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Abstract

We consider 4D shape reconstructions in multi-view en-

vironments and investigate how to exploit temporal redun-

dancy for precision refinement. In addition to being benefi-

cial to many dynamic multi-view scenarios this also enables

larger scenes where such increased precision can compen-

sate for the reduced spatial resolution per image frame.

With precision and scalability in mind, we propose a sym-

metric (non-causal) local time-window geometric integra-

tion scheme over temporal sequences, where shape recon-

structions are refined framewise by warping local and reli-

able geometric regions of neighboring frames to them. This

is in contrast to recent comparable approaches targeting a

different context with more compact scenes and real-time

applications. These usually use a single dense volumetric

update space or geometric template, which they causally

track and update globally frame by frame, with limitations

in scalability for larger scenes and in topology and preci-

sion with a template based strategy. Our templateless and

local approach is a first step towards temporal shape super-

resolution. We show that it improves reconstruction accu-

racy by considering multiple frames. To this purpose, and

in addition to real data examples, we introduce a multi-

camera synthetic dataset that provides ground-truth data

for mid-scale dynamic scenes.

1. Introduction

We address multi-view 4D modeling of dynamic scenes

observed with a set of color cameras. We are particularly

interested in challenging scenes, of mid-scale size (dozen

square meters or more), with possibly fast motions and mul-

tiple people. These are a prominent feature of numerous

moving surface capture scenarios, for instance sport moves

with running, combat, or dancing over a large area. Ad-

dressing this use case enhances the creative possibilities for

many applications typically associated to 3D content cre-

ation and such as sports analysis, cultural heritage preserva-

tion or virtual reality applications.

Increasing the acquisition space of multi-camera set-ups

Figure 1. A challenging dynamic scene with fast motions and a

mid-scale acquisition space, hence low image resolution on shapes

in addition to motion blur. Temporal integration helps recovering

highly detailed models.

raises challenges since it generally requires larger camera

field of views and more distant cameras, leading to lower

pixel coverage of the scene for fixed sensor resolutions. For

dynamic scenes, we expect anyway scene details to be ac-

cessible by considering observations not only over space,

with different cameras, but also over time with moving ob-

jects. This requires going beyond static per-frame recon-

struction methods [40, 18, 12] and turn to temporal redun-

dancy for detail refinement.

A number of global 4D strategies have been devised for

such task, with the general strategy of globally optimizing

a spatio-temporal scene representation, e.g. implicit varia-

tional [14], volumetric with convex relaxation [26] or graph

cut based [23]. These robust schemes optimize over all in-
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put data and hence are likely to filter out local shape details

in space and time and, furthermore, they do not easily scale

to long actions observed from many viewpoints.

Recently, online causal accumulation strategies based on

dense TSDF representations have stood out, in particular

for real-time interactive applications, where a single up-

date volume [10] or geometric template[25, 16] is updated

by globally aligning the current shape estimate to data of

the incoming frame. These approaches focus on compact

scenes and interactive applications, with therefore limita-

tions on scale, topology evolution and local precision. We

pursue a different and complementary objective with offline

modeling of mid-scale dynamic scenes.

Remarkably, few approaches address these mid-scale

scenarios and no mid-scale datasets are yet publicly avail-

able. We propose a local, non-causal and detail preserving

filtering approach to this 4D reconstruction problem, with

the focus on offline temporal refinement for higher accu-

racy. The approach fuses reliable shape information over

a sliding time window by using local warps between neigh-

boring frames. To this purpose, it relies on an implicit TSDF

representation and a space discretization which adapts to the

input image resolution rather than considering an implicit

form over a fixed voxel grid where most cells will be empty

in a dynamic mid-scale scenario.

We validate the approach on several real datasets with

multiple subjects or people, where qualitative improve-

ments are shown in terms of noise reduction and better com-

pleteness in occluded regions. We also set up a quantitative

evaluation protocol using two synthetic mid-scale datasets,

which we will make available to the community. A signifi-

cant quality improvement is measured for our temporal inte-

gration algorithm on these datasets versus static and causal

tracking strategies.

2. Related Work

Multi-view reconstruction with temporal continuity.

While initially addressed on a frame-by-frame basis based

on silhouette and stereo cues, e.g. [31], multi-view recon-

struction has been variously shown to benefit from low level

temporal continuity assumptions, e.g. by carving pairs of

photoconsistent voxels across two frames [36], with global

4D hypersurface filtering [14], or by carving 4D Delau-

nay Triangulation-based representation of the sequence [2].

These smoothness constraints may be guided by optical

flow [19] or scene flow [28, 24]. In some cases optical

flow has been used to propagate stereo information across

pairs of views [34], but no full window integration based

on 3D warps was demonstrated as proposed. Topology con-

straints can be additionally enforced over a sequence, en-

suring consistent extraction of thin objects (rope) [27] or

ensuring a particular silhouette topology [23]. Rather than

focusing on the propagation or use of such purely geometric

priors, our approach leverages the propagation of observed

stereo/depth data across a temporal window.

Template-based capture. The 4D capture problem is

very often formulated as a template-based shape tracking

and alignment problem. The template may be a laser-

scanned [38, 9] or reconstructed surface, and use underlying

kinematic [38], body-space [4], volumetric [9] or surface-

cohesion [5] constraints to model the non-rigid deformabil-

ity of the scene. While most methods track a single tem-

plate for the whole sequence, thus not closely adjusting to

the topological and geometric reality of the observed data

at each frame, [7] builds and tracks keyframed templates

which are discarded every few frames but are locally more

faithful to the data. No method of this family refines the

reconstructed representation as proposed.

Real-time, causal approaches. Several relevant ap-

proaches exist that tackle the problem [17, 25, 16, 10] show-

ing how a TSDF representation can be used to accumulate

passed geometry information over a static or non-rigid ob-

ject, but these methods rely on a global non-rigid track-

ing step aligning passed data to the current frame, which

is prone to accuracy and topological drift, especially in

the presence of topological splits or merge and fast motion

which are common in many dataset. Scalability is also an

issue with large scenes due to dense volumetric reference

shape representation. Our approach targets a different, of-

fline context where scalability and precision are the main

goal, achieved through implicit TSDF reprensentation, ro-

bust local propagation and geometry refinement.

Large scene reconstructions. All previous approaches

address 4D reconstruction scenarios where the acquisition

area is limited to a few square meters. only a handful of ap-

proaches address larger scenes, e.g. [6] applies TSDF depth-

map fusion on large static scenes, and [15] reconstruct play-

ers in stadium events with frame-by-frame reconstruction.

They do not however address temporal filtering enhance-

ments as proposed.

3. Method Overview

Our objective is to exploit visual cues on dynamic scenes

over both space and time in order to recover high precision

shape models. We particularly consider mid-scale dynamic

scenes which favors multi color camera apparatus as they

provide flexibility in the acquisition space and time reso-

lution. Our approach exploits temporal redundancy over a

sliding time window in a sequence of multi-view frames.

Within such a time window, we propagate depth cues be-

tween frames over a single shape instance. To this aim, we

do not track a global shape template but use instead a local

strategy that can benefit from shape regions with locally re-

liable shape information. Our integration framework, fig 2
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considers therefore as input the multi-view color images

within a time window and outputs a single high precision

3D shape mesh for that window. To this aim, the infor-

mation over several frames, typically 3 to 7, is fused by

alternating shape and local warp estimation as detailed in

the following. In order to address the specific issues that

results from mid-scale scenarios, e.g. heterogeneous scene

coverage and wide baselines, we devise a novel method that

combines stereo based dense depth map estimation with ro-

bust fusion over space and time through implicit forms.

4. Depth Map Estimation

The first step of our framework consists in building depth

maps for the input images. This step is performed inde-

pendently per frame. The objective here is to provide a

dense coverage of the scene using a local strategy that can

yield precise, though noisy, depth estimations and to leave

the integration operation to a further global step based on

truncated sign distance function (TSDF). The principle is to

sample depths along the viewing ray of any image pixel and

to keep the best potential candidate with respect to a photo-

consistency measure that relies on image features. In order

to increase precision and to reduce the false positives along

viewing lines, we limit the sampling space using a confi-

dence volume based on the silhouette information. Drop-

ping out the time dimension temporarily to simplify nota-

tions, we assume we are given a set of N images {Ii}
N
i=1

observed with a set C of calibrated cameras with known

projections {πi}
N
i=1 and centres {ci}

N
i=1. We assume we are

also given a set of silhouettes {Ωi}
N
i=1, possibly imprecise.

4.1. Confidence Volume

The silhouettes {Ωi}
N
i=1 define, by extrusion, a 3D visual

hull that is assumed to contain the observed object. In prac-

tice, silhouettes are prone to various errors such as holes

or missing parts and do seldom guarantee this containment

property with the visual hulls. In addition, our objective is

primarily to reduce the search space along viewing rays to

segments that are likely to intersect the object surface more

than exactly locate the visual hull. Consequently we define

the confidence volume V as:

V = {x ∈ R
3 : ∃>αi (πi(x) ∈ Ii)

∧ ∃>βi (πi(x) ∈ Ωi)},
(1)

that is the locus of points in R
3 for which there exist i > α

images where they project and i > β silhouettes to which

they belong. α, β are two user defined constants that restrict

weakly supported depth predictions with α and enable pre-

dictions away from the exact visual hull when β < α. Intu-

itively, V is a dilated version of the visual hull in the space

region seen by at least α images, as shown in fig 3.

Figure 3. Left: the Confidence Volume with α = β = 54, equiv-

alent to the Visual hull with the 54 cameras that see the subject;

Right: the Confidence Volume with α = β = 10.

4.2. Photoconsistency measure

In order to predict depth along pixel viewing rays we

make use of a photoconsistency measure evaluated along

the ray and based on pairwise photometric discrepancy.

While Normalized Cross Correlation has been extensively

used over the past [12, 27, 11, 39], recent advances in image

descriptors have demonstrated the benefit of gradient based

descriptors, such as SIFT, GLOH, DAISY [21, 22, 33], es-

pecially with noisy photometric information. We chose

DAISY as it experimentally gives the best results in our con-

text.

For a point x ∈ R
3 and given two images Ii and Ij , the

pairwise photometric discrepancy gi,j(x) at x is given by

the Euclidean distance between the two descriptors Di and

Dj of the point’s projection in the images:

gi,j(x) = (Di(πi(x))−Dj(πj(x)))
2. (2)

The photoconsistency measure ρi(x) at x, given all the

images, is then computed as a normalized robust vote of

the image descriptors Dj(πj(x)) at x that are similar to

Di(πi(x)). In contrast to [39], who consider only local

minima of the pairwise discrepancy gi,j(x) and interpolate

them, we consider all the discrepancy values. This is based

on our observations that, in the mid-scale context, surface

points are less likely to define local minima of gi,j(x) than

in the small-scale case that presents short baselines. Hence

our photoconsistency measure ρi(x) is:

ρi(x) =
∑

j∈Ci

ω̄jW (gi,j(x)), (3)

where: the normalized values ω̄j of ωj = cos(θij) weights

camera contributions around camera i using the angle θij
between the optical axes of camera i and j; Ci is the subset

of cameras j such that ωj > 0.7; and W () is a robust voting

function, a Gaussian Parzen-Window in the descriptor space

in our experiments. Note that 1 is therefore the best score
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Figure 2. Spatiotemporal refinement framework.

ρi(x) when all cameras in Ci present the exact same image

descriptors at x and 0 the worst.

The above photoconsistency measure implicitly assumes

Lambertian surfaces and while robust to a certain extent

to specularities it can still fail when strong highlights oc-

cur. Also regarding occlusions, we expect ρ to present local

maxima where rays intersect the surface even in the pres-

ence of occlusions. In order to reinforce this assumption, we

restrict the search along viewing rays within a range close

to the surface using the confidence volume (1) as explained

below.

4.3. Depth Prediction

For each pixel in every silhouette, depth is predicted

along the viewing line using maxima of the photoconsis-

tency measure ρ introduced before. As mentioned before,

the photometric information can often be unreliable in mid-

scale scenarios. In order to prevent false detections of max-

ima far from the surface, we adopt a conservative scheme

where search for maxima along the viewing rays start from

the confidence volume and stop when the accumulated pho-

toconsistency reaches a threshold, hence limiting surface

penetration along rays. In spirit, this is similar to [26] who

define and integrate interior probabilities along rays using

however a photoconsistency measure taken from [39] (see

the discussion on photoconsistency measures in the previ-

ous paragraph).

More precisely, the best depth candidate dpi along ray

ri(p, d) leaving camera i through pixel p is determined as:

dpi =







dV (p) if max
d∈[dV (p),dmax]

ρi(ri(p, d)) < τphoto,

argmax
d∈[dV (p),dmax]

( ρi(ri(p, d))) otherwise.

(4)

Where dV (p) is the first depth value along ri(p, d) inside

the confidence volume V , τphoto a minimum photoconsis-

tency value below which we fall back to silhouette informa-

tion and the confidence volume, and dmax the search limit

such that:

∫ dmax

x=dV (p)

ρi(ri(p, x))dx ≤ ρmax (5)

To speed up depth map computation and add some spa-

tial consistency, we first perform super pixel clustering on

images using SLIC [1] and select a few random samples

per super pixel. An exhaustive search is performed for

these sample pixels in order to provide an approximation

for depths within the super pixel. Other pixel depths in the

super pixel are then computed around this first approxima-

tion d̄.

As a post-processing step, bilateral filtering accounting

for spatial, color and photoconsistency proximity is per-

formed over depth maps. It efficiently filters out outliers

with little impact on the computation burden, which moti-

vates our choice in a 4D dynamic context.

5. Shape Estimation

Given the depth maps {dti} estimated for all cameras i
and all frames t, we can now fuse depth information over

space and time to recover the shape surface mesh Sk at any

time instant k. While we consider all cameras in the fusion,

we limit the frames taken into account to a temporal win-

dow around k, typically 3 to 7 frames in our experiments,

within which required shape motion information can be ob-

tained with precision. In order to propagate reliable depth

cues between frames, our approach seeks for local regions

with consistent displacements and high photoconsistencies.

This local strategy better prevents the propagation of wrong

depth cues which occurs when a global strategy, such as

template tracking, is used. Given a temporal window, we

assume that each frame t, within the temporal window, cor-

responds to an instance of the reference shape Sk deformed
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with respect to a 3D motion field W t
k, with no topology

assumption. The approach consists then in iterating the fol-

lowing steps:

1. For all frame k:

(a) Given inter frame volumetric motions {W t
k}

merge all the time window depth maps, warped

using {W t
k}, into a 3D implicit form.

(b) From the implicit form estimate the 3D mesh Sk.

2. Given the {Sk} estimate the motion fields {W t
k}.

To initialize the process, we perform spatial integration only

in the above step 1 at the first iteration. The two steps are

then repeated a few times, typically 3 in our experiments.

5.1. Spatial Integration

To introduce our integration scheme, we first consider

a single frame and the spatial integration of the depth

maps di for all cameras at that frame. Following several

works[8, 17, 25] with a similar objective but in different

contexts, e.g. small-scale, we fuse all the depth maps into a

3D implicit form and take benefit of the Truncaded Signed

Distance Function (TSDF) strategy for that purpose. Our

motivation for the TSDF comes from its ability to naturally

handle arbitrary depth maps arising from different cameras

in addition to different time steps, as shall be dealt with in

further sections.

For a point x ∈ R
3, the truncated signed distance

TD(x) ∈ R to the surface is defined as the weighted av-

erage of all camera predictions Fi(x), i ∈ C:

Fi(x) =

{

min(µ, η(x)) iif η(x) ≥ −µ,
∅ otherwise,

η(x) = di(πi(x))− ‖ci − x‖,
(6)

and:

TD(x) =

∑

i∈Cx

ρ′i(x)Fi(x)

∑

i∈Cx

ρ′i(x)
, (7)

where Cx = {i ∈ C : Fi(x) 6= ∅} and ρ′i the photocon-

sistency measure (3) of the estimated depth along the ray

passing through x. If di is undefined at x, e.g. x is outside

the camera visibility domain, then camera i does not con-

tribute to the TSDF. When no camera contributes at x but x
is inside the confidence volume V then it is considered as in-

side, i.e. TD(x) < 0. Note that contributions are weighted

by the normalized photoconsistency measure which means

that when cameras disagree about the photoconsistency at

x, cameras with higher measures have an increased impact

whereas cameras with low photoconsistency measures only

marginally impact the reconstruction.

5.2. Spatiotemporal Integration

In order to extend the previous spatial integration to the

time domain, we now consider several frames over a tem-

poral window T = [k − n/2, k + n/2] of size n around

frame k. In essence, the temporal integration consists then

in adding to the TSDF (7) depth contributions from the

neighboring frames; using to this aim the estimated mo-

tion fields W t
k : R

3 → R
3 that map frame k to frame l

(as detailed in Sec. 5.4). As mentioned earlier, these contri-

butions should be weighted by the confidence λ we have in

the estimated local motion in addition to their photoconsis-

tencies ρ. We define therefore the integrated implicit form

TDk : R3 → R of the observed shape at frame k as:

TDk(x) =

∑

t∈T

λt
k(x

t
k)

∑

i∈Ct
x

ρ′ti (x
t
k)F

t
i (x

t
k)

∑

t∈T

λt
k(x

t
k)

∑

i∈Ct
x

ρ′ti (x
t
k)

, (8)

xt
k = x+W t

k(x). (9)

where Ct
x = {i ∈ C : F t

i (x) 6= ∅} and λt
k, ρti, d

t
i and

F t
i are respectively the motion confidence (Sec. 5.4), the

photoconsistency measure (Sec. 4.2), the depth prediction

(Sec. 4.3) and the truncation function (Sec. 5.1) at frame t.

5.3. Shape Mesh Generation

From the implicit form of the shape detailed in the pre-

vious section, we can extract the 3D shape mesh at frame

k as the zero level set of the associated implicit function

TDk(x) . A vast majority of methods consider the March-

ing Cube [20] (MC) approach for that purpose [12, 17, 26].

Although MC would also work in our case we consider in-

stead a different strategy that addresses some of the limita-

tions of MC: MC is based on a regular discretization of the

space and hence dilutes precision inside the shape, unless

a specific strategy such as subdivision is applied at the sur-

face; MC is not guaranteed to provide manifold meshes,

again unless specific and costly additional steps are per-

formed. In contrast we built on recent works on Voronoi

Tesselation [41] showing that better precision can be ob-

tained with discretizations of shapes instead of space. We

devise a simple yet efficient version of Voronoi Tesselation

that specifically accomodates multi-view capture scenarios.

The main steps of the algorithm are as follows:

1. Sample points inside the implicit form defined by the

TSDF. This is achieved by randomly selecting pixels in

all images and computing the point, along each pixel

rays, inside but close to the surface according to the

TSDF. The process is iterated until a user defined num-

ber of 3D points is reached.

3098



2. Determine the Voronoi diagram: given the points in-

side the shape surface, a Voronoi diagram of this set of

points is computed.

3. Clip the Voronoi diagram with the zero level set of the

TSDF. This operation extracts the intersection of the

Voronoi cells with the surface.

In the above strategy, sampling points close to the sur-

face, and originating from image viewpoints, ensures that

the 3D discretization is denser on the surface than inside

the volume and also denser on surface regions observed by

images. The latter enables more precision to be given to sur-

face regions for which more image observations are avail-

able.

5.4. Motion Estimation

Considering two meshes Sk and Sl at frames k and l, we

want to estimate the volumetric motion field W l
k : R3 → R

3

that maps Sk into Sl. Recall that our objective is to im-

prove shape estimations, hence we do not necessarily need

the complete shape motion, as when tracking or estimat-

ing scene flow. Instead, we seek for reliable sparse motion

information in surface regions where temporal integration

will therefore benefit to the shape reconstruction. Thus, the

estimated 3D motion fields needs not fully reproduce the

true motion, yet be equipped with confidence measures that

identify valid motion and allow to neglect the surface cues

associated with invalid motions when propagating informa-

tion between frames.

Various methods have been proposed to recover motion

information on moving shapes. Depending on the prior as-

sumption on the motion model they range from weakly con-

strained models with scene flow [35] to locally rigid mod-

els with ARAP[3] strategies, as for instance with Kinect

and Dynamic fusion[17, 25] or [7] and, at the other end of

the spectrum, to stronger priors with articulated models and

skinning animations as in [37].

In our context, as we do not seek for a complete

and flexible motion model we will favor local constrained

strategies. In addition, since we consider mid-scale and

dynamic scenes, large displacements can occur between

frames which advocates for sparse but robust matching. We

therefore opt for 3D features to provide robust 3D matches

that will be progressively densified over the alternate it-

erations of shape and motion estimations. We use Mesh-

Hog [42] to detect and match 3D features as it demonstrates

a good tradeoff between robustness, completeness and accu-

racy among other efficient methods such as heat kernel [32]

or Harris 3D [30].

Let {Mk} be the set of corresponding pairs of 3D

features between Sk and Sk+1 obtained with MeshHog

and m ∈ {Mk} such a pair. We attach to m a confidence

measure λm that favors regions with dense and coherent

matches. To this aim, the k-nearest neighbors mj of m
in {Mk} are first computed. Let δjm be the discrepancy

between the displacements vectors associated to m and

mj . λm is then the median of the j values G(δjm), where

G is a Gaussian kernel. This conservative strategy favors

small regions on Sk where m and its neighbors present

similar displacements vectors. As more matches will be

added over iterations, this can be seen as a growing strategy

that progressively extends the motion field around regions

where consistent displacements are found over iterations.

Given the corresponding pairs of MeshHog feature m ∈
{Mk}, their displacement vectors {Tm} from Sk to Sk+1

and their confidences λm, we define the forward motion

field W+
k : R3 → R

3 and its confidence λ+
k : R3 → R

as:

W+
k (x) =

∑

m∈{Mk}

λm Gm(x)Tm,

λ+
k (x) =

1
|Mk|

∑

m∈{Mk}

λm Gm(x)
(10)

where Gm() is a Gaussian kernel that weights the contribu-

tion of m with respect to the spatial distance between x and

the feature of m on Sk. The backward motion fields W−
k (x)

that maps Sk onto Sk−1 is defined in a similar way using

MeshHog features between Sk and Sk−1. The motion field

W l
k and its confidence λl

k are then defined as:

W l
k(x) =



















∑

t∈[k,l−1]

W+
t (x) if k < l,

∑

t∈[k,l+1]

W−
t (x) if k > l,

0 if k = l,

(11)

λl
k(x) =



















∏

t∈[k,l−1]

λ+
t (x) if k < l,

∏

t∈[k,l+1]

λ−
t (x) if k > l,

1 if k = l,

(12)

6. Results

In order to demonstrate the benefit of time integration

to recover dynamic scene models we conducted different

experiments. First, quantitative results were obtained to

evaluate how temporal integration improves shape recon-

struction. To this purpose, and since dynamic multi-view

benchmarks are not available yet, we created a dynamic

dataset equipped with ground truth data on geometry and

appearance. Then, qualitative results on real data were also

obtained to illustrate that temporal integration enhances re-

constructed shapes quality. The code and all the data used

in the following experiments will be made available to the

community.
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Figure 4. Examples of challenging dynamic mid-scale datasets,

and our reconstructions.

6.1. Synthetic Data

Dataset Multiple benchmarks addressing the Static

Multi-View Stereo problem, e.g. Middleburry [29] or DTU

Robot Image Dataset [18], were already made available on-

line. However, to the best of our knowledge, none exists for

the dynamic case with surfaces evolving over time. Hence,

we built an evaluation dataset with the objective to be as

close as possible to real situations with real data while hav-

ing ground truth information. It should be noticed that such

ground truth data is of interest in a context larger than shape

recovery and can contribute to tracking or appearance mod-

eling evaluations. The data consists of procedurally gen-

erated surfaces, typically clothes, added to real captured

data, typically body shapes, for which tracking over time

sequences are available. Its main features are:

• The synthetic image generation set-up is similar to real

multi camera platforms.

• Underlying shapes and their motions are real captured

data and replicate therefore real dynamic situations.

• Local shape deformations are generated and can simu-

late clothes or any other type of deformation.

• Appearances are generated as well and can yield vari-

ous effects with low to high contrast textures, specular

surfaces, color diffusion, motion blur among others.

Evaluation Given the ground truth data mentioned above

we evaluated quantitatively shape reconstructions using

standard measures in the field [29, 18], i.e. accuracy and

completeness. Static and refined reconstructions were per-

formed on a 20 frames synthetic sequence with local cloth-

Figure 5. (left) Mean completeness comparison between [13] and

our reconstructions on 10 frames of the synthetic sequence, (right)

Min and max values of completeness on 20 frames of the synthetic

sequence, time window T = 7, iterations = 3.

ing deformations, observed by 60 cameras, with a capture

volume of approximately 8mx4mx6m.

Figure 5 demonstrates how the mean completeness (ra-

tio of ground truth points closer to the reconstruction than a

given error) over 10 frames increases with temporal window

of sizes 1, 5 and 7. In order to evaluate the benefit of our

local propagation strategy, we also performed comparisons

with a strategy based on global surface tracking between

adjacent frames [5] very similar in spirit to the tracking

method employed in [10]. The global motion was then fed

in our temporal integration pipeline similarly to our local

strategy. All experiments were conducted using the same

set of parameters. Figure 5 shows that such global strategy

(mesh tracking in the figure) performs worse than our lo-

cal strategy or even than static strategies (i.e. single frame).

This is confirmed on real data in Figure 7 where the mesh

tracking based strategy is prone to erroneous and imprecise

estimations, leading to an oversmoothed results.

For the sake of completeness, we also compare to [13],

top ranked static Multi-View Stereo Reconstruction method

on the DTU dataset [18]. While the accuracy comparison

would be unfair since [13] does not take silhouettes into

account and hence produces points outside the visual hull,

we believe that the completeness that measures how close

the ground truth is to the reconstructed surface is on the

other hand informative.

This figure also shows min and max completeness val-

ues over 20 frames of the synthetic sequence. It shows that

the temporal integration impact significantly more the min

completeness. It is worth noticing that at approximately the

pixel resolution, roughly 3mm here, the min completeness

is increased by around 15% with the temporal integration.
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6.2. Real Data

We also tested our method on different dynamic multi-

camera sequences, containing multiple subjects. Every

sequence was captured with 68 calibrated RGB cameras

(2048x2048) with focal lengths between 8 and 28 mm.

Some examples of dynamic mid scale scenes and spatiotem-

porally refined surfaces are shown in Figure 4.

Figures 6 and 1 depict input images, our reconstructions

and the temporal improvement for the former. In addition,

Figure 6 shows that the temporal refinement preserved de-

tails that are filtered out by a spatial smoothing technique

(Laplacian Smoothing).

Figure 7 shows an example of temporal integration

with a global mesh tracking strategy, as explained previ-

ously. Even though the standing subject is quite well re-

constructed, such global approach fails in the case of fast

motion and strong topology noise. The temporal integration

with a global template motion makes the moving subject’s

surface noisier and fast moving parts are missing. The thin

surfaces such as the belt and the outfit also tend to suffer

from the tracking inaccuracies propagated through time and

are not correctly recovered with the global mesh tracking

strategy.

Figure 6. (top) An input image and our refined reconstruction.

(bottom) A close-up view on the model, showing the static re-

construction (left), spatially smoothed (middle) and our temporal

details refinement (right). Best viewed magnified

Our C++ multithreaded implementation runs as follows

on a 16-core Xeon 3.00GHz PC, 32 Gb RAM and with 68

4Mpixels cameras: 5-20 min/frame to build the implicit

TSDF, depending on total number of silhouette pixels; 5

min/frame for motion estimation; 5 min/frame for the sur-

face extraction, for a final mesh of 3M faces. A GPU imple-

mentation could be considered as extension for significant

speedup.

Figure 7. Spatiotemporal integration using motion estimation

based on global surface tracking (left) and using the proposed local

detection approach (right).

7. Conclusion

We presented a framework for spatiotemporal integra-

tion for surface reconstruction refinement, especially ef-

ficient on challenging mid-scale dynamic scenes captured

with multi-camera systems. Our approach improves over

classic per frame reconstruction, giving smoother and more

accurate reconstructions, especially in strongly occluded ar-

eas, by propagating photometric cues through time, accu-

mulating implicit forms, and extracting the surfaces using

a space discretization attached to the observed shape. A

seed growing strategy method is introduced to gradually es-

timate the motion of the dynamic scene, alternating between

a safe temporal accumulation of observations and motion

re-estimation. Comparisons against a state of the art MVS

methods demonstrate the effectiveness of our method to re-

cover surfaces in standard static cases, but also for mid-

scale dynamic data, as validated with a proposed data-set,

containing synthetic and real scenes.
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