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Abstract

In this paper, we propose a novel method to jointly solve

scene layout estimation and global registration problems

for accurate indoor 3D reconstruction. Given a sequence

of range data, we first build a set of scene fragments using

KinectFusion and register them through pose graph opti-

mization. Afterwards, we alternate between layout estima-

tion and layout-based global registration processes in itera-

tive fashion to complement each other. We extract the scene

layout through hierarchical agglomerative clustering and

energy-based multi-model fitting in consideration of noisy

measurements. Having the estimated scene layout in one

hand, we register all the range data through the global it-

erative closest point algorithm where the positions of 3D

points that belong to the layout such as walls and a ceiling

are constrained to be close to the layout. We experimen-

tally verify the proposed method with the publicly available

synthetic and real-world datasets in both quantitative and

qualitative ways.

1. Introduction

The popularization of low-cost consumer depth cameras

has made a new perspective of solving various computer

vision problems. Especially, with various depth sensors, si-

multaneous localization and mapping (SLAM) and 3D re-

construction [9, 27] have shown visually compelling results

compared to conventional image-based approaches in an in-

door environment. This is because the consumer depth cam-

era robustly acquires depth measurements where the con-

ventional image-based approaches frequently fail to esti-

mate accurate depth, e.g., due to poorly textured regions. In

this paper, we narrow our attention to the complete 3D re-

∗Denote equal contribution.

Figure 1. Comparison of the proposed method (right) with the

state-of-the-art method [9] (left). With the aid of the scene layout,

the proposed method preserves important structures of the scene

such as walls and a floor.

construction problem in an indoor environment using range

measurements acquired from a consumer depth camera.

KinectFusion [27], one of the pioneering works, showed

that a real-world object as well as an indoor scene can

be reconstructed in real-time with GPU acceleration. It

exploits the iterative closest point (ICP) algorithm [4] to

track 6-DoF poses and the volumetric surface representa-

tion scheme with signed distance functions [12] to fuse 3D

measurements. A number of following studies [9, 41, 43]

have tackled the limitation of KinectFusion; as the scale

of a scene increases, it is hard to completely reconstruct

the scene due to the drift problem of the ICP algorithm as

well as the large memory consumption of volumetric inte-

gration. To scale up the KinectFusion algorithm, Whelan et

al. [41] presented a spatially extended KinectFusion, named
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as Kintinuous, by incrementally adding KinectFusion re-

sults as the form of triangular meshes. Moreover, they used

a pose graph to alleviate the drift problem through graph op-

timization by identifying loop closures. Whelan et al. [43]

also proposed ElasticFusion to overcome the problem by

using the surface loop closure optimization and the surfel-

based representation. On the other hand, this large-scale

indoor reconstruction problem has been tackled from the

view point of global registration [1, 9, 37]. Notably, Choi et

al. [9] showed promising results. They utilized KinectFu-

sion results as building blocks and developed a robust global

registration scheme based on line-processes in the presence

of sensor noise.

Furthermore, the large-scale indoor reconstruction prob-

lem has been tackled by considering the structural regular-

ities of an indoor scene such as the axis-aligned geome-

try [45] and the planarity of the scene [25, 36, 48]. Xiao and

Furukawa [45] showed that a museum-level indoor environ-

ment can be effectively reconstructed based on the Manhat-

tan world assumption, e.g. walls, floors, and ceilings are

parallel to one of the three orthogonal surfaces. However,

this strong assumption about the scene generates oversim-

plified structures in practical situations. To avoid the po-

tential oversimplification problem, Zhang et al. [48] ana-

lyzed planar and non-planar regions on the fly and inte-

grated KinectFusion’s results seamlessly.

In this paper, we pose a new approach for accurate in-

door reconstruction by jointly resolving the scene layout

estimation problem and the global registration problem of

range data. Given initially registered range data, we extract

the envelope of an indoor scene, including walls, a floor,

and a ceiling, through hierarchical agglomerative clustering

and energy-based multi-model fitting to reduce redundant

planes and to find dominant plane hypotheses. Then, we

establish point-to-layout correspondences to constrain the

position of these correspondences to be close to the layout.

Finally, we register entire range data through the global ICP

algorithm with pairwise and layout-based constraints. We

repeat layout estimation and layout-based global registra-

tion procedures alternately until they converge. Note that

we purely rely on range data and the layout is computed

with a weak Manhattan world assumption, such that walls

are not necessarily perpendicular to each other but perpen-

dicular to the floor and the ceiling.

2. Previous Work

The literature review primarily focuses on indoor 3D re-

construction starting from KinectFusion [27] and its follow-

up researches that aim at scaling-up KinectFusion.

After the breakthrough of Newcombe et al. [27], hun-

dreds of papers have addressed the limitations of KinectFu-

sion. To overcome the scalability of the volumetric recon-

struction approach, some works [41, 33, 21] adopted the

concept of moving volume, which translates and rotates a

reconstructed volume by using the estimated pose informa-

tion. In the similar manner, Steinbrucker et al. [38] pro-

posed a multi-scale octree data structure to modify the uni-

form volumetric structure into non-uniform volume. Henry

et al. [20] proposed a multiple-volume representation to cre-

ate a globally consistent indoor environment. Chen et al. [7]

and Nießner et al. [28] proposed a memory-efficient hierar-

chical data structure for commodity graphics hardware to

extend KinectFusion to large-scale scenes.

On the other hand, numerous researches focused on alle-

viating accumulation errors in reconstructing a large-scale

environment. Conventional pairwise approaches [8, 32] as

well as KinectFusion incrementally integrate a set of range

data using the ICP algorithm; they suffer from accumu-

lated errors in general. Therefore, the global registration

approaches [3, 44, 29, 5, 37, 18, 24, 47, 1] have been de-

veloped to alleviate accumulation errors by optimizing the

global poses simultaneously. Bergevin et al. [3] proposed

a star-shaped network for global registration. Each range

view can be interconnected with the world reference frame

by sequential transformation multiplications. The trans-

formations between the range views and the world frame

are alternately optimized by the point-to-plane method [8].

Nishino and Ikeuchi [29] proposed a robust global registra-

tion method based on the M-estimator [22] to improve ro-

bustness against outlier correspondences. Arrigoni et al. [1]

proposed the global registration method based on the low-

rank and sparse (LRS) decomposition.

For the sake of robust global registration, a number

of researches [5, 37] focused on identifying loop clo-

sures which must be acquired for global registration. As

long as loop closures are properly identified, it is possi-

ble to reduce accumulation errors effectively. Several re-

searches [41, 42, 38, 20] used visual features to identify

loop closures, but they showed failure cases under pose vari-

ations as well as when revisiting poorly textured regions.

Therefore, some researches [34, 14, 11, 9] focused on solv-

ing this problem with geometric features. Assuming loop

closures are given from a set of accurate correspondences,

the pose graph optimization scheme has been widely em-

ployed [41, 42, 38, 20, 9] owning to its real-time perfor-

mance. It optimizes a pose graph constrained by pairwise

transformations to balance the accumulated error. Tang

and Feng [47] proposed the method to distribute the ac-

cumulated error by integrating loops incrementally. They

minimized the bi-directional registration errors [24] of the

virtual point pairs [32] using the global optimization tech-

nique [44].

In addition, a number of researches focused on the struc-

tural regularity of the indoor scene to elevate the quality

of reconstructed models. Basically, the planarity assump-

tion [13, 2, 39, 48, 36] is the most commonly used one.
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Figure 2. The overall procedure of the proposed method.

Moreno et al. [36] proposed an incremental plane mapping

scheme in which the relation between planes is identified by

point features. Several studies [13, 2, 39] exploited planes

and points to find frame-to-frame camera pose and to define

an objective function for bundle adjustment. Ma et al. [25]

estimated a global plane model and frame-to-frame pose in

an alternative way in the EM framework. Zhang et al. [48]

proposed an interactive reconstruction algorithm, in which

the algorithm guides the person to capture designated spots.

The proposed method overcomes aforementioned prob-

lems through the layout-constrained global registration.

The scene layout estimation problem has been tackled in

the field of scene understanding [10, 15, 19] and object de-

tection [17]. Some researches [30, 40, 50] proposed to en-

force the global regularity (e.g. parallelism, orthogonality,

and coplanarity) of the scene structures in an iterative fash-

ion, assuming that well-aligned but noisy point clouds are

given as input. However, we consider inaccurately aligned

point clouds, i.e., owing to drift errors as shown in the left

of Fig. 1. Therefore, we perform the layout estimation and

global registration jointly, and in particular, the proposed

dominant plane estimation based on energy minimization

provides locally optimal dominant planes without regard to

the general global regularities.

3. Proposed Method

We propose a joint approach of scene layout estimation

and global multi-view registration for 3D indoor reconstruc-

tion. As shown in Fig. 2, the overall procedure of the pro-

posed method consists of three main steps: initial registra-

tion, layout estimation, and global registration. In the initial

registration step, we sequentially construct scene fragments

from range data and then align them in the world coordinate

system. Afterward, we alternate between layout estimation

and global registration procedures in iterative fashion using

scene fragments. The model reconstructed by the global

registration is refined using [49].

3.1. Initial Registration

For initial registration, we partially reconstruct the cap-

tured indoor scene to produce a set of scene fragments and

then register them in the world coordinate system, which is

similar to the previous study of Choi et al. [9]. Here, the un-

derlying assumption is that each scene fragment contains a

negligible amount of accumulation errors so that the large-

scale 3D reconstruction problem turns into the problem of

aligning all the scene fragments. To construct a scene frag-

ment Fi ∈ F , we simply use KinectFusion [27] for every

N frames, e.g. 50, which is a volumetric approach to recon-

struct a scene with truncated signed distance functions [12].

Afterwards, we find pairwise transformations Ti,i+1 for all

pairs of the consecutive fragments and align all the frag-

ments in the world coordinate system based on sequential

multiplication of the pairwise transformations.

Loop closure detection: The set of the registered frag-

ments via the sequential multiplication of the pairwise

transformations usually has a large amount of accumulated

pose errors as well as misaligned range data. Therefore, it

is necessary to identify loop closures to diffuse drift errors

across all the fragments. To detect loop closures, we align

all pairs of the inconsecutive fragments using the FPFH de-

scriptor [34] and check the overlap ratio of the aligned frag-

ments. If the overlapping ratio between the fragments Fi

and Fj exceeds a predefined percentile, e.g. 30%, we de-

termine the fragment pair as a loop closure and define its

pairwise transformation as Ti,j .

Pose graph optimization: Given a set of loop closures, we

minimize the drift errors through the pose graph optimiza-

tion. Here, we adopt the line process as in [9] to handle spu-

rious loop closures obtained by low distinctiveness of 3D

local descriptors. For a set of fragments F = {F0, ...,Fn},
we define a set of transformations T = {T0, ...,Tn} where

Ti is a transformation from a fragment Fi to world refer-

ence coordinates and a pairwise transformation from Fj to

Fi is expressed as Ti,j = T−1
i ◦Tj . Then, given pairwise
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transformations Ti,j between the fragments Fi and Fj , we

estimate the transformations T of the fragments F and a

line process L by minimizing the following function,

EL(T ,L) =
∑

i

f(Ti,Ti+1, T̂i,i+1)

+
∑

i,j

lijf(Ti,Tj , T̂i,j) +
∑

i,j

Ψ(lij),
(1)

where f(Ta,Tb, T̂a,b) measures the difference between

the pre-computed pairwise transformation T̂a,b and the

pairwise transformation computed from Ta and Tb. lij ∈ L

is a parameter of a line process. Ψ(lij) =
√

1− l2ij is a con-

straint to maximize the number of inlier loop closures. If an

estimated parameter lij is larger than a threshold, the loop

closure between the fragments i and j is determined as a

correct loop closure.

3.2. Layout Estimation

To estimate the scene layout, which consists of a set of

planes such as a ceiling, a floor, and walls, we find the domi-

nant planes Pdominant in the scene and then determine layout

planes Playout from Pdominant. To extract a set of dominant

planes, we compute and cluster plane parameters from su-

pervoxels [31] of each fragment and subsequently merge

similar plane parameters in the world coordinate system.

Dominant plane extraction: Initially, we divide a frag-

ment Fi into a set of supervoxels [31], S = {S1 ∪S2 ∪ ...∪
SK}, and generate plane hypotheses using the supervoxels.

To generate a plane hypothesis πl in the fragment Fi, we

compute a plane parameter from the center points of three

adjacent supervoxels because it improves computational ef-

ficiency in comparison with the way that a plane parameter

is computed using all the points in a sampled supervoxel.

Here, the number of initial plane hypotheses proportionally

increases as the scale of a scene increases, and there might

be a lot of similar planes owing to largely planar regions

such as walls. Therefore, we cluster initial plane hypothe-

ses through two plane clustering steps. First, we merge the

plane hypotheses using the hierarchical agglomerative clus-

tering [26]. The distance between a supervoxel Sk and a

plane hypothesis πl is computed as

C(πl,Sk) =
1

|Sk|

∑

p∈Sk

d(πl,p). (2)

The distance function d(·, ·) is defined as

d(πl,p) =
|π⊤

l p̄|
√

a2l + b2l + c2l
, (3)

where a plane parameter πl is denoted as πl = [al, bl, cl, 1]
⊤

and p̄ is a homogeneous representation of a 3D point

p. Some supervoxels with similar plane hypotheses are

grouped together via the clustering method and used to

recalculate plane parameters. However, there still exist

some plane hypotheses that are on an identical wall but not

grouped together because of local distortion in the vicinity

of the fragment’s border. Thus, as the second step, we as-

sign the recomputed plane hypotheses to each 3D point by

minimizing an energy function via graph cuts [6]. Given

a set of 3D points, i.e., Fi, and a set of plane parameters,

denoted by Pi, the problem is defined as finding a mapping

function h from a point p ∈ Fi onto a plane parameter

πl ∈ Pi (i.e., h: Fi 7→ Pi). An energy function EP is

defined as

EP (h) =
∑

p∈Fi

Dp(hp) +
∑

p∈Fi,q∈Np

Vp,q(hp, hq). (4)

The data term Dp is defined in the same manner as Eq. (3)

to measure the distance between a point p and a plane pa-

rameter πl. We employ the Potts model [6] as the smooth-

ness term Vp,q to preserve continuity of a plane parameter

between neighboring points. The Potts model is defined as

Vp,q(hp, hq) = αp,qT (hp 6= hq) where αp,q is a penalty

weight and T is 1 if the argument is true and otherwise 0.

Np represents neighboring points of p. The neighboring

points are determined as points within a predefined distance

among points obtained by the k-nearest neighbor (k-NN)

search algorithm [35]. In addition, we employ a null-plane

hypothesis π∅ to avoid assigning plane hypotheses to a point

that has a large displacement from the plane. Therefore, the

data term is redefined as

Dp(hp) =

{

d(hp,p), if hp 6= π∅

γ, otherwise
, (5)

where γ is a constant. Here, the role of the null hypothe-

sis is to ignore noisy measurements or points on non-planar

surfaces. As a result, we obtain a smaller number of merged

plane hypotheses. The plane hypotheses in each fragment

Fi are transformed from the fragment coordinate system to

the world reference coordinate system. Example of clus-

tered planes are shown in Fig. 3(a).

With the clustered and transformed plane hypotheses, we

find a set of dominant planesPdominant, which enables to rep-

resent the scene with a small number of plane hypotheses.

To find Pdominant, we employ the hierarchical agglomerative

clustering again. Here, instead of comparing supervoxels,

we compute the distance function of Eq. (2) using groups of

3D points with the same plane hypothesis via Eq. (4). Con-

sequently, it is possible to acquire the set of planes that best

describe the scene as shown in Fig. 3(b), where different

colors indicate that different plane hypotheses are assigned.

Layout plane estimation: Given dominant planes Pdominant

and clustered point clouds, we estimate the scene layout

165



(a) Clustered planes (b) Dominant planes

Figure 3. The result of the hierarchical agglomerative clustering

and energy-based multi-model fitting. This procedure approxi-

mates the scene with the a small number of planes. Therefore,

it is easy to find the scene layout from these planes.

which can be understood as an envelope of an arbitrary in-

door space that includes the ceiling, floor, and walls. Here,

we assume a weak Manhattan world in which all the walls

are orthogonal to the ceiling and the ground floor, but the

walls are not necessarily orthogonal to each other. However,

in practice, captured planes are hard to be perfectly pla-

nar due to the measurement noise, and therefore, we make

planes orthogonal to each other if they are quite close to be

orthogonal.

We find the scene layout planesPlayout through two steps.

In the first step, we find the ceiling or ground floor, called a

base plane, assuming that one of them is the largest planar

region among all the plane hypotheses. The base plane is

determined by computing the areas of dominant planes in-

stead of simply counting the number of clustered 3D points

because the density of 3D points significantly differs de-

pending on the amount of acquired range data. To esti-

mate the area of a dominant plane, we generate a 2D occu-

pancy grid map on the dominant plane and project labeled

3D points on to the dominant plane. Then, we count the

number of occupied grids.

In the second step, we find a set of planes that are orthog-

onal to the base plane determined in the first step as follows.

We generate a 2D occupancy grid map on the base plane as

shown in Fig. 4. Then, we project all the 3D points onto the

base plane and fill each cell of the grid map if the density

of points is larger than a predefined value. Here, an empty

cell indicates that it is either outside the room or inside the

room but not measured. From the occupancy grid, we de-

termine the boundary of occupied grids, denoted by ∂O, via

the morphological boundary detection [23] that can handle

an arbitrary shape. Finally, we select the set of planes by

following criteria:

L(πi) =

{

1, if (~ni · ~nbase) < τ1 and g(∂O, πi) < τ2
0, otherwise

,

(6)

where ~ni and ~nbase are normal vectors of a selected domi-

nant plane and base plane, respectively. Therefore, the first

criterion checks the perpendicularity between two planes.

The second criterion checks the distance between the plane

Figure 4. Layout estimation procedure. We extract a floor (or a

ceiling) and generate a 2D occupancy grid. Afterwards, we find

a set of layout planes by checking two criteria, boundary distance

and orthogonality.

πi and the boundary ∂O because the layout planes, espe-

cially walls, surround the space. τ1 and τ2 are two user-

defined parameters. The distance function g is defined as

g(∂O, πi) =
1

|Sπi
|

∑

p∈Sπi

|∂O − pproj|, (7)

where pproj is the projected point of p on to the base plane

and Sπi
denotes a set of 3D points that belong to the plane

πi. |Sπi
| is the cardinality of Sπi

. If two criteria are satis-

fied, we regard the corresponding dominant plane as a lay-

out plane. Figure 4 shows the result of layout plane estima-

tion.

3.3. Global Registration with Scene Layout

As the last step, we reconstruct the entire scene by reg-

istering all the fragments F with the aid of the estimated

scene layout in the world coordinate system. We pose

a global optimization problem for the layout-constrained

global registration. To resolve the problem, we introduce

a joint approach of the layout estimation and the global reg-

istration because they depend on each other. A detailed de-

scription is given in the following subsections.

Terminologies: Let I denote a set of fragment pairs. If

a pair of fragments, (Fi,Fj) ∈ I, has an overlapping re-

gion, we define a set of correspondences, Ci,j , between their

points in the overlapping region. Similarly, we define a set

of correspondences, Ci, between each fragment Fi and the

layout where the corresponding point of the layout is a vir-

tual point on the layout plane. For example, we project a

point p of a fragment Fi onto the nearest layout plane and

establish a correspondence if the distance between the point

and the virtual (projected) point is small. For a point p ∈ R
3

and a transformation T, a transformed point is represented

by T(p) = Rp+ t where R ∈ SO(3) is a rotation matrix

and t ∈ R
3 is a translation vector.

Objective function: For the global registration of all frag-
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ments, we define the following energy function,

ER(T ) =
∑

i

Elayout(Ti) + λ1

∑

i,j

Efrag(Ti,Tj)

+ λ2

∑

i,j

Epair(Ti,Tj),
(8)

where λ1 and λ2 are weighting parameters and are deter-

mined depending on the numbers of points and fragment

pairs. The first term is to minimize the distance between

correspondence points of the layout and each fragment.

Among many metrics [4, 8, 24], we use the point-to-plane

metric [8]. By the metric, the first term is defined as

Elayout(Ti) =
∑

(p,q)∈Ci

∥

∥(Ti(p)− q)⊤Rinp

∥

∥

2
, (9)

where np is a normal vector of p and q is a virtual (pro-

jected) point on the layout. Since the layout is estimated

under the weak Manhattan world assumption in Sec. 3.2,

the aligned fragments have axis-aligned geometry, e.g., or-

thogonality between a wall and the ceiling. It is worthy of

note that, since we only constrain the positions of points

along the envelope of the scene, objects inside the space

are not necessarily planar. The second term is to minimize

the distance between correspondence points of each pair of

fragments. In the same way as the point-to-plane metric [8],

the second term is defined as

Efrag(Ti,Tj) =
∑

(p,q)∈Ci,j

∥

∥(Ti(p)−Tj(q))
⊤Rinp

∥

∥

2
.

(10)

For the last term, we incorporate the pairwise transforma-

tion constraint as

Epair(Ti,Tj) = δ
(

Ti ◦ T̃i,j −Tj

)

, (11)

where T̃i,j is a pairwise transformation estimated by the it-

erative closest point (ICP) algorithm [8] and δ is the sum

of the norms of elements. The pairwise transformation con-

strains the feasible solution space to avoid a degenerate sit-

uation, e.g., a fragment moves too much or the scene struc-

tures are collapsed. To optimize Eq. (8), we use the widely

known Gauss-Newton method.

Joint optimization: Since the layout estimation and the

global registration problems are closely related to each

other, we alternately estimate the scene layout and the opti-

mal transformations instead of solving the complex joint es-

timation problem. Algorithm 1 shows the entire procedure.

Initially, we regard that the initial transformations T0 and

fragments F are given. Here, we set the coordinates of the

first fragment to the world reference coordinates so that T0

is fixed to an identity matrix. Afterwards, we repeatedly es-

timate the scene layout and minimize the objective function

Algorithm 1 Joint layout estimation and global registration

Require: F , T0
Ensure: T

1: establish Ci,j ∀(Fi,Fj) ∈ I
2: T ← T0
3: repeat

4: estimate Playout using the method of Sec. 3.2

5: establish Ci ∀Fi ∈ F
6: repeat

7: compute ∆T using Eq. (8)

8: T ← T +∆T
9: until N times

10: transform F using T
11: until M times

Figure 5. Joint optimization procedure. As we iterate layout es-

timation and global registration procedures, the fragmented struc-

tures merge into a wall region.

in Eq. (8). We experimentally confirmed that the inner and

outer loops in Algorithm 1 generally converge commonly

within 10 and 20 iterations, respectively.

The optimized process is shown in Fig. 5. As the number

of the iterations increases, the curved walls are straightened

more. The reconstructed room has a cuboid shape at the end

of the iterations. Consequently, the joint approach improves

the global registration and the layout estimation.

4. Experimental Results

We experimentally verified the proposed method in

quantitative and qualitative ways by using publicly avail-

able datasets: the augmented ICL-NUIM dataset [9] and

the SUN3D dataset [46]. The former is a synthetic dataset

generated in consideration of a noise model of a consumer

depth camera. Since this dataset provides the ground truth

trajectories and 3D structures, we performed the quantita-

tive evaluation using this dataset. In contrary, the SUN3D

dataset was captured in the real-world environment using a

hand-held camera and did not provide the ground truth in-

formation. Thus, we use this dataset to confirm the feasibil-

ity of the proposed method in practical situations. For eval-

uation, we compare the proposed method with the state-of-

the-art methods [41, 43, 46, 9]. Here, Kintinuous [41] and

ElasticFusion [43] are online methods, and SUN3D struc-

ture from motion (SFM) [46], the Choi et al. method [9],

and the proposed method are offline methods. Please note

167



Table 1. Reconstruction performance evaluation in terms of aver-

age and median errors by using four synthetic datasets. The unit

of error is centimeter. The best performance in each row is repre-

sented in bold.

Kint. [41] Elas. [43] SUN3D [46] Choi [9] Ours

Liv.1
Avg. 13.19 9.31 12.69 5.41 2.72

MED 7.47 4.96 5.85 4.39 1.56

Liv.2
Avg. 11.60 12.11 10.53 7.12 5.43

MED 7.45 6.41 5.79 3.65 3.25

Off.1
Avg. 9.01 4.89 34.41 3.51 4.02

MED 5.75 2.67 28.04 2.64 2.72

Off.2
Avg. 9.48 5.36 33.09 3.52 3.14

MED 4.33 2.30 29.61 1.92 1.79

(a) (b)

Figure 6. Visualization of reconstruction errors of the Choi et al.

method [9] (a) and the proposed method (b) in a wall region of the

Livingroom1 dataset. The proposed method shows consistently

lower errors than (a), with the aid of layout information.

that detailed parameters used for our experiments and more

results can be found in the supplementary material.

Reconstruction quality: To measure the quality of esti-

mated structures, we compute the average and the median of

errors. The errors are defined as the distance between an es-

timated 3D point and its closest ground truth point. Table 1

shows the reconstruction errors of the proposed method and

those of the-state-of-the-art methods. Overall, the proposed

method shows superior results compared to the state-of-

the-art methods, except the Office1 dataset. Occasionally,

the reconstruction error of the proposed method is slightly

higher than that of the Choi et al. method because of over-

fitting noisily reconstructed fragments to the scene layout.

However, in most cases, the proposed method shows more

accurate results than the Choi et al. method because planar

structures are preserved better than the results of the Choi

et al. method.

It is worthy of note that the global registration without

the layout information frequently shows bended walls and

floors owing to noisy measurements as shown in Fig. 7.

In contrast, the proposed method preserves largely planar

structures with the aid of scene layout information. For ex-

ample, Fig. 6(a) shows non-uniform reconstruction errors

in the wall region reconstructed by the Choi et al. method.

The proposed method shows consistently small errors over

the wall in Fig. 6(b). This advantage primarily comes from

the layout information. Thus, we claim that the layout in-

formation is an important cue for accurate indoor scene re-

construction.

Trajectory accuracy: The trajectory error is measured in

Table 2. Comparison of trajectory errors in terms of root mean

squared errors (RMSE) and median errors for synthetic datasets.

The errors are measured in centimeter. The best performance in

each row is represented in bold.

Kint. [41] Elas. [43] SUN3D [46] Choi [9] Ours

Liv.1
RMSE 57.36 59.02 32.22 9.87 9.49

MED 45.16 43.83 27.28 7.88 8.18

Liv.2
RMSE 29.32 37.09 29.13 13.63 12.18

MED 27.16 24.67 24.15 11.81 10.50

Off.1
RMSE 18.29 13.10 50.84 6.22 9.95

MED 12.11 9.69 42.68 5.39 9.31

Off.2
RMSE 27.18 13.26 29.75 8.89 6.93

MED 25.25 11.89 28.40 9.02 5.86

terms of the root mean squared error (RMSE) and me-

dian error between the ground-truth trajectory and an es-

timated camera trajectory. Since an accurate camera tra-

jectory implies the accurate registration of scene fragments,

we use this metric to evaluate various indoor reconstruc-

tion methods. Table 2 shows the trajectory errors of the

proposed method and the state of the art methods. The pro-

posed method outperforms other methods except the Office1

dataset similarly as in Table 1. This quantitative comparison

also confirms that the proposed method is promising, espe-

cially when previous approaches cannot preserve the global

scene structures well.

Qualitative evaluation: We compare reconstructed results

of some selected methods [41, 46, 9] in challenging real-

world datasets provided by Xiao et al. [46]. As shown

in Fig. 7, Kintinuous, SUN3D SFM, and the Choi et al.

method cannot preserve the genuine structure of walls in the

real-world datasets. These results of the methods except our

method show curved structures as well as largely distorted

walls. Moreover, the SUN3D SFM shows noisy 3D points

along the wall region. However, in the presence of a large

amount of errors, the proposed method shows significantly

improved results as shown in Fig. 7(e) and 7(j). The effect

of the layout-constrained registration can be found clearly

in real-world datasets.

For the qualitative evaluation using a weak Manhattan

world scene, the results of hotel stb scan3 dataset are used

for comparison with other methods. As shown in Fig. 8(a)

and 8(b), the Choi et al. method and ours yield good re-

construction results in the weak Manhattan world scene. In

addition, we performed the experiments only using the first

1,000 frames out of 3,756 frames of the same dataset so that

loop closures were not detected. Here, it is observed that the

result reconstructed by the Choi et al. method (Fig. 8(c)) is

slightly bent, whereas the result by our method (Fig. 8(d))

is similar to the result by applying loop closing (Fig. 8(b)),

with the aid of layout information. Similarly, loop closures

are not detected properly in Fig. 7(d) and 7(i), and there-

fore, reconstruction results are poor. Nevertheless, the pro-

posed method recovers rectangular shapes of the scene in

Fig. 7(e) and 7(j). Slight quality degradation can occasion-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Comparison of reconstructed results for real-world datasets [46]. From the left to the right; Kintinuous [41], ElasticFusion [43],

SUN3D SFM [46], Choi et al. [9], and the proposed method, respectively. From the top to the bottom; mit dorm next sj and mit lab hj

datasets, respectively. Reconstructed results are compared using the top-view to clearly show registration errors in wall regions.

(a) [9] with loop closure (b) Ours with loop closure

(c) [9] without loop closure (d) Ours without loop closure

Figure 8. Reconstruction results in the weak Manhattan world

scene.

ally happen if the reconstructed model is overfitted, e.g.,

as in Office1. However, the proposed method improves the

reliability of reconstruction while retaining accurate recon-

struction results.

Computational complexity: The proposed method was

implemented mixedly in MATLAB and C++ and ran on 2.6

GHz CPU with single core. For the Livingroom1 dataset,

the total computational time of our method was about 3

hours, which was two times of that of the Choi et al. method

implemented in C++. The largest burden in the process

is the dominant plane extraction step. The process of the

dominant plane extraction has a complexity of O(nml)

since it computes the distance between n plane hypothe-

ses and m points in l fragments. Although the proposed

method is an offline method as [46, 9] and is slower than

the state-of-the-art methods, we explicitly assure that our

method offers more reliable, robust, and accurate indoor

3D reconstruction results in comparison with the real-time

methods [41, 43] and other state-of-the-art offline meth-

ods [46, 9].

5. Conclusion

We have presented an indoor 3D reconstruction algo-

rithm that alternately resolves two complementary prob-

lems, scene layout estimation and global registration, in it-

erative fashion. Given initially registered scene fragments,

we estimate the envelope of a scene through hierarchical

clustering and energy-based multi-model fitting and find a

minimum set of planes that best describe the entire scene.

From these plane hypotheses, we extract the scene layout

that surrounds the entire point cloud, assuming that they

coincide with walls, a floor, and a ceiling. We exploit the

scene layout information to obtain globally consistent re-

construction results by constraining the global registration

problem with scene layout information. We verified the su-

periority of the proposed method by using various datasets,

including a challenging real-world dataset.
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