
Temporal Superpixels Based on Proximity-Weighted Patch Matching

Se-Ho Lee

Korea University

seholee@mcl.korea.ac.kr

Won-Dong Jang

Korea University

wdjang@mcl.korea.ac.kr

Chang-Su Kim

Korea University

changsukim@korea.ac.kr

Abstract

A temporal superpixel algorithm based on proximity-

weighted patch matching (TS-PPM) is proposed in this

work. We develop the proximity-weighted patch match-

ing (PPM), which estimates the motion vector of a super-

pixel robustly, by considering the patch matching distances

of neighboring superpixels as well as the target superpixel.

In each frame, we initialize superpixels by transferring the

superpixel labels of the previous frame using PPM motion

vectors. Then, we update the superpixel labels of boundary

pixels, based on a cost function, composed of color, spa-

tial, contour, and temporal consistency terms. Finally, we

execute superpixel splitting, merging, and relabeling to reg-

ularize superpixel sizes and reduce incorrect labels. Exper-

iments show that the proposed algorithm outperforms the

state-of-the-art conventional algorithms significantly.

1. Introduction

Superpixel segmentation divides an image into a set of

meaningful regions. It reduces the number of image prim-

itives greatly to execute computer vision techniques effi-

ciently. Superpixels are used in various vision tasks, e.g. im-

age segmentation [16], video object segmentation [10], and

saliency detection [23]. While many superpixel methods for

static images have been proposed [1,8,12–15,17,19,25,33,

34], there are a relatively small number of temporal super-

pixel methods for video processing [1, 5, 12, 22, 26].

In general, both superpixel and temporal superpixel

methods divide an image into superpixels by minimizing

cost functions, which make each superpixel belong to a sin-

gle object and not overlap with other objects. However, if

a superpixel method is applied to each frame in a video

sequence independently, the resultant superpixels may be

temporally inconsistent. Thus, temporal superpixel meth-

ods [1, 5, 12, 22, 26] use color or motion information of

neighboring frames to generate temporally consistent super-

pixels. In particular, to reflect object movements, [5,12,22]

exploit optical flow information between frames. However,

extracting optical flow information requires high computa-

tional complexity.

In this work, we propose a temporal superpixel algorithm

based on proximity-weighted patch matching (TS-PPM).

First, we perform the proximity-weighted patch match-

ing (PPM) to estimate superpixel motion vectors efficiently.

In PPM, to determine the motion vector of a superpixel,

we consider the patch matching distances of neighboring

superpixels, as well as that of the target superpixel. We

then sum up those matching distances using the proxim-

ity between the target and neighboring superpixels. Sec-

ond, we initialize the superpixel label of each pixel in

a frame, by mapping the superpixel labels in the previ-

ous frames using the PPM motion vectors. Third, we re-

fine the initial superpixels by updating the superpixel la-

bels of boundary pixels iteratively based on a cost func-

tion. Finally, we perform superpixel splitting, merging,

and relabeling to prevent irregular superpixel sizes and in-

correct labeling. Experimental results show that the pro-

posed TS-PPM algorithm outperforms the conventional al-

gorithms [1, 5, 8, 12–15, 17, 19, 22, 25, 26, 33, 34], while de-

manding lower computational complexity than most of the

conventional algorithms. Furthermore, we demonstrate that

the proposed algorithm is applicable to video object seg-

mentation [10, 11, 20] and saliency detection [27, 32].

This paper has three main contributions.

∙ We propose PPM that robustly estimates the motion

vector of a superpixel using the information in neigh-

boring superpixels, as well as the target superpixel.

∙ We develop the temporal superpixel labeling scheme,

based on the cost function, which enforces superpixels

to be temporally consistent.

∙ The proposed algorithm shows remarkable perfor-

mances on the superpixel datasets [6,18,24] and is ap-

plicable to many computer vision tasks.

2. Related Work

2.1. Superpixel Methods

Many superpixel methods have been proposed. Levin-

shtein et al. [13] proposed Turbopixels, which initializes
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seeds based on the gradient information and propagates

them using the level-set methods.

K-means optimization methods, which assign each pixel

to the nearest cluster and update the cluster centroids iter-

atively, have been proposed [1, 14, 17]. Achanta et al. [1]

represented each pixel with spatial and color coordinates.

Li and Chen [14] adopted the cost function of the normal-

ized cuts in their K-means optimization. Liu et al. [17] pro-

posed content-sensitive superpixels, by measuring the areas

of Voronoi cells based on the content density. Thus, they

assigned small superpixels in content-rich regions and large

superpixels in homogeneous regions.

Liu et al. [15] proposed an entropy-based superpixel

method. They first constructed a graph on an image and

formulated a cost function, composed of the entropy rate of

a random walker on the graph and a balancing term. While

the entropy rate enforces superpixels to be compact and ho-

mogeneous, the balancing term imposes superpixels to have

similar sizes.

Coarse-to-fine superpixel methods, which update the la-

bels of superpixel boundary regions in multiple scales from

block to pixel levels, have been proposed [25, 33]. Van den

Bergh et al. [25] updated superpixel labels to enhance the

color homogeneity within each superpixel. Yao et al. [33]

employed the shape regularization term to make superpix-

els regular in shape and the boundary length term to reduce

superpixel boundary lengths.

Also, contour-based superpixel methods have been pro-

posed in [8, 12, 19, 34]. Moore et al. [19] and Fu et al. [8]

determined paths containing many object contour pixels

and divided superpixels along the paths. Zeng et al. [34]

proposed a superpixel method using geodesic distances.

They computed geodesic distances, based on the contour

information, obtained from gradient magnitudes. Then,

they assigned each pixel to the seed that has the smallest

geodesic distance and updated the position of each seed

iteratively. Lee et al. [12] adopted the contour constraint

to compel superpixel boundaries to be compatible with ob-

ject contours, extracted by the learning-based contour de-

tector [29]. Specifically, they determined the contour con-

straint by matching the extracted contour map with the con-

tour pattern set, constructed from the ground-truth contour

maps of training images.

2.2. Temporal Superpixel Methods

Compared with superpixel methods for image process-

ing, only a small number of temporal superpixel meth-

ods have been proposed for video processing. Achanta et

al. [1] and Van den Bergh et al. [26] extended their super-

pixel methods for video processing, respectively. Achanta

et al. [1] simply carried out the K-means optimization on

a three-dimensional signal, obtained by concatenating 2D

images along the time axis. Van den Bergh et al. [26] also

extended their superpixel method [25]. They constructed

color histograms, by considering previous frames as well

as the current frame, to yield superpixels with temporally

consistent colors. They also created and terminated super-

pixel labels to cope with color variation and object occlu-

sion. These extended schemes [1, 26], however, may be in-

effective when there exists fast motion in the scene since

they do not consider object movements.

To address object motion, [5, 12, 22] use optical flow in-

formation to determine the center of each superpixel. Reso

et al. [22] performed the K-means optimization, as in [1],

to assign superpixel labels. When calculating the average

color of each superpixel, they adopted a temporal sliding

window, containing the past and future frames as well as the

current frame. Thus, their method can yield temporally con-

sistent superpixels. Chang et al. [5] proposed another tem-

poral superpixel method, by employing a generative prob-

abilistic model. They initialized motion vectors of super-

pixels using optical flow information and then refined the

motion vectors based on a bilateral kernel. Lee et al. [12]

initialized the superpixel labels of a frame by transferring

those of the previous frame using the optical flow informa-

tion. Thus, they can label the same regions in consecutive

frames consistently. Although [5, 12, 22] can track objects

based on the motion information, they demand high com-

putational complexities for the motion estimation.

3. Proposed Superpixel Algorithm

This section proposes a superpixel algorithm for image

processing. For video processing, the proposed superpixel

algorithm is applied to the first frame. Then, based on high

correlations between frames, the resultant superpixels are

used to generate superpixels for subsequent frames, as will

be described in Section 4.

Let �1, . . . , �� denote superpixels in an image, and

�(p) ∈ {1, . . .�} be the superpixel label of pixel p. Thus,

notice that pixel p belongs to superpixel ��(p). For over-

segmenting an image into superpixels, we iteratively update

the superpixel labels of boundary pixels, which are located

at superpixel boundaries.

We update the superpixel label of a boundary pixel p

from �(p) to �(q) of a neighboring pixel q ∈ �p, which has

the smallest cost �(p,q). Here, �p denotes the set of the

4-neighbors of p. To preserve the topological relationship

among superpixels, as in [25, 33], changing the superpixel

label of p is allowed only when p is a simple point [4].

We formulate the cost function �(p,q) for updating the

superpixel label of p from �(p) to �(q) as

�(p,q) = [�C(p,q) + �L(p,q)]× �O(p,q). (1)

Let us describe each term in (1) subsequently.
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(a) Initial superpixels (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Figure 1. Illustration of the coarse-to-fine superpixel labeling (� = 96). Red lines are superpixel boundaries, while black lines in (b)∼(d)

are block boundaries. The superpixel labeling is done at block levels in (b)∼(d), and at the pixel level in (e).

3.1. Color Distance

We calculate the color distance between pixel p and su-

perpixel ��(q) by

�C(p,q) = ∥c(p)− �C(�(q))∥
2

(2)

where c(p) is the color of p, and �C(�(q)) denotes the aver-

age color of pixels within superpixel ��(q). In this work, the

CIELAB color space is used. The color distance �C(p,q)
is included in the overall cost function in (1) to enforce pixel

p to be assigned to a superpixel with a similar color.

3.2. Spatial Distance

We also use the spatial distance between p and ��(q),

�L(p,q) = ∥p− �L(�(q))∥
2

(3)

where �L(�(q)) is the average position of pixels within

��(q). Thus, the reduction of �L(p,q) has the effect of

assigning p to a neighboring superpixel ��(q) whose cen-

troid is near to p. �L(p,q) is incorporated into (1) to yield

compactly shaped superpixels.

3.3. Contour Term

Superpixels should adhere to object contours, since they

are used as the smallest meaningful units in applications. In

other words, a superpixel should not overlap with multiple

objects. We adopt the contour term �O(p,q) in (1) to make

superpixel boundaries compatible with object contours.

We employ the holistically-nested edge detection (HED)

scheme [29] to obtain a contour map of the input image,

as done in [12]. Whereas [12] performs the highly compli-

cated pattern matching to exploit contour information, we

simply define the contour term �O(p,q), based on the con-

tour map, as

�O(p,q) = ℎ(q) + ∥c(p)− c(q)∥2 (4)

where ℎ(q) denotes the HED contour response for pixel q.

The contour term �O(p,q) gets larger when q has a higher

contour response or the color difference between p and q

is larger. Therefore, �O(p,q) amplifies the cost function

in (1), when there is an object contour on q. The contour

term prevents each superpixel from overlapping with multi-

ple objects in general.

Algorithm 1 Superpixel Algorithm

1: Initialize superpixels in a regular grid

2: for level = 1 to 4 do

3: repeat for all simple points p

4: q
∗

← argminq �(p,q) and �(p) ← �(q∗) ⊳ (1)

5: Update the average colors and positions of superpixels

6: until convergence or pre-defined number of iterations

7: end for

3.4. Coarse-to-Fine Superpixel Labeling

We adopt a coarse-to-fine scheme, as in [25, 33]. We

first initialize � superpixels in a regular grid in Figure 1(a).

Then, we update superpixel labels at four levels. While the

update is carried out using blocks at levels 1∼3, it is done

using pixels at level 4. At the coarsest level 1 in Figure 1(b),

we divide each regular superpixel in Figure 1(a) into four

blocks and update their superpixel labels. We further divide

the blocks at levels 2 and 3 and perform the block label

update in Figures 1(c) and (d). Finally, at level 4, we update

the labels of boundary pixels in Figure 1(e).

For the block label update at levels 1∼3, we modify the

cost function in (1) accordingly. In (2)∼(4), we replace the

colors and positions of pixels with the average colors and

positions of blocks. Also, in (4), we replace the contour

response of a pixel with the maximum response of pixels in

a block.

Algorithm 1 summarizes the proposed superpixel algo-

rithm. At each level, we terminate the iterative update,

when there is no label change or the maximum number of

iterations are performed. The maximum number is set to 10.

4. Proposed Temporal Superpixel Algorithm

We extend the superpixel algorithm in Section 3 to gen-

erate temporal superpixels. The proposed TS-PPM algo-

rithm generates superpixels for frame �(�) based on the su-

perpixel label information for frame �(�−1).

4.1. Proximity-Weighted Patch Matching

In [5, 22], dense optical flow estimation is performed to

determine the motion of each superpixel, but it is computa-

tionally expensive to obtain dense optical flow vectors for

all pixels. Moreover, dense vectors are not necessary for
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(a) (b) (c) (d) (e)

Figure 2. An example of PPM: (a) contour map for �(�−1), (b) paths between �� and �� in �(�−1), (c) patches in �(�−1), (d) displaced

patches in �(�), and (e) boundary contour strength ℎ(�−1)(�, �). Note that (b), (c), and (e) show the enlarged regions of the white box in (a).

extracting the motion of a superpixel in this work. This is

because the superpixels in �(�−1) are already divided us-

ing the contour term in (4). Thus, each superpixel in �(�−1)

belongs to a single object in general, and all pixels in the su-

perpixel tend to have the same motion. Hence, instead of the

dense estimation, we estimate the motion vector of each su-

perpixel, by performing patch matching [3, 9] sparsely. For

robust motion estimation, we develop PPM in this work.

Figure 2 illustrates PPM. In Figure 2(b), colors repre-

sent the superpixel labels of regions within the white box in

Figure 2(a). As shown in Figure 2(c), we consider patches

centered at the average positions of the superpixels in Fig-

ure 2(b). Suppose that we estimate the motion vector of a

target superpixel �� from frame �(�−1) to frame �(�). To this

end, we use patches for neighboring superpixels, as well as

that for the target superpixel ��. The neighboring patches

are depicted by blue squares in Figure 2(c). Given a can-

didate motion vector v of ��, the target and neighboring

patches are matched to the displaced patches in �(�) in Fig-

ure 2(d). Then, the patch matching distances for the target

and neighboring patches are summed up with weights. A

high weight is assigned to a neighboring patch that is more

similar to the target patch. To quantify the similarity, we

compute the proximity between superpixels, using the patch

matching distance and the contour distance, as follows.

First, the intra-frame patch matching distance �P(�, �)
between superpixels �� and �� in frame �(�−1) is given by

�P(�, �) = (5)
∑

Δ

∥c(�−1)(�
(�−1)
L (�) +Δ)− c(�−1)(�

(�−1)
L (�) +Δ)∥2

where c(�−1)(p) is the color of p in �(�−1), and �
(�−1)
L (�) is

the average position of pixels within �� in �(�−1). In (5),

Δ = (Δ�,Δ�) and the summation is over −� ≤
Δ�,Δ� ≤ �. We set � = 3 to use 7× 7 patches.

Second, we compute the contour distance �O(�, �) be-

tween �� and �� in �(�−1). Suppose that there are two

adjacent superpixels, sharing a boundary. Then, we de-

fine the boundary contour strength between them as the av-

erage HED contour response of the pixels on the shared

boundary. Figure 2(e) is the magnified contour map of

Figure 2(a) and illustrates how to compute the boundary

contour strength ℎ(�−1)(�, �) between �� and ��. There

are many paths from �� to �� , as shown in Figure 2(b).

Among them, we find the optimal path that yields the min-

imum sum of the boundary contour strengths. Similar to

the geodesic distance, the minimum sum becomes the con-

tour distance �O(�, �). Specifically, let an index sequence

u = (�1 = �, �2, . . . ��−1, �� = �) denote a path from

�� to �� , where ���
and ���+1

are adjacent superpixels for

� = 1, . . . , � − 1. Then, we have the contour distance

�O(�, �) = min
u=(�1=�,...,��=�)

�−1
∑

�=1

ℎ(�−1)(��, ��+1). (6)

If there exist object boundaries in every path connecting su-

perpixels �� and �� , �O(�, �) has a high value.

Then, the proximity �(�, �) between superpixels �� and

�� is computed as

�(�, �) = exp

(

−
�P(�, �)

�2
P

−
�O(�, �)

�2
O

)

(7)

where the scaling parameters are �2
P = 2.0 and �2

O = 0.15.

�� is declared to be a neighboring superpixel of �� if �(�, �)
is higher than a threshold �w = 0.01.

Finally, we estimate the motion vector v
(�−1)
� of super-

pixel �� to yield the minimum PPM distance from �(�−1) to

frame �(�), given by

v
(�−1)
� = argmin

v

∑

�

∑

Δ

{�(�, �) (8)

× ∥c(�−1)(�
(�−1)
L (�) +Δ)− c(�)(�

(�−1)
L (�) + v +Δ)∥2}

where the summation over � is for the neighboring super-

pixels �� of ��. Using the neighboring superpixels, PPM

estimates the motion of �� robustly.

4.2. Temporal Superpixel Labeling

We initialize superpixel labels of frame �(�), by transfer-

ring those of frame �(�−1) using the motion vectors from

�(�−1) to �(�), estimated by PPM. During the initialization,

we do not assign superpixel labels to occluded or disoc-

cluded pixels �(�). We regard a pixel mapped from multiple

pixels in frame �(�−1) as occluded, and a pixel mapped from

no pixel as disoccluded. For example, Figure 3(c) shows the

initial superpixel label map of frame �(�), transferred from
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(a) (b) (c)

Figure 3. Initialization of a superpixel label map: (a) frame

�(�−1), (b) superpixel label map for �(�−1), and (c) initial label

map for �(�).

the label map of frame �(�−1) in Figure 3(b). In Figure 3(c),

occluded or disoccluded pixels are colored in black.

After the initialization, we perform the temporal super-

pixel labeling in a similar manner to Section 3. However,

the labels are updated at the pixel level only. The cost func-

tion �(p,q, �) for updating the superpixel label of a bound-

ary pixel p from �(p) to �(q) in frame �(�) is defined as

�(p,q, �) = [�C(p,q, �) + �L(p,q, �)]

× �O(p,q, �)× �T(p,q, �)
(9)

where �T(p,q, �) is the temporal consistency term. The

color distance �C(p,q, �), the spatial distance �L(p,q, �),
and the contour term �O(p,q, �) are defined in the same

way as (2), (3), and (4), respectively. However, when cal-

culating the color distance �C(p,q, �), we use the average

color of ��(q) from frame �(1) to frame �(�−1) to make su-

perpixels contain temporally consistent color information.

4.3. Temporal Consistency Term

We adopt the temporal consistency term �T(p,q, �) in

(9) to label the same region consistently between �(�−1)

and �(�). Let ℒp be the set of the superpixel labels that are

mapped to pixel p in �(�) from �(�−1) using the superpixel

motion vectors. Notice that ℒp consists of a single label

in a normal case, and multiple labels in an occluded case.

Also, ℒp is empty when p is disoccluded. The consistency

term �T(p,q, �) is lowered, when the superpixel label �(q)
belongs to ℒp. In other words, it is encouraged to update

the label of p with an element in ℒp.

However, the motion estimation is not perfect, and a su-

perpixel label � ∈ ℒp may be mapped from �(�−1) with

an incorrect motion vector v
(�−1)
� . We hence determine the

reliability of v
(�−1)
� at p as follows. First, we compute the

backward patch matching distance of v
(�−1)
� at p in �(�),

�(p, �, �) = (10)
∑

Δ

∥c(�) (p+Δ)− c(�−1)(p− v
(�−1)
� +Δ)∥2.

A higher �(p, �, �) indicates that the motion vector v
(�−1)
�

and the corresponding label � are less reliable. Second,

we cross-check v
(�−1)
� , as in [7]. Let ṽ

(�)
� be the esti-

mated backward motion vector of superpixel �� from �(�)

Algorithm 2 Temporal Superpixel Algorithm (TS-PPM)

1: Apply Algorithm 1 to �(1)

2: for � = 2 to �end do

3: Perform PPM from �(�−1) to �(�)

4: Initialize superpixels using the superpixel results in �(�−1)

5: repeat for all simple points p in �(�)

6: q
∗ = argminq �(p,q, �) ⊳ (9)

7: �(p) ← �(q∗)
8: Update the average positions of superpixels

9: until convergence or pre-defined number of iterations

10: Perform superpixel merging, splitting, and relabeling

11: end for

12: (Optional) Perform backward refinement

to �(�−1). In the ideal case, ṽ
(�)
� should be equal to −v

(�−1)
� .

Thus, we define the cross-check discrepancy �(�, �) as

�(�, �) = ∥v
(�−1)
� + ṽ

(�)
� ∥2. (11)

A higher �(�, �) also indicates that the superpixel label �

is less reliable. By combining (10) and (11), we define the

reliability �(p, �, �) of assigning label � ∈ ℒp to pixel p as

�(p, �, �) = exp

(

−
�(p, �, �)

�2
�

−
�(�, �)

�2
�

)

(12)

where �2
� = 2 and �2

� = 12 in all experiments.

Based on the reliability in (12), the temporal consistency

term �T(p,q, �) is defined as

�T(p,q, �) =

{

1
1+�(p,�(q),�) if �(q) ∈ ℒp,

1 otherwise.
(13)

�T(p,q, �) decreases the overall cost �(p,q, �) in (9)

when the reliability �(p, �(q), �) is high. Note that, when

�(q) is not mapped from �(�−1) using any motion vector,

�T(p,q, �) has the maximum value of 1. Thus, �T(p,q, �)
facilitates temporally consistent labeling.

4.4. Splitting, Merging, and Relabeling

As the superpixel labeling is performed frame by frame,

some superpixels may grow or shrink. Splitting and merg-

ing superpixels are required to regularize superpixel sizes.

Also, some superpixels can be mislabeled due to occlusion

or imperfect motion estimation. They should be relabeled

as new ones. To address these issues, we follow the super-

pixel splitting, merging, and relabeling strategies in [12].

4.5. Optional Backward Refinement

After generating temporal superpixels sequentially from

the first frame �(1) to the last frame �(�end) in a video,

we optionally refine the generated superpixels backwardly

from �(�end) to �(1) to further improve temporal consistency.

3614



100 200 300 400 500 600

Number of Segments

0.05

0.1

0.15

0.2

0.25

0.3

U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r
Turbopixels

ERS

SLIC

SEEDS

RPS

LSC

MSLIC

CCS

Proposed

(a) UE ↓

100 200 300 400 500 600

Number of Segments

0.4

0.6

0.8

1

B
o

u
n

d
a

ry
 R

e
c
a

ll Turbopixels

ERS

SLIC

SEEDS

RPS

LSC

MSLIC

CCS

Proposed

(b) BR ↑

100 200 300 400 500 600

Number of Segments

0.86

0.88

0.9

0.92

0.94

0.96

A
S

A

Turbopixels

ERS

SLIC

SEEDS

RPS

LSC

MSLIC

CCS

Proposed

(c) ASA ↑

Figure 4. Quantitative comparison of superpixel algorithms.

The backward refinement is performed similarly to the for-

ward pass, by updating the superpixel label of p in �(�)

using the cost function in (9). However, when computing

the color distance �C(p,q, �), we use the average color of

each superpixel from �(�+1) to �(�end), instead of that from

�(1) to �(�−1). Also, for the consistency term �T(p,q, �),

we use the backward motion vector ṽ
(�+1)
� from �(�+1) to

�(�), instead of the forward motion vector. �L(p,q, �) and

�O(p,q, �) are not modified.

Algorithm 2 summarizes the proposed TS-PPM algo-

rithm. Without the optional backward refinement, the pro-

posed algorithm operates online in that it generates super-

pixels for a frame causally using the information in the cur-

rent and past frames only. With the optional refinement, it

becomes an offline approach using the entire sequence.

5. Experimental Results

5.1. Superpixel Algorithm

We evaluate the proposed superpixel algorithm on the

200 test images in the BSDS500 dataset [18]. All param-

eters are fixed in all experiments. We compare the pro-

posed algorithm with eight conventional algorithms: Tur-

bopixels [13], ERS [15], SLIC [1], SEEDS [25], RPS [8],

LSC [14], MSLIC [17], and CCS [12].

As in [15], we assess the performance of the superpixel

algorithms using three evaluation metrics: undersegmenta-

tion error (UE), boundary recall (BR), and achievable seg-

mentation accuracy (ASA). UE is the fraction of pixels leak-

ing across the ground-truth boundaries. BR is the percent-

age of the ground-truth boundaries recovered by the super-

pixel boundaries. ASA is the highest accuracy achievable

for object segmentation when utilizing generated superpix-

els as units. A lower UE corresponds to better performance

while higher BR and ASA are better. Figure 4 compares

the performances. The proposed algorithm outperforms all

conventional algorithms in all metrics. Specifically, when

the number of segments � is 200, the proposed algorithm

yields 6.3% lower UE, 1.0% higher BR, and 0.3% higher

ASA than the state-of-the-art algorithm CCS [12].

(a) Input (b) SEEDS (c) LSC (d) Proposed

Figure 5. Visual comparison of superpixel results. Each image

consists of about 200 superpixels. The second and last rows show

the enlarged parts of the images in the first and third rows, respec-

tively. In (b)∼(d), a superpixel is represented by the average color.

Figure 5 compares superpixel results qualitatively. We

see that the proposed algorithm successfully separates the

car and the boy from the background regions, while the con-

ventional algorithms fail to divide them correctly.

5.2. Temporal Superpixel Algorithm

Using the LIBSVX 3.0 benchmark [30], we compare

the proposed TS-PPM algorithm with the Meanshift [21],

sGBH [31], SLIC [1], TCS [22], TSP [5], and CCS [12]

algorithms. We use the evaluation metrics in [30]: 2D

segmentation accuracy (SA2D), 3D segmentation accu-

racy (SA3D), BR2D, BR3D, UE2D, UE3D, explained vari-

ation (EV), and mean duration. SA2D, BR2D, and UE2D

are measured by calculating ASA, BR, and UE in Sec-

tion 5.1 for each frame and averaging them. Also, SA3D,

BR3D, and UE3D are obtained by regarding a video as a

three-dimensional signal and then computing ASA, BR, and

UE. EV assesses how well original pixels can be reproduced

with temporal superpixels. Mean duration is the average du-

ration of a superpixel in terms of the number of frames.
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Figure 6. Quantitative evaluation of temporal superpixel algorithms on the SegTrack dataset [24].

Figure 6 compares the quantitative results on the Seg-

Track dataset [24]. ‘Proposed-BR’ represents the results

when the optional backward refinement is performed, while

‘Proposed’ those without the refinement. Even without the

refinement, the proposed TS-PPM algorithm provides sig-

nificantly better SA2D, SA3D, BR2D, BR3D, and EV re-

sults than the conventional algorithms and yields compara-

ble UE2D, UE3D, and mean duration results. For example,

when the number of superpixels is 400, the SA3D score of

the proposed algorithm is 0.839, while those of the state-of-

the-art TCS [22], TSP [5], and CCS [12] are 0.772, 0.781,

and 0.808, respectively. Furthermore, when the refinement

is performed, the segmentation results of the proposed algo-

rithm are further improved, especially in the SA2D, SA3D,

BR2D, BR3D, and EV metrics. The improvements are mi-

nor in UE2D and UE3D. The mean duration results are un-

changed, since the backward refinement does not change

the number of superpixels. As mentioned in Section 4.5,

the proposed algorithm without the refinement operates on-

line, but the refinement makes it an offline approach. In the

remaining experiments, the refinement is not done unless

otherwise specified.

We also assess the proposed algorithm on the Chen

dataset [6] and provide the results in the supplementary ma-

terials. The results exhibit similar tendencies to Figure 6.

To test the efficacy of PPM in the proposed TS-PPM al-

gorithm, we replace it with the state-of-the-art optical flow

method, DeepFlow [28]. In the optical flow version, we

calculate the motion vector of a superpixel by averaging

the pixel-wise flow results within the superpixel. When

the number of superpixels is 400, the proposed algorithm

provides 6.3%, 8.6%, and 4.6% better UE2D, UE3D, and

SA3D scores than the optical flow version, even though

DeepFlow requires higher computational complexity. In the

(a) TCS (b) TSP (c) Proposed

Figure 7. Comparison of temporal superpixels. Each frame con-

sists of about 200 superpixels. Colored regions in the first and

third rows represent the superpixels containing objects in the first

frames. The second and last rows show the superpixels that still

contain the objects in the later frames.

other metrics as well, the proposed algorithm yields better

performances by about 0.5% on average.

Figure 7 compares temporal superpixels of the proposed

algorithm with those of TCS and TSP qualitatively. The

proposed algorithm segments and tracks the objects more

faithfully. For instance, the proposed algorithm success-

fully tracks both ship and monkey, while TCS fails to track

parts of the ship and TSP misses the monkey’s upper body.
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Figure 8. Precision-recall curves of two saliency detection tech-

niques, HS [32] and GS [27]. HS-P and GS-P are the post-

processing results of HS and GS, respectively.

5.3. Applications

The proposed superpixel and temporal superpixel algo-

rithms are applicable to many computer vision tasks. In this

work, we apply the proposed algorithms to video object seg-

mentation (VOS) and saliency detection.

First, we incorporate the proposed superpixel algo-

rithm in Section 3 into the semi-supervised VOS tech-

nique in [10]. We modify the technique by replacing SLIC

with the proposed algorithm and then compare the seg-

mentation performances on the SegTrack dataset [24]. The

proposed algorithm increases the average intersection over

union (IoU) score significantly from 0.532 to 0.579.

Second, we employ the proposed TS-PPM algorithm to

post-process VOS results. Given VOS results, we average

binary segmentation values of pixels within each temporal

superpixel in all frames. Then, we binarize the average val-

ues for temporal superpixels via thresholding to obtain bi-

nary segmentation results. We post-process segmentation

results of the alternate convex optimization (ACO) [11] and

fast object segmentation (FOS) [20] techniques on the Seg-

Track dataset. The average IoU scores are increased from

0.574 to 0.595 for ACO, and from 0.438 to 0.446 for FOS.

Third, we also perform post-processing on saliency de-

tection results. If an image saliency detection technique

is applied to each frame in a video independently, the re-

sultant saliency maps are temporally incompatible. Thus,

we use the proposed temporal superpixels to obtain tem-

porally compatible maps. We average the saliency val-

ues of pixels within each temporal superpixel in all frames

and replace the original saliency values with the average

value. This post-processing is applied to two saliency de-

tection techniques, hierarchical saliency detection (HS) [32]

and geodesic saliency detection (GS) [27]. Figure 8 com-

pares the precision-recall curves on the NTT dataset [2].

The post-processing improves the saliency detection perfor-

mances of both HS and GS considerably.

More experimental results are available in the supple-

mentary materials.

Table 1. Run-times of the superpixel algorithms.

[13] [1] [15] [14] [25] [17] [12] Proposed

Time (s) 8.09 0.26 1.52 0.34 0.06 0.36 0.97 0.20

Table 2. Run-times of the temporal superpixel algorithms (per

frame).

[31] [1] [22] [5] [12] Proposed Proposed-BR

Time (s) 5.71 0.08 7.83 2.39 1.70 0.29 0.38

5.4. Computational Complexity

We measure the run-times of the superpixel and temporal

superpixel algorithms using a PC with a 2.2 GHz CPU. We

use the available source codes for [1, 5, 12–15, 17, 25, 31],

and implement TCS using the parameters in the paper [22].

Table 1 compares the run-times of the superpixel algorithms

for dividing a 481× 321 image into about 200 superpixels.

The proposed algorithm is faster than the conventional al-

gorithms, except for SEEDS [25]. Table 2 compares the

run-times of the temporal superpixel algorithms to segment

a 240 × 160 frame into about 200 superpixels. The pro-

posed TS-PPM algorithm without or with the backward re-

finement is faster than than the conventional algorithms, ex-

cept for SLIC [1].

6. Conclusions

We proposed the TS-PPM algorithm, which generates

temporal superpixels using PPM. For robust motion esti-

mation, PPM estimates the motion vector of a superpixel

by combining the patch matching distances of the target su-

perpixel and the neighboring superpixels. The proposed al-

gorithm initializes superpixels in a frame, by mapping the

superpixels labels in the previous frames using the PPM

motion vectors. Then, it refines the initial superpixels by

updating the superpixel labels of boundary pixels. It then

performs the superpixel splitting, merging, and relabeling.

Optionally, the backward refinement is executed. Experi-

mental results showed that the proposed TS-PPM algorithm

outperforms the conventional superpixel algorithms, while

demanding low computational complexity, and can be ap-

plied to many computer vision tasks.
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