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Abstract

In this paper we introduce a novel Depth-Aware Video

Saliency approach to predict human focus of attention when

viewing videos that contain a depth map (RGBD) on a 2D

screen. Saliency estimation in this scenario is highly impor-

tant since in the near future 3D video content will be easily

acquired yet hard to display. Despite considerable progress

in 3D display technologies, most are still expensive and re-

quire special glasses for viewing, so RGBD content is pri-

marily viewed on 2D screens, removing the depth channel

from the final viewing experience. We train a generative

convolutional neural network that predicts the 2D viewing

saliency map for a given frame using the RGBD pixel values

and previous fixation estimates in the video. To evaluate the

performance of our approach, we present a new compre-

hensive database of 2D viewing eye-fixation ground-truth

for RGBD videos. Our experiments indicate that it is ben-

eficial to integrate depth into video saliency estimates for

content that is viewed on a 2D display. We demonstrate

that our approach outperforms state-of-the-art methods for

video saliency, achieving 15% relative improvement.

1. Introduction

In recent years we have witnessed a dramatic improve-

ment of 3D-capable acquisition equipment; 3D cameras,

e.g. Kinect and RealSense, have become highly popular

and affordable. Moreover, in the near future many laptops

and tablets are expected to be shipped with integrated 3D

cameras. We also see a considerable progress in 3D dis-

play technologies. However, high-quality 3D displays are

still expensive and not easily accessible to the average con-

sumer. Combination of the factors above leads to a world

where the 3D content is easy to acquire but hard to display.

For these reasons, we explore the problem of predicting the

human foci of attention when viewing content that contains

Ground-truth

Our approach

Rudoy et al. [34]

Figure 1. Our depth-aware video saliency is more similar to the

ground-truth than the state-of-the-art method [34].

a depth map on regular 2D screens.

Saliency detection in video sequences has attracted a lot

of attention in recent years because of its contribution for

various computer vision applications, which include seg-

mentation, classification, key-frame selection, retargeting

and compression. 3D visual information supplies a pow-

erful cue for saliency analysis. This has been shown by

numerous studies that investigate the effect of depth infor-

mation for image and video saliency [3, 17, 24, 30, 31].

The eye movement patterns in 3D stereoscopic movies have

been investigated as well [13] and were proven to differ

from the eye movement when viewing the same content on

a 2D screen. This difference is beyond the scope of this

paper. We focus on the scenarios where depth information

exists but is not displayed to the viewer.

We propose a novel Depth-Aware Video Saliency ap-

proach that exploits depth information to establish saliency

in video sequences (Figure 1). Since depth influence on the

saliency is not clear, integrating such information into video

saliency is not as simple as adding a prior. Figure 2 demon-

strates that sometimes the closest object attracts the most at-

tention, while sometimes distant objects are the salient ones.

To determine the correct impact of depth on saliency, we
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(a) close = salient (b) distant = salient

Figure 2. An ambiguous impact of depth on saliency. In some

cases, the closest object is the salient one (a). In other cases, the

fact that the object is distant increases its saliency (b).

train a generative convolutional neural network. The net-

work predicts a saliency map for a frame, given the esti-

mated map of the previous frame. This prediction resolves

the ambiguity of depth impact by learning its influence on

the saliency.

To the best of our knowledge, a comprehensive eye

tracking database for video sequences containing depth in-

formation is yet to be developed. To evaluate the per-

formance of our approach we introduce the Depth-Aware

Video Saliency dataset. This dataset is focused on unedited

videos, where the viewers’ attention is not altered by a hu-

man editor. Ground-truth was established by recording eye-

fixations while viewing the video on regular screens, ignor-

ing the depth channel. To establish an objective baseline for

the comparison we incorporate depth into the video saliency

approach recently proposed by [34].

In this paper we show how to get solid performance im-

provement for video saliency estimation when depth data

is available along with the RGB frames. We claim that in

many situations depth information already exists or can be

easily obtained. For example, many robots or autonomous

vehicles already have depth sensor; recent motion pictures

are shot in 3D; many video conference settings have mul-

tiple cameras and depth can be easily estimated. In these

cases the information might be consumed on an ordinary

2D screen and our approach significantly improves saliency

estimation results with very minimal investment.

Our contribution is threefold.

• First, we introduce a novel depth-aware video saliency

approach and implement it using a generative convolu-

tional neural network. We show that our approach out-

performs state-of-the-art methods for video saliency.

• Second, we present a new comprehensive dataset of

RGBD videos with eye-fixation ground-truth.

• Third, we experimentally demonstrate that learning-

based integration of depth information into a saliency

estimation framework improves its accuracy.

The rest of the paper is organized as follows. Section 2

reviews the previous work. Section 3 describes our database

and the baseline algorithm for depth-aware saliency. Sec-

tion 4 introduces our depth-aware video saliency approach.

Section 5 presents our experimental results. Section 6 con-

cludes the paper.

2. Related Work

Researchers have studied human visual attention for

decades. This section discusses two saliency aspects closely

related to our research: video saliency and depth-aware

saliency.

Video Saliency: Most existing motion saliency methods

improve image saliency models by taking into account sim-

ple motion cues. For instance, Guo et al. [8] adopt an effi-

cient method based on spectral analysis of the frequencies

in the video. Similarly, Cui et al. [4] concentrate on mo-

tion saliency only by analyzing the Fourier spectrum of the

video along X-T and Y-T planes. Mahadevan and Vasconce-

los [27] model video patches as dynamic textures, to handle

complicated backgrounds and a moving camera. Seo and

Milanfar [36] propose using self-resemblance in static and

space-time saliency detection. Hou and Zhang [12] pro-

pose using incremental coding length to measure the rar-

ity of features. Zhong et al. [47] use optical flows based

on the dynamic consistency of motion. Rudoy et al. [34]

narrow their focus to a sparse set of candidate gaze lo-

cations and then use learning to predict conditional gaze

transitions over time. Zhou et al. [48] introduce motion

saliency method that combines various low-level features

with region-based contrast analysis to generate low-frame-

rate videos. Zhang et al. [46] detects spatiotemporal vi-

sual saliency based on the phase spectrum of the videos.

Recently, the deep learning approach was also utilized for

saliency detection [22, 42]; others tried random walks [21]

and super-pixels [26].

Depth-Aware Saliency: Compared to the number of

saliency papers on 2D images and 2D videos, only a small

amount of work on 3D content visual attention can be

found. For example, Jansen et al. [16] investigate the in-

fluence of disparity on viewing behavior in the observation

of 2D and 3D still images. Liu et al. [25] examine visual

features at fixated positions for stereo images with a natu-

ral content. Wang et al. [41] examine “depth-bias” in the

task-free viewing of still stereoscopic synthetic stimuli. A

review of 3D visual attention papers is presented in [40].

In our research we assume that depth information ex-

ists but is not displayed to the viewer. Thus, we are less

concerned about the impact of 3D viewing experience on

the human visual perception. We are interested in exploit-

ing depth for saliency estimation, when the stimuli are two-

dimensional. To the best of our knowledge there is no such
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previous work for video saliency. For still images, integrat-

ing depth information into the saliency model was first pro-

posed more than a decade ago by Ouerhani et al. [31]. They

extend the approach of [15] and treat depth as just another

channel, along with color and other cues.

The recent dramatic improvement of 3D-capable acqui-

sition devices has prompted many researchers to find more

effective ways to exploit depth for image saliency calcu-

lation. Ciptadi et al. [3] explicitly construct 3D layout

and shape features from the depth measurements. Lang

et al. [24] present a depth prior for saliency learned from

human gaze information. This saliency prior produces a

saliency map that is then either directly added or multiplied

by the saliency results of other methods. A novel saliency

method, which is based on an anisotropic center-surround

difference, is proposed in [17]. Desingh et al. [5] verify that

depth really matters on a small dataset and propose to fuse

saliency maps, produced by appearance and depth cues in-

dependently, through non-linear support vector regression.

Finally, Peng et al. [32] propose a saliency model, where

depth and appearance information from multiple layers is

taken into account simultaneously, rather than simply fus-

ing depth-induced saliency with color-produced saliency.

3. Baseline Dataset and Algorithm

Before presenting our novel depth-aware video saliency

approach we discuss a baseline which is required for any

evaluation. Providing a fair performance evaluation of our

approach requires the following two components, which are

described in the rest of this section:

1. dataset of RGBD videos containing ground-truth of

human attention

2. state-of-the-art video saliency estimation algorithm,

extended to take into account depth information

3.1. Depth­Aware Video Saliency Dataset

An overview of eye-tracking datasets is found in [43].

To evaluate the performance of our approach a comprehen-

sive database containing a ground-truth of human attention

on RGBD video sequences is needed. We are not aware

of such a dataset. Thus, we built a new dataset of RGBD

videos and captured human attention when displaying the

RGB information only. This dataset will be publicly avail-

able upon publication.

Collecting the videos: The videos in our dataset should

represent the scenarios where depth-aware saliency is ben-

eficial. Thus, we focus on RGBD videos acquired by built-

in phone/tablet/laptop depth/stereo cameras or 3D sensors,

such as Kinect or LiDAR. We consider acquisition devices

that can be either static or installed on moving vehicles or

robots. Thus, we include video sequences of static and dy-

namic scenes, acquired by static and dynamic sensors, in-

(a) human fixations (b) probability map

Figure 3. Gaze probability map. Given a sparse ground-truth

set of human fixations, marked with yellow ’+’ per each viewer,

we convert it into a dense probability map by convolving with a

constant-size Gaussian kernel (σ is 5% of the frame diagonal).

doors and outdoors. We cover scenarios such as video con-

ference, surveillance, tracking and obstacle avoidance.

To achieve diversity, we included in our dataset RGBD

videos from seven publicly available databases [20, 23, 33,

37, 38, 44, 49]. These datasets were not designed for

saliency detection, but rather for other tasks, such as recon-

struction, tracking or action recognition. Thus, they lack

the ground-truth of human attention. We have included only

videos where the color and depth frames are fully synchro-

nized. After ignoring videos with missing regions of the

depth map, we included in our dataset 54 videos with vary-

ing durations ranging from 25 to 200 seconds. The videos

were converted to a 30 fps frame-rate, resulting in approxi-

mately 100K frames across all videos.

Building the ground-truth: To build a ground-truth for

our dataset we conducted a comprehensive user study. To

identify where participants were looking while watching the

films, we monitored their eye movements using a Gazepoint

GP3 Eye Tracker1. Video presentation was controlled using

the Gazepoint Analysis Standard software.

For the study we recruited 91 participants (52 males, 39

females). Ages ranged from 20 to 67 with the mean age of

26. All the participants had normal or corrected-to-normal

vision and were naı̈ve to the underlying purposes of the ex-

periment.

First, we performed a calibration procedure by asking

the participants to look at five red dots appearing on the

screen. Then, we informed the participants that they would

watch a series of short videos. We displayed the videos in

random order at a viewing distance varying between 70 and

110 cm. The videos were scaled to the same resolution and

displayed in full-screen. We do not use fixation duration,

and the tracker uses 60Hz.

Finally, to get a dense probability map, we convolved

the sparse set of fixations from all the participants with a

constant-size Gaussian kernel. Figure 3 demonstrates an

example of the fixation set and its resulting probability map.

Quality of the ground-truth: To assess the quality of the

collected ground-truth we quantify the homogeneity of the

human fixations. In other words, we measure how much the

1http://www.gazept.com/product/gazepoint-gp3-eye-tracker
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fixation map “explains itself.” This quality measure also

serves as an upper bound for saliency prediction.

To calculate the quality, we randomly divide the set of

individual fixation maps, F, into two subsets and the prob-

ability maps of each subset are compared using χ2 metric.

We repeat this random process N times and average the re-

sults to obtain the homogeneity score for each frame:

Q = 1−
1

N

N
∑

i=1

χ2(M(Fi),M(F \ Fi)), (1)

where Fi ⊆ F is a random subset of the fixation set F in

the i − th iteration and M(F) is the dense probability map

of F. The final quality score for each video is calculated by

averaging the scores over all the frames.

We compare the quality of our ground-truth to qual-

ity of the DIEM (Dynamic Images and Eye Movements)

dataset [29]. DIEM is a well-known dataset, which has been

widely used for evaluation of video saliency techniques. It

includes 84 videos of varying styles. The dataset is pro-

vided together with gaze tracks of about 50 participants per

video. The video clips included in the DIEM dataset lack

any depth information.

Figure 4 compares the quality of our gaze tracking

ground-truth to the quality of the fixation data in the DIEM

dataset. Perfect correlation, i.e. all the participants followed

the exact same focus point on the screen, corresponds to a

score of 1.

The DIEM dataset contains movies that have been pro-

fessionally filmed and usually edited with a goal to attract

human attention to specific objects on the screen. This is

especially noticed in commercials and movie trailers. Thus,

we expect high homogeneity of the human fixations; Fig-

ure 4(a) demonstrates the average score of 0.87 varying

from 0.78 to 0.93 between the different movies.

Our dataset includes mostly unedited clips, filmed either

by amateurs or automatically. We think that these clips bet-

ter represent typical saliency use cases, since is the edited

videos the viewers’ attention is directed by the editor. Thus,

our dataset is more “challenging” in this regard, and we can-

not always expect people to agree on one specific focus of

attention. Still, as shown in Figure 4(b), the average score

of our dataset is 0.84 varying from 0.74 to 0.91. These com-

parable results indicate that most people agree on the same

limited number of attention foci, even when the videos were

filmed without trying to draw human attention to specific

objects. We also verify visually that the viewers are not

looking at a single point most of the time.

We believe that our dataset represents the wide range

of common scenarios where depth-aware saliency is ben-

eficial. The size of our dataset (54 videos) was chosen to

be similar to the other two most popular datasets for video

saliency: DIEM [29] and CRCNS [14], which include 85

and 50 videos, respectively.

(a) DIEM dataset [29] (b) Our dataset

Figure 4. Quality of the gaze ground-truth. To assess the quality

of the collected ground-truth we measure how much the fixation

map “explains itself”. (Each bar corresponds to one movie; the

red line indicates the average). The quality of the fixation maps in

our dataset is comparable to the one of the DIEM dataset [29].

Figure 5. Saliency estimation using explicit transition predic-

tion. Initially, the features are calculated on the source candidates

(previous frame saliency) and the target ones (detected). The ag-

gregated features that represent gaze transitions are fed to a trained

classifier that outputs a probability of transition to target candi-

dates. Finally, the probabilities are integrated into a saliency map.

3.2. Baseline Depth­Aware Algorithm

To establish a fair and objective baseline for the compari-

son we extend the algorithm recently proposed by [34] with

depth information in its key stages. Let us first summarize

the original scheme and then explain our extensions.

Original scheme: As demonstrated in Figure 5, first, a

sparse set of candidates is generated for each frame. Then, a

classifier that predicts gaze transitions between various can-

didates of different frames is trained. The feature space of

the classifier accounts for the candidates’ properties (e.g.

saliency magnitude, motion magnitude) and also captures

the relation between the candidates (e.g. the distance be-

tween their locations). Next, applying the trained classi-

fier, the gaze transition probability from each candidate of

a source frame to each candidate of a target frame is calcu-

lated. Finally, a saliency map is generated for each frame

based on transition probabilities.

The candidate locations are generated for all video

frames based on three cues. First, Graph-Based Visual

Saliency (GBVS) [9] is calculated for each frame. Sec-

ond, some high-level cues (e.g. human figures and faces)

are added.Third, to account for motion the optical flow is

calculated between the consecutive frames. Finally, each

candidate location is represented by a Gaussian blob, calcu-

lated by applying mean-shift clustering and Gaussian fitting

on the normalized saliency maps and on the differences in

the optical flow magnitude.

After generating a set of candidates in each frame, the
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gaze transition probability from the candidates of two con-

secutive frames is calculated. All the possible pairs of can-

didates are considered and each pair is associated with a

feature vector. The feature vector consists of (1) the mean

saliency of the candidate neighborhood, (2) Difference-of-

Gaussians of the optical flow vectors and of their magni-

tude, (3) discrete candidate labels: face, body and center

and (4) geometric features: the distance between the can-

didates and the distance from the candidate location to the

center of the frame. A classifier is trained on a subset of

videos based on the eye-tracking ground-truth. Finally, the

transition probabilities are calculated by applying the clas-

sifier on the entire dataset.

Depth-aware extension: We incorporate depth informa-

tion in three key stages: static saliency estimation, optical

flow calculation and gaze transition modeling. Our experi-

ments show that all three improvements are vital.

First, depth-aware image saliency is used for generat-

ing candidate locations. We calculate depth-aware saliency

based on a multi-stage RGBD model recently proposed

in [32]. This technique accounts for both depth and appear-

ance cues derived from low-level feature contrast, mid-level

region grouping, and high-level prior enhancement. Sec-

ond, depth is used for the optical flow calculation between

consecutive frames. Instead of calculating optical flow on

three color channels, we use an additional channel — the

depth. This way our motion estimation is more accurate

than in the previous methods, especially for objects mov-

ing on a similarly colored background. We have considered

implementing more sophisticated methods for dense motion

estimation using color and depth (e.g. [10]). However, the

complexity of such techniques is high, making them im-

practical to apply to videos. Third, when calculating the

feature vectors associated with each candidate pair we ex-

ploit depth information, by adding a signed difference in

candidates’ depths to the set of the geometric features.

All the candidates in the source and destination frames

are examined and labeled as positive or negative. The tran-

sitions are positive when they connect between the candi-

dates that are aligned with the human fixations. Other tran-

sitions are marked as negative.

An SVM classifier is trained on the feature vectors and

their corresponding labels. The output of the classifier is the

signed distance from the separating hyper-plane. This dis-

tance is proportional to the confidence C(s, d) of transition

from the candidate s of the source frame to the candidate

d of the destination frame. The overall probability P (d) of

gaze to reach the destination candidate d is calculated by

combining all positively classified transitions to candidate

d. Thus, ignoring transitions with negative confidence, we

calculate P (d) as follows:

P (d) =
1

|NS |

∑

s∈NS

S(s) ·max
(

C(s, d), 0
)

, (2)

where NS is the set of all the sources and S(s) is the

saliency of the source candidate.

Finally, the saliency of pixel p in the destination frame

is given by a sum of constant-size Gaussians around each

destination candidate d, scaled up by the probability P (d):

S(p) =
1

|ND|

∑

d∈ND

P (d) · exp

(

−
||p− d||2

2σ2

)

, (3)

where ND is the set of all the destination candidates in a

given frame and σ equals 5% of the frame diagonal.

4. Our Approach

This section presents our approach for depth-aware

video saliency estimation, which is based on the following

three principles. First, in video the gaze usually slightly

varies between frames, and when it does change signifi-

cantly, it is constrained to a limited number of foci of atten-

tion. Second, people usually follow the action by shifting

their gaze to a new interesting location. Thus, we consider

a sparse candidate set of salient locations and use learning

to predict transitions between them over time. Third, in

addition to the above two principles, which are common

to many previous video saliency approaches, we claim that

depth perception has an impact on human attention. This

claim is supported by our experimental results as shown in

Section 5. Note that in some cases, the closest object at-

tracts the most attention (Figure 2(a)) and in other cases, a

distant object causes humans to concentrate their attention

on it (Figure 2(b)). To resolve this ambiguity, we propose

incorporating depth into the learning process.

To realize the above three principles, we propose to train

a generative convolutional neural network to predict the

saliency for each frame. According to the first and the sec-

ond principles, the gaze transition between frames is lim-

ited to a small number of locations. Therefore, it is safe

to assume that it is feasible to learn a compact representa-

tion for gaze transition between frames. As shown in Fig-

ure 6, our network’s input is the saliency calculated for the

previous frame and additional information from the current

frame. Then the data is encoded in a compact way, which

represents the gaze transition between frames and only the

saliency of the next frame is reconstructed.

Work on generative models typically addresses the prob-

lem of unsupervised learning of a compressed, distributed

representation (encoding) for a set of data. Such networks

are usually used to generate samples from a hidden rep-

resentation. The most known examples are auto-encoders
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Figure 6. Saliency reconstruction using a generative convolutional neural network. The input is the saliency calculated for the pre-

vious frame and additional information from the current frame. Then the data is encoded and only the saliency of the current frame is

reconstructed.

based on Restricted Boltzmann Machines (RBMs) [11] and

Deep Boltzmann Machines (DBMs) [35]. A basic auto-

encoder is an artificial neural network used for learning data

coding. Following the notation from [28], first, the input

x is mapped to the latent representation h using a func-

tion h = σ(Wx + b). This compressed representation is

then used to reconstruct the input by a reverse mapping of

x̂ = σ(W ′h + b′). The weights of W are optimized, min-

imizing an appropriate cost function over a given training

set. Usually the same weights for encoding the input and

the decoding are used, i.e. W ′ = WT .

Conventional auto-encoders are fully connected and con-

sequently ignore the spatial image structure. This intro-

duces redundancy in the parameters, forcing each feature

to be global. We base our architecture on convolutional

auto-encoder structure [28, 1], whose weights are shared

among all locations in the input, preserving spatial locality.

In the aforementioned auto-encoders, an input image x is

passed through the hidden layers, computing activations at

all the layers to obtain the output image x̂. Then, the de-

viation error from the input e = x − x̂ is calculated and

back-propagated through the network.

As shown in Figure 6, our generative convolutional neu-

ral network gets as an input a set of seven images X =
{xi}

7

1
and reconstructs only one image. For each frame,

the set X consists of the following seven channels: RGB (3

images), optical flow (2 images), depth map and a saliency

map S(t − 1) calculated for the previous frame. The out-

put of the network is an estimation of a single saliency map

Ŝ(t) for the current frame. Therefore, the deviation error is

calculated as e = S(t) − Ŝ(t), introducing an asymmetry

between the input and the output, i.e. W ′ 6= WT . Note,

S(t) refers to the ground-truth map. We use χ2 distance

between two distributions of the saliency maps. Then, the

error is back-propagated through the network, updating the

weights using stochastic gradient descent. The whole pro-

cess is recursive, where we start with a saliency map S(0)
which consists of a single Gaussian located in the center of

the first frame. Then the estimated saliency map Ŝ(1) is fed

as an input S(1) to the network for the next frame.

Finally, following our first principle, we strive to esti-

mate a sparse set of attention foci. However, the nature of

our generative network is to reconstruct relatively smooth

output images. Thus, we add an output post-processing

stage to sharpen the peaks of a limited number of attention

foci. This is done by applying mean-shift clustering and

Gaussian fitting.

Architecture details: We experimented with different

network configurations and the best results are achieved by

the network shown in Figure 6. First, the input 7-channel

image is passed through an encoder. The encoder consists

of three layers of convolutions followed by max-pooling

whose sizes are 128x96, 64x48 and 32x24 with kernel sizes

of 5x5, 3x3 and 3x3, respectively. Then the data is encoded

in 256 latent variables fully connected to the encoder and

the decoder. The decoder consists of three layers of un-

pooling followed by convolution of the same sizes in re-

verse order. The un-pooling is performed according to the

scheme proposed by [6].

We used stochastic gradient descent with a fixed momen-

tum of 0.9. For 200 epochs the learning rate was 10−4 and

then for an additional 200 training epochs we divided the

rate by two after every 50 epochs. The network is trained

on a subset of two-thirds of the videos and the training error

is estimated based on the eye-tracking ground-truth.

Since our saliency learning is recursive, only frames

from different videos are used simultaneously, limiting the

batch size to the number of videos in the training set. In

other words, the first batch consists of all the first frames,

the second batch consists of all the second frames, when

the input to the second batch is the saliency maps estimated

in the first batch. For the simplicity of the exposition we

used the term “previous frame”; however, because humans

usually fixate in about 300ms, or 10 frames under common

frame-rate of 30 fps, in the implementation the S(t − 1) is
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changed to include a single saliency map of 10 frames back.

5. Results

This section presents quantitative and qualitative evalua-

tion of our technique.

Quantitative evaluation: For quantitative evaluation we

use two common metrics: area-under-curve (AUC) and χ2

distance between distributions. AUC is the area under the

Receiver Operating Characteristics (ROC) curve [2]. Hu-

man fixations are considered as the positive set, while the

negative set is formed from randomly sampled points from

the image. The saliency map is then treated as a binary

classifier to separate the positive samples from the negative

ones. Thresholding over the saliency map and plotting true

positive rate vs. false positive rate results in the ROC curve.

AUC considers the saliency results at the locations of

the human fixations. Thus, it distinguishes purely between

a peaky saliency map and a smooth one. To view the fix-

ations as samples of a distribution, rather than considering

each fixation separately, similarly to [34], we prefer another

metric: χ2 distance between two distributions. The χ2 dis-

tance prefers a peaky map over a smooth one.

For the χ2, perfect prediction corresponds to a score of

0. For AUC, perfect prediction corresponds to a score of 1,

while a score of 0.5 indicates the chance level. Thus, to be

consistent, we use 1 - χ2 when reporting our results.

To the best of our knowledge, we are the first exploit-

ing depth for video saliency when viewing on 2D screens.

Therefore, for a fair evaluation we compare our approach to

the extended baseline algorithm (Sec. 3.1). We also com-

pare our approach to video saliency technique [34], four

image saliency methods [9, 18, 39, 45], depth-aware image

saliency (RGBD) [32] and a Gaussian in the center [19].

Table 1 demonstrates a quantitative comparison using

two different metrics: χ2 and AUC. The “Ground-truth” in

the bottom row is the upper bound for the saliency predic-

tion, which measures how much the ground-truth fixation

map “explains itself” (Equation 1). We use 38 out of 54

RGBD videos in our dataset for training, while the other 16

videos form the testing set. To quantify the impact of depth,

we also carried out an experiment where we removed the

depth information from the input to our approach.

The results of our depth-aware methods are the clos-

est to the ground-truth. According to both χ2 and AUC

measures, the relative improvement over the state-of-the-art

method [34] is approximately 15% (0.70/0.61). We also see

that employing depth in video saliency algorithms, which

are based on learning, improves their accuracy; both the

extended baseline (Sec. 3.1) and our approach outperform

previous approaches. Finally, the standard deviation of our

approach is lower than in all other methods, making it more

reliable than the others.

Method 1− χ2 AUC

RGBD [32] 0.53 ± 0.21 0.66 ± 0.19

GBVS [9] 0.53 ± 0.25 0.65 ± 0.21

Judd et al. [18] 0.56 ± 0.21 0.67 ± 0.22

Vig et al. [39] 0.55 ± 0.23 0.64 ± 0.29

Zhang et al. [45] 0.57 ± 0.21 0.66 ± 0.25

Center [19] 0.56 ± 0.39 0.66 ± 0.36

Rudoy et al. [34] 0.61 ± 0.26 0.68 ± 0.23

Our approach (w/o depth) 0.60 ± 0.23 0.68 ± 0.21

Extended baseline 0.64 ± 0.22 0.70 ± 0.18

Our approach (w/ depth) 0.70 ± 0.15 0.75 ± 0.14

Ground-truth 0.84 ± 0.05 0.88 ± 0.06

Table 1. Quantitative Evaluation. We compare our method

to depth-aware image saliency [32], four image saliency meth-

ods [9, 18, 39, 45], a Gaussian placed in the center [19], video

saliency [34] and the extended baseline algorithm from Sec-

tion 3.1. The upper bound (Ground-truth) for the saliency predic-

tion is given in Equation 1. According to both χ
2 and AUC mea-

sures our method is the closest to the ground-truth, outperform-

ing other state-of-the-art methods. Moreover, employing depth in

learning based video saliency algorithms improves their accuracy.

Note that the trivial approach of a Gaussian, placed in the

center of the frame, produces fairly good average results due

to two facts. First, when filming the videos we usually at-

tempt to place the most interesting composition in the cen-

ter of the frame. Second, when viewing relatively boring

scenes we tend to move the gaze to the center of the frame.

Thus, when comparing this trivial approach to the ground-

truth we see relatively a high score in average. However,

the standard deviation of this score is almost twice as high

as the standard deviation of other methods, which makes the

center-based Gaussian approach highly unreliable.

Qualitative evaluation: Figure 7 demonstrates a qualita-

tive comparison of our approach to the ground-truth and

other saliency techniques. In both cases the depth-aware

saliency map is more visually consistent with the ground-

truth than the maps of the other methods. For example,

while watching a conversation between two persons, the

gaze shifts from one face to the other, which is accurately

captured by depth-aware saliency. The extended baseline is

improved since the moving people in the corner are “salient

enough”, even in the low quality depth map. We refer the

reader to the supplementary video, since motion of the peo-

ple cannot be seen in the images.

In addition to the previously used saliency methods

we compare our approach to DeepGaze II [22] and to

Deep Saliency [7]. Unfortunately, the available implemen-

tation of these methods is too slow to run them on our entire

dataset. As it can be seen, our results predict the ground

truth better than these methods.

1704



Ground-truth GBVS [9] Deep Saliency [7] Rudoy et al. [34] Our w/o depth

Depth RGBD [32] DeepGaze II [22] Extended baseline Our w/ depth

Depth-aware saliency maps are similar to the ground-truth, detecting background motion.

Ground-truth GBVS [9] Deep Saliency [7] Rudoy et al. [34] Our w/o depth

Depth RGBD [32] DeepGaze II [22] Extended baseline Our w/ depth

The gaze shifts between faces, which is accurately captured by depth-aware saliency.

Figure 7. Qualitative evaluation on our dataset. We compare our results to the ground-truth and to the additional saliency methods:

video saliency (Rudoy et al.) [34], three image saliency methods (GBVS [9], DeepGaze II [22], Deep Saliency [7]) and depth-aware image

saliency (RGBD) [32]. The left side of the figure demonstrates the input RGB frame, the depth data and the ground-truth, while the saliency

results are shown on the right side. Both depth-aware methods outperform other state-of-the art methods. Our novel approach produces

more concise results, and this fact is supported by the low standard deviation in Table 1.

6. Conclusion

In this paper, we proposed a novel depth-aware video

saliency method, which predicts human foci of attention

when viewing 3D video content on 2D screens. Our method

employs a generative convolutional neural network to re-

construct saliency for each frame by implicitly learning the

gaze transition from the previous frame. The network was

trained to predict the saliency of the next frame by learning

from depth, color, motion and saliency of the current frame.

Experimental results show that exploiting depth is benefi-

cial for video saliency, allowing our method to outperform

previously proposed state-of-the-art methods. We believe

that the significant boost with regard to the baseline is due

to our net’s ability to learn the nature of the depth maps.

In this manner we capture the important parts of the depth

maps that trigger gaze transitions.

Moreover, we presented Depth-Aware Video Saliency

dataset, a comprehensive dataset of eye-fixation ground-

truth for RGBD videos. This dataset contains videos rep-

resenting common scenarios where depth-aware saliency

is beneficial. To record eye-fixation ground-truth, we

conducted a comprehensive user study, where the RGBD

videos were displayed on regular screens ignoring depth in-

formation.

We believe that the constructed dataset and our work are

helpful to stimulate further research in the area. In the fu-

ture we plan to test our methods in various applications, e.g.

video editing, video compression and video summarization.
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