks with various time-step sizes

can model various attributes well, we propose novel en-

semble Temporal Sliding LSTM (TS-LSTM) networks for

skeleton-based action recognition. The proposed network is

composed of multiple parts containing short-term, medium-

term and long-term TS-LSTM networks, respectively. In

our network, we utilize an average ensemble among mul-

tiple parts as a final feature to capture various temporal

dependencies. We evaluate the proposed networks and the

additional other architectures to verify the effectiveness of

the proposed networks, and also compare them with several

other methods on five challenging datasets. The experimen-

tal results demonstrate that our network models achieve the

state-of-the-art performance through various temporal fea-

tures. Additionally, we analyze a relation between the rec-

ognized actions and the multi-term TS-LSTM features by vi-

sualizing the softmax features of multiple parts.

1. Introduction

Human action recognition is one of many challeng-

ing tasks targeted by computer vision researchers. It has

many important applications including video surveillance,

human-computer interaction, game control, sports video

analysis, etc. Although traditional studies about action

recognition have been focused on recognizing actions from
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Figure 1: System overview of the proposed deep learning

network. The main four phases of the system are com-

posed of coordinate transformation, motion feature extrac-

tion, multi-term LSTMs and ensemble deep learning.

the monocular RGB video sequences, it is hard to fully

capture the human action in 3D space by using monocu-

lar video sensors. With a rapid development of 3D data

acquisition over the past few decades, lots of researches on

human activity recognition from 3D data can have been ac-

tively performed [2].

A human body can be represented by a stick figure called

human skeleton, which consists of line segments linked

by joints, and the motion of joints can provide the key to

motion estimation and recognition of the whole figure [1].

Hence, if we can reliably extract and track a human skele-

ton in 3D space, action recognition can be performed by

classifying the temporal movement of the skeleton. Cur-

rently, reliable joint coordinates can be obtained from the

depth sensor using the real-time skeleton estimation al-

gorithms [15, 22]. These kinds of effective pose estima-

tion technologies have been facilitating studies on skeleton-

based action recognition.

There are two related issues for human skeleton-based

action recognition. The first one is a problem for input data
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variations such as scale, rotation and translation, and the

other is the modeling of the human actions that are variable,

dynamic and similar with each other. Most of the existing

skeleton-based action recognition methods use relative joint

coordinates [17, 16, 6], which can overlook absolute move-

ments of skeleton joints. For the modeling of human ac-

tions, recent researches show that Long Short-Term Mem-

ory (LSTM) networks [6, 24, 10] are superior to temporal

pyramids [17, 12, 16] and hidden markov models [21, 20].

Nevertheless, these kinds of LSTM networks just model the

overall temporal dynamics of skeleton joints without con-

sidering the detailed temporal dynamics of them.

In this paper, we propose novel ensemble temporal slid-

ing LSTM networks for action recognition, in which the en-

semble means a combination of various action attributes.

Fig. 1 gives an overview of our model. Firstly, we trans-

form the coordinates of input skeleton sequences so that the

data can be robust to scale, rotation and translation. Sec-

ondly, instead of using the simple joint positions, we em-

ploy the motion features in terms of temporal differences,

which help our networks to be focused on the actual skele-

ton movements. Thirdly, the motion features are processed

with multi-term LSTMs containing short-term, medium-

term and long-term LSTMs, which allow robustness to vari-

able temporal dynamics. Finally, the multi-term LSTMs

capture a variety of action dynamics through ensemble.

1.1. Related Works

In this subsection, we briefly review the existing litera-

ture closely related to the proposed model of dealing with

the two main issues on human skeleton-based action recog-

nition. The first is feature representation about the skeleton

input sequences, and the other is modeling of the temporal

dynamics for action recognition. Wang et al. [17] repre-

sented the human movement by means of the pairwise rela-

tive positions of the joints for more discriminative features.

Cho et al. [4] normalized the orientation of skeletons so that

each and every skeleton could have its root at the origin.

Using the relative geometry between all pairs of body parts,

Vemulapalli et al. [16] represented the 3D geometric rela-

tion of the body parts in Lie group. Du et al. [6] utilized the

center among hip center, hip left and hip right joint coor-

dinates as the origin of the coordinate system. These kinds

of relative coordinate systems can misinterpret the actions

when classifying the absolute movements of skeleton joints.

Wang et al. [17] extracted the 3D joint position and the lo-

cal occupancy pattern, and then they were processed with

Fourier Temporal Pyramid (FTP) to represent temporal dy-

namics of the actions. Vemulapalli et al. [16] employed

Dynamic Time Warping (DTW) and FTP to handle the is-

sues such as rate variations, temporal misalignment, noise,

etc. Instead of modeling temporal evolution of features, Luo

et al. [12] proposed a new dictionary learning method with

temporal pyramid matching for keeping the temporal infor-

mation. Xia et al. [21] employed the histogram based rep-

resentation of 3D human posture, and then recognized the

actions using discrete Hidden Markov Model (HMM). Wu

and Shao [20] extracted high level skeletal joint features,

and then used them for estimating the emission probability

of HMM to infer the action sequences.

Even though the methods of DTW, FTP and HMM are

useful when dealing with temporal dynamics, the recent uti-

lization of LSTM networks has been showing the superior

performance to model the temporal dynamics than the tradi-

tional methods. Du et al. [6] proposed a hierarchical recur-

rent neural network, in which the temporal representations

of low-level body parts were modeled and combined into

the representations of high-level parts. Zhu et al. [24] de-

veloped an end-to-end fully connected deep LSTM network

with the novel regularization to learn the co-occurrence fea-

tures of skeleton joints. Liu et al. [10] introduced a new

gating mechanism within LSTM to learn the reliability of

sequential data and accordingly adjusted its effect on up-

dating the long-term context information stored in the mem-

ory cell. Since all these researches generally observed only

the long-term memory of human actions, it can be difficult

to completely model various temporal dynamics including

short-term, medium-term actions, etc.

1.2. Contributions

We arrange the main contributions as follows:

• We investigate feature representation for human skele-

ton in order to obtain the robustness to various varia-

tions and extracting salient motions. Experimentally, it

is demonstrated that the feature representation dramat-

ically enhances the performance of action recognition.

• We utilize an ensemble of multi-term temporal slid-

ing LSTM networks, which can capture short-term,

medium-term, long-term temporal dependencies and

even spatial skeleton pose dependency, separately. Un-

like traditional ensemble studies, our models effec-

tively learn various spatial and temporal dynamics in

terms of different action attributes.

• We conduct comprehensive evaluations on the MSR

Action3D dataset [9], UTKinect-Action dataset [21],

NTU RGB+D dataset [14], Northwestern-UCLA

dataset [19] and UWA3DII dataset [13]. The experi-

mental results demonstrate that our network model sig-

nificantly outperforms previously developed methods

for skeleton-based action recognition.

2. System Model

In this section, initially, we introduce the feature repre-

sentation of the proposed system, including a transforma-
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(a) (b) (c)

Figure 2: Feature representation processes. (a) Original input skeleton frames (st). (b) Transformed input skeleton frames

(̂st). (c) Extracted salient motion features (xt).

tion of the input skeletons and an extraction of motion fea-

tures. Next, we present the temporal sliding LSTM used

as a specific module of the system. Finally, we explain the

whole architecture including the training and testing pro-

cesses.

2.1. Feature Representation

As shown in Fig. 2(a), the original input skeletons can

go through an orientation misalignment when the skeletons

are obtained. In other words, even though the skeletons are

included in the same action category, the movements of the

skeletons can have a different attribute due to the orienta-

tion misalignment. In order to solve this problem, we need

to transform the original coordinate system into a human

cognitive coordinate system, which can have an orientation

consistency as depicted in Fig. 2(b).

Let sit ∈ R
3×1 be the coordinates of the ith joint of the

tth skeleton frame. The transformed skeleton joint coordi-

nates are then given by

ŝit = R−1(sit − oR), ∀i ∈ J, ∀t ∈ T (1)

where J and T denote the sets of the skeleton joint and

frame indexes, respectively. In (1), the rotation matrix R

and the origin of rotation oR are obtained as

R =

[

v1

‖v1‖

∣

∣

∣

∣

v2 − Projv1
(v2)

‖v2 − Projv1
(v2)‖

∣

∣

∣

∣

v1 × v2

‖v1 × v2‖

]

, (2)

oR =
(

sH L
t=0 + sH R

t=0

)/

2, (3)

where v1 and v2
1 are the vector vertical to the ground and

to the difference vector between the hip left joint and the hip

right joint of the initial skeleton in each sequence, respec-

tively. In (2), Projv1
(v2) and v1 × v2 denote the vector

1In order to obtain a vector vertical to v1 on the plane of containing v1

and v2, we use the GramSchmidt process.

projection of v2 onto v1 and the cross product of the two

vectors, respectively. In (3), sH L
t=0 and sH R

t=0 denote the coor-

dinates of the hip left and right joints of the initial skeleton

of each sequence, respectively.

Fig. 2(c) shows the extraction process of the salient mo-

tion features. Instead of using the skeleton joint coordi-

nates, we use the temporal differences between the two

frames. While the skeleton joint coordinates just focus on

current locations, the motion features can capture the actual

movements of the skeleton joints [8]. Based on this insight,

we additionally utilize the motion features as input features

of the proposed architecture.

Let ŝt ∈ R
SIN×1 be the transformed skeleton coordinates

of the tth frame and SIN be the input dimension size of the

proposed system. The transformed skeleton coordinates are

then obtained by

ŝt = concat
([

ŝ0t , ŝ
1
t , ..., ŝ

|J|−1

t

]

, 0
)

, ∀t ∈ T (4)

where concat([elements], 0) and |J | denote the concatena-

tion along the 0th axis of the elements and the number of

elements of set J , respectively. The motion features are

then obtained by

xt = ŝt − ŝt−D, ∀t ∈ T (t ≥ D) (5)

where D is the temporal difference offset. These motion

features can become various forms according to D and are

normalized through dividing them by (D + 1). We can use

both the transformed skeleton coordinates and motion fea-

tures as input features. They are scaled into the unit of cen-

timeter, which makes our model perform well.

2.2. Temporal Sliding LSTM

Generally, LSTM networks have been used to model

temporal dynamics [7]. Although the forget gates of LSTM
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Figure 3: Conceptual diagram of the proposed lth TS-

LSTM module when Nl = 3, Wl = 4, and TSl = 2.

networks may help the short-term and medium-term depen-

dencies to be acquired, it is actually almost impossible to

completely forget the memories of LSTM cells. In order to

model these various dependencies, we propose the Tempo-

ral Sliding LSTM (TS-LSTM) module. As shown in Fig. 3,

since the lth TS-LSTM module can have various LSTM net-

work numbers (Nl), LSTM window sizes (Wl), and tem-

poral strides (TSl), it is very useful when classifying the

actions with variable temporal dynamics. In other words,

in case of recognizing the actions with variable sequence

length, we only have to adjust the window size and the stride

of TS-LSTM.

Let xl
t be the input of the lth TS-LSTM and Dl be the

difference offset of it. Substituting Dl into D of (5), the

input of the lth TS-LSTM is selected as xl
t = ŝt − ŝt−Dl

(0 ≤ l ≤ 5) and xl
t = ŝt (l = 6) as shown in Fig. 4. The

memory cell, three gates and the output of the tth frame of

the nth LSTM of the lth TS-LSTM are then obtained as

i
l,n
t = σ

(

w
l,n
ix

x
l,n
t +w

l,n
ih

h
l,n
t−1 +w

l,n
ic

c
l,n
t−1 + b

l,n
i

)

(6)

f
l,n
t = σ

(

w
l,n
fx

x
l,n
t +w

l,n
fh

h
l,n
t−1 +w

l,n
fc

c
l,n
t−1 + b

l,n
f

)

(7)

c
l,n
t = f

l,n
t c

l,n
t−1+ i

l,n
t tanh

(

wl,n
cx

x
l,n
t +w

l,n
ch

h
l,n
t−1 + bl,n

c

)

(8)

o
l,n
t = σ

(

wl,n
ox

x
l,n
t +w

l,n
oh

h
l,n
t−1 +wl,n

oc
c
l,n
t−1 + bl,n

o

)

(9)

h
l,n
t = o

l,n
t tanh

(

c
l,n
t

)

(10)

where σ (·) is the sigmoid function, and i
l,n
t , f

l,n
t , c

l,n
t , o

l,n
t

and h
l,n
t are respectively the input gate, forget gate, cell

activation, output gate and output vectors of the tth frame

of the nth LSTM of the lth TS-LSTM. In (6)-(9), all the

matrices wl,n
mn

are the connection weights from n to m of

the nth LSTM of the lth TS-LSTM.
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Figure 4: Whole architecture composed of short-term,

medium-term, long-term and pose TS-LSTM modules

where l = 0 for short-term, l = 1, 2 for medium-term,

l = 3, 4, 5 for long-term and l = 6 for pose feature.

2.3. Proposed Network Architecture

As shown in Fig. 4, the proposed architecture consists

of multiple TS-LSTM modules determined by Dl, Wl, and

TSl. The architecture has different structures according

to the type of the process such as training and testing. In

the training process, each part is mainly composed of the

TS-LSTM layer, the sum pooling (SumPool) layer, the lin-

ear (LN) layer, the softmax activation layer and the cross-

entropy layer to calculate the cost function. In the testing

process, instead of using the cross-entropy layer, we utilize

the average ensemble of the various softmax outputs as the

final output inspired by GoogLeNet [5].

Let x
l,m
t be xl

t of the mth sequence. Substituting x
l,m
t

into xl
t of (6)-(9), h

l,n
t of (10) can be written as h

l,n,m
t . The

SumPool and MeanPool values of the mth sequence of the

nth LSTM of the lth TS-LSTM are then obtained as

q
l,m
S =

Wl−1
∑

t=0

concat

(

[

h
l,n,m
n·TSl+t

]n=Nl−1

n=0
, 0

)

(11)

q
l,m
M = q

l,m
S /Wl (12)

where [(·)n]
n=Nl−1

n=0
= [(·)0, (·)1, ..., (·)Nl−1]. The Mean-

Pool value of the mth sequence of the nth LSTM of the

lth TS-LSTM, q
l,m
M = q

l,m
S /Wl. In each part, the con-

catenation of the SumPool and MeanPool values of the mth

sequence is written as

rmS =
[

q
0,m
S

]T

, rmM =
[

concat
([

q
1,m
S ,q2,m

S

]

, 1
)]T

,

rmL =
[

concat
([

q
3,m
S ,q4,m

S ,q5,m
S

]

, 1
)]T

, rmP =
[

q
6,m
M

]T

(13)
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where [·]T means the transpose operation. The linear acti-

vation of each part is then obtained as

amS = wS · rmS + bS (14)

amM = wM · rmM + bM (15)

amL = wL · rmL + bL (16)

amP = wP · rmP + bP (17)

where w and b2 are the weight and bias terms of the LN

layer, respectively. Let a
m,k
S

, a
m,k
M

, a
m,k
L

and a
m,k
P

be the

kth action class values of amS , amM, amL and amP , respectively.

The linear activation values of the mth sequence are then

normalized with the softmax function:

Pr (c|amS ) =
exp (am,c

S
)

∑NC−1

k=0
exp

(

a
m,k
S

) (18)

Pr (c|amM) =
exp (am,c

M
)

∑NC−1

k=0
exp

(

a
m,k
M

) (19)

Pr (c|amL ) =
exp (am,c

L
)

∑NC−1

k=0
exp

(

a
m,k
L

) (20)

Pr (c|amP ) =
exp (am,c

P
)

∑NC−1

k=0
exp

(

a
m,k
P

) (21)

where c and NC are the corresponding class index and the

total number of action classes, respectively.

In order to find the maximum likelihood of all the train-

ing samples, we apply the cross-entropy function into two

objective functions:

e1 = −

NM−1
∑

m=0

NC−1
∑

c=0

ymc ln{Pr (c|amS ) Pr (c|amM) Pr (c|amL )}

(22)

e2 = e1 −

NM−1
∑

m=0

NC−1
∑

c=0

ymc ln{Pr (c|amP )} (23)

where ymc and NM are the ground-truth label of the mth

sample and the total number of training samples. We train

the models by minimizing the two objective functions, sep-

arately.

In the testing process, the ensemble output v1 is

obtained with average ensemble among the three lin-

ear activation values such as Pr (c|amS ) ,Pr (c|amM) and

Pr (c|amL ) and the ensemble output v2 is obtained with

average ensemble among the four linear activation val-

ues (Pr (c|amS ) ,Pr (c|amM) ,Pr (c|amL ) and Pr (c|amP )), sep-

arately.

2The subscripts of w and b such as S, M, L, and P denote the short-

term, medium-term, long-term and pose parts.

3. Experiments

In this section, we evaluate the proposed model and com-

pare with several recent methods on the five benchmark

datasets: MSR Action3D dataset [9], UTKinect-Action

dataset [21], NTU RGB+D dataset [14], Northwestern-

UCLA dataset [19] and UWA3DII dataset [13]. We also

analyze a relation between the recognized actions and the

multi-term TS-LSTM features.

In order to show the effects of the proposed techniques,

we conduct experiments under five different architectures.

The first one is the simple LSTM used as the baseline of

LSTM for skeleton-based action recognition. The second

one applies the Human Cognitive Coordinate (HCC) into

the first one, which shows the effect of the HCC. The third

one additionally applies the Salient Motion Feature (SMF)

into the second one, which shows the effect of the SMF. The

fourth one is the proposed ensemble TS-LSTM v1 using the

cost of (22). The final one is the proposed ensemble TS-

LSTM v2 using the cost of (23).

3.1. Datasets and Parameter Settings

MSR Action3D dataset: This dataset was captured us-

ing a depth sensor like Kinect. It consists of 20 actions per-

formed by 10 subjects for two or three times. Altogether,

there are 557 valid action sequences, and each frame in a

sequence is composed of 20 skeleton joints.

UTKinect-Action dataset: This dataset was captured

using a single stationary Kinect. It consists of 10 actions

performed by 10 different subjects, and each subject per-

formed every action twice. Altogether, there are 199 action

sequences, and the 3D locations of 20 joints are given. This

is regarded as a challenging dataset because of variations in

the view point and high intra-class variations.

NTU RGB+D dataset: This dataset was captured by 3

Microsoft Kinect v2 cameras. It contains 60 action classes

in total, which are divided into three major groups: 40

daily actions, 9 health-related actions and 11 mutual ac-

tions. Each sequence contains the 3D locations of 25 skele-

ton joints. It is very challenging due to the large intra-class

and view point variations.

Northwestern-UCLA dataset: This dataset was cap-

tured simultaneously by 3 Microsoft Kinect v1 cameras.

It contains 1494 sequences covering 10 action categories.

Each action is performed one to six times by ten subjects.

This dataset contains data taken from a variety of view-

points.

UWA3DII dataset: This dataset was captured by 4 Mi-

crosoft Kinect v1 cameras. It contains 30 human actions

performed four times by ten subjects. Each action is ob-

served from front view, left and right side views, and top

view. The dataset is challenging because of varying view-

points, self-occlusion and high similarity among actions.
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Table 1: Parameter settings of the proposed models. TS-LSTMl is the lth TS-LSTM within the proposed models, the

parameters of which are (Dl, Wl, TSl). LN means the number of hidden units of the TS-LSTM concatenation of each part,

and the subscripts of LN such as S, M, L and P denote the short-term, medium-term, long-term and pose parts, respectively.

NT is a maximal skeleton frame length of all sample data.

TS-LSTM0 TS-LSTM1 TS-LSTM2 TS-LSTM3 TS-LSTM4 TS-LSTM5 TS-LSTM6 LNS LNM LNL LNP NT

MSR (1, 15, 15) (1, 40, 35) (5, 36, 35) (1, 75, –) (5, 71, –) (10, 66, –) (0, 45, 22) 100 80 60 80 76

UTKi (1, 27, 20) (1, 63, 50) (5, 59, 50) (1, 113, –) (5, 109, –) (10, 104, –) (0, 100, 25) 100 80 60 20 114

NTU (1, 77, 74) (1, 103, 98) (5, 99, 98) (1, 154, 145) (5, 150, 145) (10, 145, 145) (0, 77, 74) 500 400 300 200 300

UCLA (1, 40, 25) (1, 100, 50) (5, 70, 45) (1, 198, –) (5, 170, –) (10, 150, –) (0, 100, 50) 240 340 518 200 201

UWA (2, 42, 20) (1, 88, 40) (5, 84, 40) (1, 164, –) (5, 155, –) (10, 145, –) (0, 42, 20) 294 344 464 294 167

Table 1 shows the parameter setting of our main pro-

posed model. We use all the skeleton joints as the input

of each dataset. All the sequences on the MSR Action3D

dataset (MSR) and the UTKinect-Action dataset (UTKi) are

used for the experiments. We exclude invalid sequences

from the NTU RGB+D dataset (NTU), the Northwestern-

UCLA dataset (UCLA) and the UWA3DII dataset (UWA)

because they have shorter sequence length than only 10
frames. In different architectures, the LSTMs perform sum

pooling or mean pooling according to the input feature type

and the probability to keep hidden units of each LN layer

has a value of 0.4.

3.2. Results and Comparisons

MSR Action3D dataset: We follow the standard proto-

col provided in [9]. In this standard protocol, the dataset

is divided into three action sets such as Action Set1 (AS1),

Action Set2 (AS2) and Action Set3 (AS3). We use the sam-

ples of subjects 1, 3, 5, 7, 9 for training and the samples of

subjects 2, 4, 6, 8, 10 for testing. As shown in Table 2, the

proposed ensemble TS-LSTM v1 and v2 achieve the signif-

icantly enhanced average accuracies (96.63 %) and (97.22

%) compared with the previous methods, respectively.

Table 2: Experimental result comparison on the MSR Ac-

tion3D dataset.

Method AS1 AS2 AS3 Ave.

Bag of 3d points [9] 72.9 71.9 79.2 74.7

Lie group [16] 95.29 83.87 98.22 92.46

HBRNN [6] 93.33 94.64 95.50 94.49

ST-LSTM + Trust Gate [10] N/A N/A N/A 94.8

LSTM 70.48 71.43 72.07 71.33

LSTM + HCC 76.19 74.11 81.98 77.43

LSTM + HCC + SMF 92.38 90.18 92.79 91.78

Ensemble TS-LSTM v1 95.24 95.54 99.10 96.63

Ensemble TS-LSTM v2 95.24 96.43 100 97.22

As shown in Table 2, the addition of HCC and SMF into

LSTM makes the average accuracy increase by 6.1 % and

14.35 %, respectively, which indicates that our feature rep-

resentation is very useful on this dataset. The ensemble TS-

LSTM models are around 2 % higher than the previous best

method [10]. Moreover, our network models are superior

to the other methods on almost every action set, including

AS2 and AS3, which means that the proposed models are

more robust to various actions than the other methods.

UTKinect-Action dataset: We follow the protocol [25],

in which half of the subjects are used for training and the

remaining are used for testing. The first 5 subjects are used

for training while the last 5 subjects are used for testing.

As shown in Table 3, our models achieve the higher results

(95.96 %) and (96.97 %) compared with the previous best

model [23] (95.96 %), respectively.

Table 3: Experimental result comparison on the UTKinect-

Action dataset.

Method Acc. Method Acc.

Skeleton joint features [25] 87.9 LSTM 60.61

Histograms of 3D joints [21] 90.92 LSTM + HCC 72.73

Elastic functional coding [3] 94.87 LSTM + HCC + SMF 93.94

ST-LSTM + Trust Gate [10] 95.0 Ensemble TS-LSTM v1 95.96

Geometric features [23] 95.96 Ensemble TS-LSTM v2 96.97

Different from the MSR Action3D dataset, it should be

noted that the addition of HCC and SMF into LSTM makes

the average accuracy increase by 12.12 % and 21.21 %, re-

spectively, which indicates that our feature representation

on this dataset is more effective than that on the MSR Ac-

tion3D dataset. Both ensemble TS-LSTM v1 and v2 are

around 1 % higher than the previous best method [10].

NTU RGB+D dataset: We follow two standard evalu-

ation protocols [14]. One is cross-subject (CS) evaluation,

where half of the subjects are used for training, and the re-

maining is used for testing. The second is cross-view (CV)

evaluation where two viewpoints are used for training, and

one is used for testing. Since the original basis of HCC can

be different due to the different viewpoints, we use the trunk

of initial skeleton of each sequence as the basis of HCC in-

stead of the vertical vector. As shown in Table 4, our models

achieve the competitive results compared with the previous

methods, which indicates that it can be better to model var-

ious temporal dynamics even for this challenging dataset.
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Figure 5: Confusion matrices of the ensemble TS-LSTM v1 according to action set on the MSR Action3D dataset. The row

and column of each confusion matrix denote the ground truth and the prediction, respectively. (a) AS1. (b) AS2. (c) AS3.

Table 4: Experimental results on the NTU RGB+D dataset.

Method CS Acc. CV Acc.

HBRNN [6] (reported by [14]) 59.07 63.97

Part-aware LSTM [14] 62.93 70.27

ST-LSTM + Trust Gate [10] 69.2 77.7

Geometric features [23] 70.26 82.39

Enhanced skeleton visualization [11] 75.97 82.56

Ensemble TS-LSTM v1 73.88 80.40

Ensemble TS-LSTM v2 74.60 81.25

Northwestern-UCLA dataset: We follow the evalua-

tion protocol [19]. We use samples from the first two cam-

eras as training data, and the samples from the third camera

as test data. As shown in Table 5, the proposed ensemble

TS-LSTM v1 and v2 achieve the competitive results (85.99

%) and (89.22 %) compared with the previous best model

[11] (86.09 %) on the Northwestern-UCLA dataset.

Table 5: Experimental results on the Northwestern-UCLA

dataset.

Method Accuracy (%)

Lie group [16] (reported by [11]) 74.20

Actionlet ensemble [18] (reported by [11]) 76.00

HBRNN-L [6] (reported by [11]) 78.52

Enhanced skeleton visualization [11] 86.09

Ensemble TS-LSTM v1 85.99

Ensemble TS-LSTM v2 89.22

UWA3DII dataset: We follow the cross view proto-

col [13]. We use samples from two views as training data,

and samples from the two remaining views as test data.

As shown in Table 6, our models achieve the significantly

enhanced mean accuracies (72.4 %) and (75.6 %) com-

pared with the previous best method [11] (66.0 %) on the

UWA3DII dataset.

3.3. Result Analysis

When analyzing the experimental results, we use the

MSR Action3D dataset due to its comprehensive compo-

sition of action sets. As shown in Fig. 5(c), almost every

action on AS3 is correctly classified except only one case

of the action ‘High throw”, which is very similar to the

action “Tennis swing” even for the human perception. In

Fig. 5(b), the action “Side boxing” is misclassified to “Hand

catch” while the action “Hand catch” is miscategorized to

“High arm wave” or “Draw x”. In Fig. 5(a), the actions

“Forward punch” and “Tennis serve” are overlapped quite

a lot in the sequences. Similar to this, the actions such as

“Bend”, “Pickup & throw”, “High throw” and “Hammer”

also share quite a large overlap in the sequences. Neverthe-

less, the proposed ensemble TS-LSTM v13 classifies these

similar actions to some degree by using the multiple TS-

LSTM networks.

In order to analyze the proposed ensemble TS-LSTM v1

in detail, we visualize the softmax outputs of the three parts

containing the TS-LSTMs on the AS1 test data of the MSR

Action3D dataset as depicted in Fig. 6. Overall, the diag-

onal probabilities of Softmax2 with long-term LSTMs are

higher than those of Softmax0 with short-term LSTMs and

3Except that there is a little more performance enhancement, confusion

matrices of the proposed ensemble TS-LSTM v2 are similar to those of the

proposed ensemble TS-LSTM v1. Thus, we analyze the effect of ensemble

focusing on the proposed ensemble TS-LSTM v1.
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Figure 6: Softmax average probabilities of the ensemble TS-LSTM v1 according to action category on the AS1 test data of

the MSR Action3D dataset. The row and the column of each confusion matrix denote the ground truth and the prediction,

respectively. (a) Softmax0. (b) Softmax1. (c) Softmax2.

Table 6: Experimental results on the UWA3DII dataset.

Training views V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4
Mean

Test view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Actionlet ensemble [18] (reported by [11]) 45.0 40.4 35.1 36.9 34.7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8

Lie group [16] (reported by [11]) 49.4 42.8 34.6 39.7 38.1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4

Enhanced skeleton visualization [11] 66.4 68.1 56.8 66.1 58.8 66.2 74.2 67.0 76.9 64.8 72.2 54.0 66.0

Ensemble TS-LSTM v1 64.9 76.8 69.3 78.3 67.7 66.5 76.1 78.3 77.6 65.0 81.2 66.5 72.4

Ensemble TS-LSTM v2 72.1 79.1 74.0 77.6 75.6 70.1 79.6 79.9 83.9 66.1 79.2 69.7 75.6

Softmax1 with medium-term LSTMs, which indicates that

the global temporal features have relatively more influence

on the performance than the local temporal features. How-

ever, Softmax0 and Softmax1 somtimes produce lower mis-

classification rates compared with Softmax2, which makes

the model less prone to overfitting to some certain actions.

For example, Softmax0 and Softmax1 have lower misclas-

sification probabilities of the action “Pickup & throw” to

the action “Bend” than Softmax2, which indicates that Soft-

max0 and Softmax1 can compensate the weakness of Soft-

max2. Consequently, our ensemble TS-LSTM v1 can dis-

tinguish even the very closely similar actions by using vari-

ous dicriminative features such as the short-term, medium-

term and long-term temporal features.

4. Conclusion

Initially, we have transformed a human skeleton into

the human cognitive coordinate system by using the Gram-

Schmidt process, and extracted the pose and motion features

to capture various spatial and temporal dynamics. After

that, we have presented the novel utilization method of mas-

sive LSTMs according to time-step size, including training

and testing processes. We have experimentally showed that

the proposed networks outperform various state-of-the-art

action recognition methods on the five different datasets.

As future work, we will investigate solutions for the fail-

ure cases on the datasets. A possible direction will be the

analysis of TS-LSTM features for the proposed model to

perform well on the failure cases. Another direction is to

adjust the parameters of the proposed ensemble TS-LSTM

networks to capture various spatial and temporal dynamics.

Other directions include the application of various data aug-

mentation techniques into the proposed models.
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