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Abstract

Semantic lines characterize the layout of an image. De-

spite their importance in image analysis and scene under-

standing, there is no reliable research for semantic line de-

tection. In this paper, we propose a semantic line detec-

tor using a convolutional neural network with multi-task

learning, by regarding the line detection as a combination

of classification and regression tasks. We use convolution

and max-pooling layers to obtain multi-scale feature maps

for an input image. Then, we develop the line pooling layer

to extract a feature vector for each candidate line from the

feature maps. Next, we feed the feature vector into the par-

allel classification and regression layers. The classification

layer decides whether the line candidate is semant ic or not.

In case of a semantic line, the regression layer determines

the offset for refining the line location. Experimental results

show that the proposed detector extracts semantic lines ac-

curately and reliably. Moreover, we demonstrate that the

proposed detector can be used successfully in three appli-

cations: horizon estimation, composition enhancement, and

image simplification.

1. Introduction

The layout of an image is characterized by significant

lines in many cases [11, 14]. For example, in Figure 1, a

horizontal line in a static scene makes viewers comfortable,

while diagonal lines bring a sense of dynamics. Also, a

mirrored scene across a symmetric line looks balanced, and

vertical lines convey an uplifting feeling. Such significant

lines, separating different semantic regions in a scene, are

called semantic lines. Note that, rather than being obvious

line segments, semantic lines are often implied by bound-

aries between semantic regions, as in Figures 1(a) and (b).

Knowing the arrangement of semantic lines is important

in understanding images. However, little work has been

made for detecting semantic lines, whereas various tech-

niques have been proposed to detect main subjects or points,

including salient object detection [8, 37, 42] and vanishing

point detection [40, 41]. Also, horizon detection schemes

(a) Horizontal line (b) Diagonal line

(c) Symmetric line (d) Vertical lines

Figure 1. Semantic line examples.

have been proposed in [23, 38, 41], but horizons compose

only a small subset of semantic lines. In this work, we first

propose an automatic algorithm to detect a wide variety of

semantic lines.

Semantic line detection has practical importance, since it

is applicable to various computer vision tasks. For instance,

semantic lines can be used to estimate the levelness of an

image, which is one of the important factors to enhance pho-

tographic composition [14, 21] in image aesthetics [22, 27].

It is difficult for amateurs to adjust the levelness. Seman-

tic line detection can facilitate this task, as in Figure 2(a).

Note that there are several methods for estimating the lev-

elness of images [13,23]. Koo and Nam [23] detect skewed

horizons. Fischer et al. [13] estimate a skew angle of a ro-

tated image using a neural network. However, it is hard

to enhance image composition using their method, which

does not provide explicit semantic cues, such as horizons.

In [24,28], skew estimation methods, tailored for document

images, also have been proposed.

Moreover, notice that semantic lines are placed on

boundaries of semantically important regions. Thus, we

can divide an image into semantic regions along semantic

lines and simplify the image by discarding color and tex-

ture details in each region and retaining only the essential

information, as shown in Figure 2(b). Such a simplified
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Composition Enhancement

(a)

Image Simplification

(b)

Figure 2. Applications of semantic line detection: detected semantic lines are used to enhance the levelness of an image in (a) or to

simplify an image by discarding color and texture details and retaining only the spatial layout in (b).

image can be exploited as a useful prior in many vision ap-

plications, including single image depth estimation [10,34],

texture transfer [15], and semantic scene segmentation and

understanding [16, 33].

Despite the importance of semantic lines, it is not

straightforward to detect them. While some semantic lines

are apparent and clearly identifiable, others are less obvious

and should be inferred from various cues. For example, in

Figure 3(a), a semantic line is detected based on a holis-

tic understanding of the image to separate the sky from the

ground. Note that it is different from line segments in Fig-

ures 3(b) and (c), extracted by conventional line segment

detectors [4, 19]. A lot of fragmented linear edges are de-

tected across which gray levels or colors vary rapidly.

In this work, we propose a semantic line detector, based

on a convolutional neural network (CNN), called seman-

tic line network (SLNet). Note that CNNs can extract high

level features, which are essential for understanding image

semantics, more effectively than the traditional feature en-

gineering [36]. Inspired by recent successes in multi-task

learning [17, 26, 43], we regard semantic line detection as

a combination of two tasks: classification and regression.

More specifically, the proposed SLNet first uses a series of

convolution layers to yield feature maps of an input image.

Then, two line pooling layers extract the line features for a

candidate line from feature maps at different scales, which

are then concatenated and fed into the parallel classification

and regression layers. The classification layer determines

whether a candidate line is semantic or not. In case of a

semantic line, the regression layer refines its location by

computing the regression offset. Experimental results show

that the proposed SLNet detects implied, as well as obvious,

lines accurately and reliably.

We make the following major contributions:
∙ We propose the notion of semantic line and construct a

publicly available dataset for semantic line detection,

called the semantic line (SEL) dataset, in which each

image is annotated with ground-truth semantic lines.

∙ We propose the semantic line detector, by employing

a CNN with multi-task, multi-scale learning. We also

develop the line pooling layer to extract the features of

semantic lines effectively.

(a) (b) (c)

Figure 3. Semantic lines are different from line segments. A

semantic line is detected by the proposed algorithm in (a), whereas

line segments are extracted by the LSD method [19] in (b) and the

EDLines method [4] in (c).

∙ We provide two semantic line detection modes for var-

ious applications: primary semantic line detection and

multiple semantic line detection. To demonstrate its

many potential applications, we apply the proposed

semantic line detector to horizon estimation, compo-

sition enhancement, and image simplification.

2. Related Work

2.1. Local Region Representation in CNNs

Since CNNs can extract high level, as well as low level,

features effectively, they have been adopted in various vi-

sion applications [17, 18, 30] recently. In particular, object

detection [17, 32] and semantic segmentation [9, 20] need

to analyze local regions, rather than an entire image. One

approach is to crop local regions from an image and feed

them into a CNN [18, 29]. However, different local regions

may involve the same computations. To save such redun-

dant computations, attempts have been made to develop a

CNN that extracts regional features from the convolutional

feature map for a full image [7,9,17]. Dai et al. [9] proposed

the convolutional feature masking, in which the activations

of a feature map corresponding to a target region are kept

and the others are set to 0. In [7,17], the max-pooling is ap-

plied on a target region. Whereas Girshick [17] performed

the pooling on the tight bounding box of a target region,

Caesar et al. [7] developed the free-form max-pooling.

2.2. Multi-Task Learning

Multi-task learning refers to the joint training of a net-

work to solve multiple problems, which share common lay-
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Figure 4. The architecture of SLNet, which contains 13 convolution layers (conv1 ∼ conv13), two line pooling layers (lp1 and lp2), and

two fully connected layers (fc1 and fc2). ‘Cls’ and ‘Reg’ denote the classification and regression layers, respectively.

ers for intermediate parameterization [31]. If the problems

are sufficiently related, multi-task learning can lead to bet-

ter generalization and benefit all the problems. For instance,

Girshick [17] addressed the problem of object detection as

the combination of classification and localization: the clas-

sification layer categorizes an object proposal into one of

the pre-defined classes, and the localization layer outputs

a refinement offset of the object location through the re-

gression. Inspired by [17], we develop a multi-task CNN

to dichotomize each line candidate into either semantic or

non-semantic class and, in case of a semantic line, to deter-

mine the offset for refining the line location.

2.3. Semantic Lines in Photographic Composition

Photographic composition is determined by the arrange-

ment of subjects in a photograph. Semantic lines are impor-

tant composition elements. In well-composed photographs,

semantic lines direct viewers’ attention to the photogra-

phers’ intended focal points and yield visually balanced im-

ages [14, 21]. There are several composition rules for ob-

taining attractive photographs based on semantic lines. For

example, a horizontal line tends to divide an image height

into the golden ratio [6, 14] in a visually balanced image.

Also, it is desirable to locate a slanted semantic line on an

image diagonal [21,25]. In this way, semantic lines are cru-

cial to the aesthetic qualities of images, and they provide

important information for understanding the spatial layouts.

3. Proposed Semantic Line Detector

We detect semantic lines in an image by classifying

and regressing candidate lines using the proposed network,

SLNet. We generate candidate lines by connecting two

points, which are uniformly sampled on image boundaries.

We parameterize a line l with a quadruple (�1, �2, �3, �4), or

in alternative notations (�s, �s, �e, �e), where (�s, �s) and

(�e, �e) are the start and end points of l, respectively.

3.1. Semantic Line Network: SLNet

Figure 4 shows the architecture of SLNet that takes an

input image and a candidate line, and yields the classifica-

tion and regression results. SLNet is based on the VGG16

network [36]. Specifically, we employ the 13 convolutional

layers (conv1 ∼ conv13) in VGG16. Then, for subsequent

layers, we design two line pooling layers (lp1 and lp2) and

two fully connected layers (fc1 and fc2). The line pooling

layers extract fixed-size line features from the convolutional

feature maps. To take advantage of multi-scale features [5],

we extract two line features from different convolutional

layers (conv10 and conv13), where conv10 is twice larger

than conv13. The line features are concatenated and fed

into fc1 and fc2. Finally, the network branches into two

parallel output layers: one for classifying the candidate line

(Cls), and the other for computing regression offsets for the

line parameters (Reg).

Multi-Task Loss Function: We divide the semantic line

detection problem into the classification and regression

tasks and conquer the two tasks using the Cls and Reg layers

in Figure 4. The classification layer Cls computes the soft-

max probability vector p = (�, �), where � and � are the

probabilities that a candidate line l belongs to the seman-

tic and non-semantic classes, respectively. The regression

layer Reg outputs a line offset Δl = (Δ�1,Δ�2,Δ�3,Δ�4).
For scale-invariance, the offset Δl is normalized by the min-

imum of the width and the height of the input image.

A training candidate line l is annotated with the ground-

truth binary vector p̄ = (�̄, �̄) and the ground-truth re-

gression offset Δl̄ = (Δ�̄1,Δ�̄2,Δ�̄3,Δ�̄4). We define the

multi-task loss � as

�(p, p̄,Δl,Δl̄) = �cls(p, p̄) + �reg(Δl,Δl̄) (1)

where �cls(p, p̄) and �reg(Δl,Δl̄) are the classification

loss and the regression loss, respectively.

For the classification loss, we use the cross-entropy

�cls(p, p̄) = −�̄ log �− �̄ log �. (2)
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Convolution activation Line pooling activation
Figure 5. Illustration of the line pooling. Each line pooling acti-

vation is bilinearly interpolated from the four nearest pixels in the

convolutional feature map.

Also, we define the regression loss as

�reg(Δl,Δl̄) =

4
∑

�=1

�(Δ�� −Δ�̄�) (3)

where � is the smooth �1 function that is less sensitive to

outliers,

�(�) =

{

0.5�2 if ∣�∣ < 1,
∣�∣ − 0.5 otherwise.

(4)

Line Pooling Layer: The convolutional layers compute

convolutional feature maps to describe the entire image. We

design the line pooling layer to extract a line feature (i.e.

regional representation of a candidate line) from a convolu-

tional feature map. To obtain a line feature of a fixed-size

� , the line pooling layer uniformly samples � pooling lo-

cations along the candidate line. However, most sampled

locations are not exactly on the pixel lattice of the feature

map. Thus, the line pooling layer performs bilinear inter-

polation on each sampled location. Let ��
� denote the line

pooling activation for channel � on the �th sampled loca-

tion. Also, let ��
� be the activation on the �th pixel in the

feature map. Then, the line pooling activation is given by

��
� =

∑

�∈� (�)

����
�
� (5)

where � (�) denotes the set of the four nearest pixels to

the �th sampled location, and ��� is the bilinear weight

for ��
�. Figure 5 illustrates the bilinear interpolation for

computing line pooling activations.

In the backpropagation, the derivatives are routed

through the line pooling layer. The backward function of

the line pooling layer computes the partial derivative of the

loss function in (1) with respect to each input activation via

∂�

∂��
�

=
∑

�:�∈� (�)

���

∂�

∂��
�

. (6)

Instead of the proposed linear pooling, we may perform

the conventional RoI pooling [17] over the bounding box of

a candidate line. However, this box pooling may be inef-

fective for the classification purpose, when both semantic

and non-semantic lines are within the same box and their

features are blended. We will show that the proposed line

pooling layer outperforms the box pooling in Section 4.

Multi-Scale Line Feature: Each convolution layer aggre-

gates input activations into an output activation. Thus, in a

later convolution layer, a single activation describes a larger

region of an image. In other words, a later layer has a larger

receptive field. Hence, lp1, which extracts the line feature

from the last convolution layer (conv13), is effective in de-

tecting semantic lines, implied by large-scale objects. How-

ever, because of its large receptive field, lp1 cannot locate

semantic lines with a high level of precision. To overcome

this problem, we use an additional line pooling layer, lp2,

to extract a finer-scale line feature from conv10. Note that

the receptive field of conv13 is about twice larger than that

of conv10. Both line pooling layers lp1 and lp2 extract line

features of a fixed-size � . We normalize these features to

equalize their contributions and concatenate them to con-

struct a multi-scale line feature.

SLNet Training: We initialize the parameters of the con-

volutional layers using the pre-trained VGG16 network [36]

on the ILSVRC-2012 dataset [35]. The other layers are

initialized with zero-mean Gaussian random numbers. We

train SLNet with the SEL dataset. The parameters are up-

dated via the stochastic gradient descent with a batch size of

200 line candidates, minimizing the loss function in (1). We

start with a learning rate � = 0.001 for all layers and shrink

it via � ← 0.1� after every two epochs. A momentum of 0.9

and weight decay of 0.0005 are used.

For each training image, we flip it horizontally with

probability 0.5. To use SLNet in a scale-invariant man-

ner, an input image is resized to 400×400. Only a lim-

ited number of positive training data (i.e. semantic lines)

are available, while there are plenty of negative data. For

data balancing, we generate additional semantic lines near

a ground-truth line by deviating its two end points (�̄s, �̄s)
and (�̄e, �̄e). Specifically, we move the endpoints either

horizontally or vertically, depending on the orientation of

the line, within the range [−20, 20], and use them as addi-

tional positive data with the corresponding offsets Δl̄’s. On

the other hand, the regression offsets of all negative data are

set to Δl̄ = (0, 0, 0, 0).

3.2. Two Semantic Line Detection Modes

For versatile use of SLNet in various applications, we

provide two detection modes for semantic lines: primary

and multiple line detection modes.

Primary Line Detection: The photographic composition

of an image is often characterized by a single semantic line.

Hence, in the primary line detection mode, we straightfor-
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(a) (b) (c) (d) (e)

Figure 6. Primary semantic line detection. For easier comparison, (a)∼(d) show magnified views of the red window in (e). They contain

different detection results, in which the initial candidates are in blue and the regressed lines are in yellow. Among them, the regressed line

in (a) is selected as the primary semantic line. In (e), it is observed that the primary semantic line is precisely located on the horizon.

wardly detect the most important line using SLNet. First,

we generate 1, 308 candidate lines in an image. Then,

the classification layer computes the soft-max probability

� for each candidate line. A candidate with a higher soft-

max probability is regarded as semantically more important.

Accordingly, we detect the candidate lmax with the max-

imum soft-max probability �max and obtain the regressed

line l̃max by

l̃max = lmax +Δlmax (7)

where Δlmax is the offset computed by the regression layer.

Then, we declare the regressed line l̃max as the primary se-

mantic line. Figure 6 shows some candidate lines, their re-

gression results, and the selected primary semantic line.

Multiple Line Detection: An image usually contains more

than one semantic lines. In the multiple line detection mode,

a candidate line is declared as a semantic line and regressed

similarly to (7), if its soft-max probability is higher than 0.5.

However, we carry out non-maximum suppression

(NMS) to prevent multiple semantic lines from being too

close to one another. To this end, assuming that a line near

many edge pixels tends to be more semantic, we compute

the nearby edge density for each regressed line l̃. We first

project neighboring edge pixels [39] onto l̃. Note that the

pixels, whose Euclidean distances to l̃ are less than 3, are

defined as the neighbors. Then, we define the edge density

�(̃l) as

�(̃l) =
�edge

�all
(8)

where �all is the number of all pixels on the line l̃, and

�edge is the number of the pixels on l̃ to which neighboring

edge pixels are projected.

Given a pair of semantic lines, we measure their distance

as follows. Suppose that one line divides the image into

regions � and �, and the other into �′ and �′. We measure

the intersection over union (IoU) ratios between � and �′

and between � and �′, respectively. Then, we average the

two IoU ratios to compute the mean IoU (mIoU). If mIoU >

0.85, we regard the lines as duplicated and suppress the line

that yields a lower edge density in (8). After the NMS, we

output the remaining lines as the multiple semantic lines.

Figure 7. Sample images from the SEL dataset with the ground-

truth semantic lines.

4. Experimental Results

4.1. SEL Dataset

We constructed the SEL dataset, composed of 1,750 out-

door images from photo-sharing websites [1–3]. We ran-

domly select 90% of the images for training and use the

remaining images for test. To obtain ground-truth, we re-

quested six human subjects with basic knowledge on pho-

tographic composition to draw semantic lines on each im-

age. They often drew lines at slightly different locations.

To remove duplicated lines, we grouped lines into a cluster

if their mIoU was higher than 0.85. Next, we again asked

the subjects to select the representative line for each clus-

ter. If an image has a single representative line, we set the

line as the ground truth primary semantic line. If an image

has multiple representative lines, we requested the subjects

to rank them according to their semantic importance. We

then declared the line with the best rank to be the ground

truth primary semantic line, and the others to be additional

ground-truth semantic lines. In the dataset, 61% of the im-

ages contain multiple semantic lines. Figure 7 shows some

images with the ground-truth lines. While several semantic

lines are obvious, many of them are implied. We will make

this dataset publicly available.

4.2. Semantic Line Detection Results

First, we qualitatively assess the performance of the pro-

posed semantic line detector on the SEL dataset. Figure 8

shows detection results for primary and multiple semantic

lines. We see that the primary semantic lines identifies the

photographic composition rules of images, such as horizon,

diagonal, and symmetry. The multiple semantic lines repre-

sent the spatial layouts of images efficiently. In most cases,
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Figure 8. Semantic line detection results. Primary semantic lines are depicted by dashed red ones, while multiple semantic lines by solid

yellow ones.
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Figure 9. The accuracy, precision, and recall curves in terms of

the threshold � . In ‘rect’ and ‘slp,’ the proposed multi-scale line

pooling ‘mlp’ is replaced by the multi-scale bounding box pooling

and the single-scale line pooling, respectively. Also, ‘w/o Reg’

means that the regression layer is not employed.

a primary semantic line is also detected near one of the mul-

tiple semantic lines, although they are not exactly the same

because of NMS in the multiple line detection mode.

Next, we evaluate the semantic line detection perfor-

mance quantitatively. A semantic line is regarded as cor-

rectly detected if its mIoU score with the ground-truth line

is greater than a threshold � . Then, we define the accuracy

of the primary semantic line detection as

Accuracy =
��

�
(9)

where �� is the number of the test images whose primary

semantic lines are correctly detected, and � is the number

of all test images. For the multiple semantic line detection,

we define the precision and the recall as

Precision =
��

�� +��

, Recall =
��

�� +��

, (10)

where �� is the number of correctly detected semantic

lines, �� is the number of false positives, and �� is the

number of false negatives.

Figure 9 shows the accuracy, precision, and recall curves

according to the threshold � . In Table 1, we report the area

under curve (AUC) performances of the accuracy, precision,

and recall curves in Figure 9, which are denoted by AUC A,

AUC P and AUC R, respectively. In the proposed SLNet in

Figure 4, the multi-scale line pooling plays an important

Table 1. Comparison of AUC scores (%).

Primary Multiple

AUC A AUC P AUC R

SLNet (rect) 51.37 69.69 62.96

SLNet (slp) 84.99 67.87 50.40

SLNet (mlp w/o Reg) 90.88 79.26 82.14

SLNet (mlp) 92.00 80.44 83.50

role in detecting semantic lines. To analyze its efficacy, in-

stead of the line pooling layers lp1 and lp2, we adopt the

RoI pooling [17] layers, in which the rectangular box pool-

ing is performed over the bounding box of a candidate line.

This scheme is denoted by ‘rect’ in Figure 9 and Table 1.

Also, we perform the single-scale line pooling using only

lp1, which is denoted by ‘slp.’ In addition, we test how

much performance is degraded if the regression layer is not

employed. This is denoted by ‘w/o Reg.’

In Table 1, the proposed SLNet using the multi-scale line

pooling ‘mlp’ achieves the best detection performances for

both primary and multiple semantic lines, i.e. the highest

AUC scores 92.0%, 80.4% and 83.5% for accuracy, pre-

cision, and recall, respectively. The proposed SLNet (mlp)

provides 40.6%, 10.8%, and 20.5% higher AUC A, AUC P,

and AUC R scores than SLNet (rect), respectively. These

results indicate that the proposed line pooling layer extracts

relevant features from candidate lines more effectively than

the conventional RoI pooling. Moreover, SLNet (mlp) out-

performs SLNet (slp) by 7.0% in AUC A, 12.6% in AUC P,

and 33.1% in AUC R, which indicates that the multi-scale

pooling is effective for semantic line detection. Further-

more, we see that the regression layer improves the detec-

tion results, by refining the locations of detected lines.

5. Applications

We present three simple, but notable, applications of the

proposed semantic line detector.

5.1. Horizon Estimation
In an image, the horizon line is defined as the projec-

tion of the line at infinity for any plane that is orthogonal to

the local gravity vector [38]. Horizon lines and vanishing

points provide strong characterization of geometric scene
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Table 2. Comparison of AUC scores of the proposed SLNet and

SLNet HLW with the conventional methods [38, 41] on the HLW

dataset.

[41] [38] SLNet SLNet HLW

AUC (%) 58.24 71.16 70.51 82.33

(a) (b) (c)

Figure 10. Horizon estimation results in three HLW test iamges.

Green lines are ground truth horizons, and yellow lines are ex-

tracted by SLNet HLW.

structures [41]. Thus, horizon lines are important semantic

lines. We determine the horizon line in an image, by detect-

ing the primary semantic line using the proposed SLNet.

We compare SLNet with the conventional horizon esti-

mation methods [38,41] using the HLW dataset [38], which

consists of 14,000 training images and 2,018 test images.

Table 2 compares the AUC scores for accuracy. Note that

HLW contains many images satisfying the Manhattan world

assumption, while the SEL dataset consists of mainly land-

scape images. However, even the original SLNet, trained

with SEL, yields a comparable AUC score with the recent

state-of-the-art method [38]. Moreover, SLNet trained with

the HLW training images (SLNet HLW) outperforms [38]

by a large margin of 11.2%. Figure 10 shows horizon esti-

mation results of SLNet HLW.

5.2. Composition Enhancement
Photographic composition is an important factor in im-

age aesthetics [22,27]. Semantic lines can be used to adjust

the levelness of images and enhance their composition. If

a camera is not level when taking a photograph, the output

image contains a slanted horizon. Since the horizon is de-

tected as the primary semantic line in most cases, we can

use the proposed semantic line detector to adjust the hori-

zon. As in Figure 11(a), we first obtain the slant angle �

of the detected primary semantic line. Then, we rotate the

image by −�. Finally, we crop the rotated image based on

two criteria: 1) the cropped region should be divided into

the golden ratio by the semantic line [14, 21], and 2) the

cropped region should be as large as possible. Note that

the final result in Figure 11(c) is visually more attractive

than the input image in Figure 11(a). Figure 12 shows more

composition enhancement results.

5.3. Image Simplification
For extreme image simplification, we divide an image

into polygonal regions along multiple semantic lines and

then make each region homogeneous, while retaining the

spatial layout, as in Figure 13. Multiple semantic lines,

(a) (b) (c)

Figure 11. Composition enhancement based on the horizon ad-

justment: (a) input image with the detected semantic line in yellow

color, (b) horizon-adjusted image, and (c) final cropping result.

Figure 12. Composition enhancement results: (Top) original im-

ages with the primary semantic lines. (Middle) horizon-adjusted

images, in which white rectangles are the regions to be cropped.

(Bottom) final cropping results.

starting and ending at an image boundary, may cross one

another and lead to over-segmentation, as in Figure 13(a).

Hence, when detected semantic lines generate line seg-

ments, we remove some of the segments and retain the oth-

ers to divide the image into polygonal regions, as in Fig-

ure 13(b).

In order to select the line segments to be removed, we

define the semantic score of a line segment as

� = �sl + �ct + �sz. (11)

First, �sl is the soft-max probability of the line segment

computed by SLNet. Second, �ct is the contextual score.

Note that the two regions � and �, divided by the line seg-

ment, should be dissimilar from each other, if the line seg-

ment is semantic. Based on this observation, we generate

the bag-of-words descriptors f� and f� of � and � using

300 words in the CIELab color space [12], and then com-

pute the contextual score

�ct = �2(f�, f�∪�) + �2(f�, f�∪�) (12)

where f�∪� is the bag-of-words descriptor of the merged

region �∪�, and �2(⋅, ⋅) denotes the chi-squared distance.

Third, �sz is the size score. It is desirable that the line seg-
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(a) (b) (c)

Figure 13. Image simplification: (a) detected multiple semantic

lines, (b) retained line segments, (c) simplified image.

Figure 14. Image simplification: (Top) original images with re-

tained semantic line segments. (Bottom) simplification results.

Figure 15. Image simplification with object detection: (Top) orig-

inal images with retained semantic line segments and detected ob-

ject boxes. (Bottom) simplification results.

ment does not yield too tiny regions. Hence, we compute

�sz =
∣� ∪�∣

�
(13)

where ∣� ∪�∣ is the size of � ∪�, and � is the size of the

entire image. After computing the semantic score in (11)

for each line segment, we remove the line segment with the

minimum score. This is repeated until the minimum score

is higher than a threshold 0.715.

Figure 14 shows simplification examples. The top row

shows the retained semantic line segments. The bottom row

shows simplified images, which convey the overall layouts

and the essential color information. Figure 15 shows more

examples, in which we employ an object detector [17] to

keep object regions without simplification.

To quantify the simplification performances, we measure

the mean opinion score (MOS). We requested six human

subjects to assign a quality score: 1 (unacceptable), 2 (bad),

3 (medium), 4 (good), 5 (superb). Then, we averaged the

Table 3. Average MOS and CR of image simplification results on

the SEL dataset.
MOS CR

Simplification 3.17 8.05× 10
4

Simplification with object detection 3.92 5.12× 10
4

six scores to obtain MOS. Also, we measure the compres-

sion ratio (CR), which equals the original raw file size (in

bytes) of an image divided by the number of bytes to encode

the simplification result. The parameters of a line segment

require 8 bytes, and the color of a divided region needs 3

bytes. Thus, 8�� + 3�� bytes are used to encode a sim-

plification result, where �� and �� are the numbers of line

segments and regions, respectively. In addition, in the im-

age simplification with object detection, each detected box

is encoded by the JPEG technique.

Table 3 lists the average MOS and CR performances on

the SEL dataset. The simplification scheme provides MOS

of 3.17 and CR of 8.05 × 104, and that with object detec-

tion yield MOS of 3.92 and CR of 5.12 × 104. These re-

sults indicate that the proposed simplification scheme can

be employed as the basis of extremely low bit-rate image

compression and communications. Furthermore, as men-

tioned before, a simplified image can be exploited in single

image depth estimation [10, 34], texture transfer [15], and

semantic scene segmentation and understanding [16, 33].

More application examples, as well as semantic line de-

tection results, are available in supplemental materials.

6. Conclusions

We proposed the semantic line detector, called SLNet,

and demonstrated its practical importance for higher-level

vision tasks. The proposed SLNet performs the two tasks of

classification and regression. It obtains multi-scale feature

maps for an image. Then, the line pooling layer extracts a

local feature for each line candidate from the feature maps.

Next, the local feature is fed into the classification and re-

gression layers. The classification layer decides whether the

line candidate is semantic or not, and the regression layer

determines the offset for locating the line more accurately.

Experimental results showed that SLNet extracts implied,

as well as obvious, semantic lines accurately and reliably.

Furthermore, it was demonstrated that the proposed detec-

tor can be applied effectively for horizon estimation, com-

position enhancement, and image simplification.
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