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Abstract
Parsing urban scene images benefits many applications,

especially self-driving. Most of the current solutions employ

generic image parsing models that treat all scales and loca-

tions in the images equally and do not consider the geome-

try property of car-captured urban scene images. Thus, they

suffer from heterogeneous object scales caused by perspec-

tive projection of cameras on actual scenes and inevitably

encounter parsing failures on distant objects as well as

other boundary and recognition errors. In this work, we

propose a new FoveaNet model to fully exploit the perspec-

tive geometry of scene images and address the common fail-

ures of generic parsing models. FoveaNet estimates the per-

spective geometry of a scene image through a convolutional

network which integrates supportive evidence from contex-

tual objects within the image. Based on the perspective ge-

ometry information, FoveaNet “undoes” the camera per-

spective projection — analyzing regions in the space of the

actual scene, and thus provides much more reliable pars-

ing results. Furthermore, to effectively address the recogni-

tion errors, FoveaNet introduces a new dense CRFs model

that takes the perspective geometry as a prior potential. We

evaluate FoveaNet on two urban scene parsing datasets,

Cityspaces and CamVid, which demonstrates that FoveaNet

can outperform all the well-established baselines and pro-

vide new state-of-the-art performance.

1. Introduction

Urban scene parsing is a heated research topic that finds

application in many fields, especially self-driving. It aims

to predict the semantic category for each pixel within a

scene image captured by car mounted cameras, which en-

ables self-driving cars to perform reasoning about both the

overall scene background and the individual objects moving

in front of the cars.

Recent progress in urban scene parsing is mostly driven

by the advance of deep learning. Deep convolutional neu-

Figure 1: Illustration of our motivation. Top two rows: a scene

image with perspective geometry and its two zoomed-in regions.

Bottom two rows: typical failures in urban scene parsing. Left:

“broken-down” error on objects of large scales (the bus). Right:

boundary errors on objects of small scales.

ral network (CNN) based parsing algorithms [25, 21] have

demonstrated remarkable performance on several semantic

parsing benchmarks [7, 5, 24]. However, directly apply-

ing the generic CNN based image parsing models usually

leads to unsatisfactory results on urban scene images for

self-driving cars, since they ignore the important perspec-

tive geometry of scene images.

As captured by ego-centric cameras, perspective projec-

tion from actual scenes to the image plane changes the ob-

ject scales: a nearby car seems much bigger than a car far

away, even though they have the same scale in reality. The

top row in Figure 1 illustrates such a perspective geome-

try structure within a scene image. Generic parsing models

do not take such heterogeneous object scales into consider-

ation. Consequently, they do not perform well on parsing

distant objects (of small scales), and boundary and recog-

nition errors are introduced. See the parsing result marked

with the small box in Figure 1. In addition, objects that are

near to the camera and usually distributed within the pe-
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ripheral region have relatively large scales. Generic parsing

models tend to “break down” a large-scale object into sev-

eral pieces of similar classes, as shown in the parsing result

marked with the big box in Figure 1. Both of the above

problems are from ignoring the perspective geometry.

Therefore, we propose a novel FoveaNet to handle het-

erogeneous scales in urban scene parsing by considering the

perspective geometry. FoveaNet works like the fovea of hu-

man eyes: the center of the vision field (fovea region) is

focused on and the visual acuity is the highest. Through lo-

calizing “the fovea region” during parsing, FoveaNet “un-

does” the camera perspective projection by scale normaliza-

tion and parses regions at suitable scales.

Specifically, FoveaNet employs a perspective estimation

network to infer the overall perspective geometry and output

dense perspective scores for each individual pixel, indicat-

ing the nearness of a pixel to the vanishing point. Objects

with large perspective scores are usually small in the pro-

jected scene image. To address the unsatisfactory perfor-

mance on parsing distant objects, FoveaNet performs scale

normalization on the fovea region that consists of small-

scale objects. Then the parsings of small distant objects

and large near objects are untangled by a perspective-aware

parsing scene network, and boundary errors induced by

small scale objects are reduced.

To address the “broken-down” issues with parsing large

objects, FoveaNet employs a new perspective-aware dense

CRFs model that takes as input the perspective information

and outputs different potentials on the pixels of different

perspective scores. The proposed CRFs smooths the pix-

els from distant objects with large perspective scores more

slightly than on the large objects. Through this adaptive

strategy, the proposed CRFs are able to handle the “broken-

down” errors and meanwhile avoid over-smoothing on

small objects. We evaluate the proposed FoveaNet on two

challenging datasets, Cityspaces and CamVid, and prove

that it can provide new state-of-the-art performance on ur-

ban scene parsing problems. We make following contribu-

tions to urban scene parsing:
• We propose to consider perspective geometry in urban

scene parsing and introduce a perspective estimation

network for learning the global perspective geometry

of urban scene images.

• We develop a perspective-aware parsing network that

addresses the scale heterogeneity issues well for urban

scene images and gives accurate parsing on small ob-
jects crowding around the vanishing point.

• We present a new perspective-aware CRFs model that

is able to reduce the typical “broken-down” errors in

parsing peripheral regions of a scene image.

2. Related Work
Semantic Parsing Recently, deep learning has greatly

stimulated the progress on parsing tasks. Among

CNN based algorithms, the Fully Convolutional Network

(FCN) [25] and the DeepLab model [21] have achieved

most remarkable success. Afterwards, various approaches

have been proposed to combine the strengths of FCN and

CRFs [39, 23], or to refine predictions by exploiting fea-

ture maps output by more bottom layers [28, 11]. A com-

mon way to deal with scale issues in parsing is to zoom

in the input images [9, 27, 6, 22, 4]. The input images

are rescaled to multiple scales and processed by a shared

deep network [6, 22, 4]. More recently, Xia et al. [34] ad-

dressed the scale issues in the scenario of object parsing

by “zoom and refine”. However, it is not suitable for ur-

ban scene parsing. Our FoveaNet differs from end-to-end

trained attention models which learn black-box localization

functions [31, 35, 26, 17]. Instead, FoveaNet explicitly

models the visible geometry structure for fovea region lo-

calization and better fits the urban scene parsing task.

Perspective Geometry in Urban Scenes As 3D per-

spective geometry is a key property of urban scene im-

ages, several works consider modeling 3D geometric in-

formation as an additional feature for scene understand-

ing [33, 19, 14, 15, 38]. Sturgess et al. [33] made use of ge-

ometric features in road scene parsing, which are computed

using 3D point clouds. Hoiem et al. [14] modeled geometric

context through classifying pixels into different orientation

labels. Some others infer proper object scales with perspec-

tive geometry [15, 38, 19]. For example, Hoiem et al. [15]

established the relationship between camera viewpoint and

object scales, and used it as a prior for an object proposal.

Ladicky et al. [19] trained a classifier with hand-crafted fea-

tures to jointly solve semantic parsing and depth estimation.

Training samples are transformed into the canonical depth,

due to the observation that performance is limited by the

scale misalignment due to the perspective geometry. All of

the methods above are based on hand-crafted features rather

than deep learning.

3. The Proposed FoveaNet

3.1. Overview

The basic idea of FoveaNet is estimating the perspec-

tive geometry of an urban scene image and parsing regions

at suitable scales, instead of processing the whole image

at a single scale. The overall architecture of FoveaNet

is illustrated in Figure 2. The FoveaNet consists of two

components, i.e., the perspective-aware parsing net and the

perspective-aware CRFs.

The perspective-aware parsing net aims at better pars-

ing small scale objects crowding around the vanishing point

by exploiting the image inherent perspective geometry. We

propose a perspective estimation network (PEN) to estimate

the perspective geometry by predicting a dense perspective

heatmap, where a pixel of an object nearer to the vanishing

point would have a larger value. Thus PEN provides clues

785



Figure 2: Architecture overview of FoveaNet. FoveaNet consists of a perspective-aware parsing network and perspective-aware CRFs.

With the perspective estimation network (PEN), FoveaNet infers the global perspective geometry by producing a heatmap. Based on the

perspective heatmap, FoveaNet localizes a fovea region (cyan rectangle) where small distant objects crowd. FoveaNet performs scale

normalization on the fovea region, on which it produces a finer parsing via the Fovea branch. This result is then fused with the parsing

from a coarse branch into the final prediction. The perspective-aware CRFs take input the fused parsing result, the perspective heatmp as

well as object detection results, and output the final parsing result. Best viewed in color.

to locate a fovea region within which most small scale ob-

jects crowd. The fovea region is then re-scaled and receives

finer processing by the parsing net, i.e. a two-branch FCN.

In this way, small distant objects are untangled from large

near objects for parsing.

The perspective-aware CRFs aim at addressing “broken-

down” errors when parsing the peripheral region of a scene

image. Within this new CRFs model, we introduce a spa-

tial support compatibility function that incorporates the per-

spective information from PEN, and facilitates the parsing

by imposing adaptive potentials at different locations with

different perspective heatmap scores. Only the regions con-

fidently from the same object are processed by the CRFs.

Small distant objects will be smoothed in a lighter way than

the large near objects. The “broken-down” errors in periph-

eral regions can be alleviated effectively. We now proceed

to introduce each component of FoveaNet, respectively.

3.2. FCN in FoveaNet

FoveaNet is based on the fully convolutional net-

work (FCN) [25] for parsing the images. As a deeper CNN

model benefits more for the parsing performance, we here

follow Chen et al. [3] and use the vanilla ResNet-101 [13]

to initialize the FCN model in FoveaNet. We observe that

preserving high spatial resolution of feature maps is very

important for accurately segmenting small objects within

scenes. Therefore, we disable the last down-sampling layer

by setting its stride as 1. This increases the size of the fea-

ture map output by res5 c to 1/16 of the input image size

(without this modification the size of the output feature map

is only 1/32 of the input image size).

3.3. Perspective­aware Scene Parsing Network

FoveaNet localizes the fovea region with proper scales

and concentrates on the localized fovea region to normalize

Figure 3: Architectural overview of the perspective estimation

network (PEN). PEN has a similar network structure as the FCN.

Given an input scene image, PEN produces a one channel heatmap

indicating (roughly) the nearness to the vanishing point at pixel-

level.

the various object scales. To this end, a perspective estima-

tion network is used to estimate the overall perspective ge-

ometry of a scene image and localize the region (roughly)

centered at the vanishing point where most of small scale

objects crowd. PEN then works together with a two-branch

FCN as a perspective-aware scene parsing network.

Training PEN PEN has a same structure as the baseline

FCN model, as shown in Figure 3. Our ground truth takes

the form of a heatmap: a larger value in the heatmap indi-

cates a higher possibility of small objects to crowd. As it

is not easy to estimate the vanishing point of a scene image

correctly (sometimes the vanishing point may be invisible

or not exist in the image), we use the object scale as a clue

to roughly estimate the position of the vanishing point and

the perspective geometry.

For training PEN, we formulate the ground truth

heatmap of an image as follows:

H
(n)
i =

AveSize(ℓ(m))

Size(m)
,where i ∈ instance m,

Gi =
1

N

N∑

n=1

H
(n)
i , V

(n)
i = H

(n)
i + δ ×Gi, (1)
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Figure 4: Illustration of perspective heatmap estimation. (a) An

urban scene image. (b) Parsing ground truth. (c) Ground truth per-

spective heatmap generated by Eqn. (1). (d) Estimated perspective

heatmap and detected Fovea region from PEN. Fovea region with

maximal response is highlighted in cyan. Best viewed in color.

In the above equation, m denotes an object instance in the

n-th image, and i indexes a pixel from this instance. ℓm de-

notes the category label of instance m. AveSize(ℓ(m)) de-

notes the category-level average instance size. Thus H
(n)
i ,

i.e. the value of pixel i in the n-th heatmap H(n), depends

on the ratio of the category-level average instance size over

the current instance size Size(m). Global perspective score

priorGi for the i-th pixel is the average value over all theN

heatmaps. The ground truth V
(n)
i for training PEN is for-

mulated by weighted summing both the image specific char-

acteristics H
(n)
i and the global average Gi, being traded-off

by a parameter δ.

PEN is trained by minimizing a smoothed ℓ1 loss [12]

between the produced heatmap based on raw images and the

ground truth heatmap. Figure 4 illustrates the result of PEN.

Figure 4 (a) shows a training urban scene image with per-

spective geometry and Figure 4 (b) shows its ground truth

parsing map. We follow Eqn. (1) to obtain the ground truth

perspective confidence map shown in Figure 4 (c). From

the perspective map estimated by PEN (Figure 4 (d)), one

can observe that PEN successfully predicts the overall ge-

ometry of the input image — it outputs larger values for the

pixels closer to the vanishing point.

With this perspective heatmap, FoveaNet localizes the

fovea region with maximal response (highlighted with cyan

rectangle). In our experiments, we define the size of the

fovea region as 1/2 of the heatmap size. To locate the fovea

region based on the heatmap, FoveaNet passes the heatmap

from PEN through an average pooling layer. The receptive

field of the maximal pooling result on the heatmap is se-

lected as the fovea region, as illustrated by the cyan boxes

in Figure 2 and Figure 4 (d).

Discussion Another choice for estimating perspective in-

formation is to estimate depth information from a single im-

age [10, 8]. However, the single image depth prediction re-

sults are not discriminative for localizing distant objects. In

contrast, PEN can produce a heatmap with distinguishable

per-pixel scores, leading to more precise fovea region local-

ization. Therefore, we use the method introduced above to

estimate the perspective geometry and train PEN. A quali-

tative comparison between predicted depth [10] and our es-

timated perspective heatmap on Cityscapes dataset is pro-

vided in supplementary material.

Perspective-aware Scene Parsing FoveaNet performs

scale normalization to achieve better parsing performance

on objects of heterogeneous scales. After localizing the

fovea region, FoveaNet parses the fovea region and the raw

image separately through a two-branch FCN, as shown in

Figure 2. The raw input image passes through the coarse

branch to produce an overall parsing result. Meanwhile,

the fovea region is re-scaled to the original input size and

passes through the fovea branch to produce finer parsing

for the fovea region. The two branches have the same struc-

ture as the baseline FCN model and share parameters from

conv1 to res3 3b3. More architectural details are given in

Section 3.2. The two-branch FCN is end-to-end trainable

by minimizing per-pixel cross-entropy loss.

3.4. Perspective­aware CRFs

The perspective-aware scene parsing network can parse

the distant objects better by estimating perspective informa-

tion. However, another common issue in parsing scene im-

ages is that large objects in peripheral regions of a scene im-

age usually suffer from “broken-down” errors, i.e., a large

object tends to be broken into several small pieces which are

misclassified into different yet similar classes. This problem

is illustrated in the bottom left subfigure of Figure 1: some

parts of the bus are misclassified into the train, harming the

parsing performance on the peripheral region.

Intuitively, it would be beneficial for the final perfor-

mance to refine the prediction with the aid of appearance

features. In object segmentation, dense CRFs are usually

applied to the prediction scores produced by FCN, and

have shown impressive effects on refining prediction. How-

ever, directly applying dense CRFs to urban scene images

does not give satisfactory performance due to heteroge-

neous scales of objects from the fovea region and the pe-

ripheral region. A dense CRFs model performing well on

the peripheral region tends to over-smooth the predictions

on small objects from the fovea region, which harms the

performance on small objects significantly.

Based on the perspective information from PEN, we pro-

pose a new perspective-aware dense CRFs model to allevi-

ate “broken-down” errors. The CRFs model is trained sepa-

rately, following the DeepLab model [21]. Let ℓ denote the

label vector for all the pixels, fi denote the learned repre-

sentation of the pixel i, and pi denote the 2D-coordinate of
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the pixel i in the image plane. The energy function of the

perspective-aware dense CRFs is defined as

E(ℓ) =
∑

i

ψu(ℓi) +
∑

i,j

ψp,persp(ℓi, ℓj).

Here ψu is the standard unary potential. The pairwise po-

tential in our proposed CRFs model has a new form:

ψp,persp(ℓi, ℓj) = µ(pi, pj)ν(ℓi, ℓj)κ(fi, fj),

where the kernel κ(·, ·) is the contrast-sensitive two-kernel

potential proposed by Krahenbuhl et al. [18], and ν is

the Potts label compatibility function. Here µ is a new

spatial support compatibility function introduced for the

perspective-aware CRFs that considers auxiliary object de-

tection results and perspective information provided by

PEN:

µ(pi, pj) = dk

(∑
mǫV̂

vm

|V̂ |
/

∑
nǫBk

vn

|Bk|

)
(2)

The object bounding boxes are detected by a Faster-

RCNN [29] model. Among them, some bounding boxes

Bk, k = 1, 2...K contain the pixels pi,pj . Then the box

Bk with the maximum detection score dk is selected as

the target one. Here V̂ denotes the estimated heatmap,

and m,n index pixels from the estimated heatmap V̂ and

bounding box Bk respectively. This µ(pi, pj) incorporates

perspective information as follows. It lowers the weights

of the pairwise potential at a bounding box with higher

heatmap values. Thus for a small object with a high per-

spective score, the pairwise potential becomes small (im-

posing lighter spatial smoothing), and the unary potential

plays a major role. By focusing on each detection pro-

posal with adaptive perspective weights, the proposed CRFs

model effectively alleviates the “broken-down” problems

and meanwhile avoids over-smoothing the details.

4. Experiments

4.1. Experimental Settings

We implement FoveaNet using the Caffe library [16]

and evaluate its performance on two urban scene parsing

datasets: Cityscapes [5] and Camvid [2]. For performing

ablation studies on FoveaNet, we employ a vanilla FCN ar-

chitecture with ResNet-101 being its front-end model as the

baseline. It takes raw images as inputs and is trained with

per-pixel cross-entropy loss. During testing, it produces

parsing results at a single scale. We examine how its perfor-

mance changes by incorporating different components from

FoveaNet, in order to understand the contribution of each

component. FoveaNet is initialized by a modified ResNet-

101 network pre-trained on ImageNet (see Section 3.2 for

more details). We fine-tune the initial model on an individ-

ual scene parsing dataset. The initial learning rate is 0.001,

and is decreased by a factor of 0.1 after every 20 epochs for

twice. The momentum is 0.9.

4.2. Results on Cityscapes

The Cityscapes dataset [5] is a recently released large-

scale benchmark for urban scene parsing. Its images are

taken by car-carried cameras and are collected in streets of

50 different cities. It contains in total 5,000 images with

high quality pixel-level annotations. These images are split

to 2,975 for training, 500 for validation and 1,525 for test-

ing. Cityscapes provides annotations at two semantic gran-

ularities i.e., classes and higher-level categories. Annota-

tions can be divided into 30 classes and 8 higher-level cate-

gories. For instance, the classes of car, truck, bus and other

3 classes are grouped into the vehicle category. Among

them, 19 classes and 7 categories are used for evaluation.

Our FoveaNet is trained on 2,975 training images, and eval-

uated on the validation set. Then we add 500 validation im-

ages to fine-tune our model and obtain the test performance.

Following the provided evaluation protocol with the

dataset [5], we report the performance of compared mod-

els in terms of four metrics i.e. IoUclass, IoUcategory, iIoUclass

and iIoUcategory. Compared with the standard IoUclass and

IoUcategory, the latter two IoU metrics put more emphasis on

the performance on small scale instances. The resolution of

images is 2048×1024, which brings a challenge to training

deep networks with limited GPU memory. Hence, we use

a random image crop of 896 × 896 in training. For build-

ing the perspective-aware CRFs model, we train a Faster-

RCNN on Cityscapes with 8 classes whose ground truth

bounding boxes can be derived from instance annotations,

including truck, bus, motorcycle.

Perspective Distortion We now quantitatively analyze

how much perspective distortion affects urban scene pars-

ing and demonstrate perspective distortion is a severe is-

sue for urban scene parsing. We evaluate the baseline FCN

model (trained on the whole images) on two image sets:

one contains only the central region and the other contains

only the peripheral region, as illustrated in Figure 5. Ta-

ble 2 shows a detailed comparison between these two im-

age sets on Object and Vehicle category, which consist of

3 and 4 classes respectively. First, we find that the perfor-

mance on the Object category in the central region is much

worser than in the peripheral region. More concretely, we

find that the IoUcategory of Object drops 10.6% in the central

region. This performance drop comes from the small object

scales in the center region caused by perspective distortion.

This problem can also be observed from parsing results in

Figure 5. The parsing in the central region lacks enough de-

tails. Second, generic parsing models tend to “break down”

a large-scale object into several pieces of similar classes, as

illustrated in Figure 5. We can observe from Table 2 that

the IoUCategory of Vehicle improves 2.7%, but corresponding

IoUClass deteriorates largely in the peripheral region. This

can be largely attributed to misclassification between fine-
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Table 1: Performance comparison among several variants of FoveaNet on the Cityscapes validation set. The metric of iIoU is not

applicable for categories of road to bicycle. Best viewed in color.
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FCN Baseline
IoU 97.7 81.9 91.0 48.5 52.9 58.2 63.1 73.5 91.4 61.6 94.3 78.1 56.0 93.4 57.5 81.2 66.2 60.4 74.2 72.7 87.6

iIoU —————— 60.4 37.8 84.8 36.2 58.5 43.1 36.9 56.4 51.8 72.8

+ fixed fovea region
IoU 97.8 82.8 91.3 48.0 51.0 60.8 66.7 75.6 91.7 61.3 94.5 79.2 57.0 93.3 55.3 79.9 65.1 62.4 75.1 73.1 88.3

iIoU —————— 62.8 46.2 86.5 36.3 59.6 43.2 42.2 59.6 54.6 75.4

+ PEN fovea region
IoU 97.8 82.9 91.4 48.6 54.3 62.5 69.0 77.3 91.9 60.7 94.4 80.6 60.3 93.6 56.8 80.2 60.4 65.8 76.2 73.9 88.8

iIoU —————— 64.7 48.6 87.2 42.8 62.2 45.3 46.9 61.4 57.4 76.6

+ PEN fovea region

& normal CRFs

IoU 97.7 82.7 90.7 48.7 51.5 54.1 60.7 75.3 90.9 62.9 94.5 78.9 57.7 93.3 61.8 83.4 70.8 65.2 74.7 73.5 87.2

iIoU —————— 61.6 47.0 83.3 36.2 58.5 43.7 45.7 59.0 54.4 73.6

+ PEN fovea region

& depth-aware CRFs

IoU 97.7 82.4 91.2 47.2 53.9 61.8 67.9 76.5 91.7 60.5 94.2 79.8 58.6 93.9 60.6 84.2 69.7 64.2 75.5 74.3 88.4

iIoU —————— 63.2 46.7 87.0 40.4 60.6 44.2 42.8 59.8 55.6 75.6

+ PEN fovea region

& persp-aware CRFs

IoU 97.9 83.0 91.5 47.7 54.5 62.8 69.1 77.5 91.9 60.9 94.4 80.7 60.4 94.4 72.5 86.2 72.7 66.8 76.4 75.9 88.8

iIoU —————— 65.1 48.9 87.8 43.0 62.3 49.2 46.8 61.6 58.1 76.8

Figure 5: Typical parsing result of baseline FCN model. We eval-

uate FCN on peripheral and central region respectively, to analyze

how much a perspective distortion affects urban scene parsing.

Table 2: Comparison on Object and Vehicle category between

peripheral and central regions.

Region peripheral central

IoUcategory object 69.7 59.1

IoUClass

pole 62.8 51.1

tr. light 66.3 58.2

tr. sign 77.7 67.5

IoUcategory vehicle 93.3 90.6

IoUClass

car 94.3 91.8

truck 48.0 66.0

bus 78.7 83.0

train 61.0 71.6

grained classes, which is reflected by the IoUClass metric.

Objects in the peripheral region have an unbalanced larger

scale due to perspective distortion. The performance drop

on Vehicle category is brought by the “broken-down” issue.

Ablation Analysis We now analyze FoveaNet by inves-

tigating the effects of each component separately. Ta-

ble 1 lists the performance of adding each component of

FoveaNet to the baseline model (vanilla FCN) on the valida-

tion set. We also give a qualitative comparisons in Figure 6.

From the results, we can make following observations.

Perspective-aware Parsing: The 2nd row in Figure 6

shows that PEN successfully estimates the global perspec-

tive geometry. In the heatmap, small scale objects have

larger response values (brighter). We compare the fovea re-

gion estimated by PEN (yellow rectangle) with a pre-fixed

fovea region estimated from the global average (red rect-

angles; ref. Eqn. (1)). Comparing these two fovea regions

shows PEN better localizes the regions covering small ob-

jects and is adaptive to different images. For example, the

leftmost image presents a road turning left and thus small

scale objects crowd in the left panel. PEN effectively lo-

cates this region but the globally fixed one fails.

We also quantitatively compare the benefits of these

two fovea region localization strategies in Table 1 (+ fixed

fovea region vs. + PEN fovea region). One can observe

that relying on the fovea regions provided by PEN signif-

icantly performs better by a margin of 2.8% in terms of

iIoUclass. Compared with the baseline FCN model, perform-

ing perspective-aware parsing with the help of PEN signifi-

cantly improves the performance by 5.6% and 3.8% on the

instance-level scores iIoUclass and iIoUcategory respectively

(highlighted in blue). This verifies perspective information

is indeed beneficial for urban scene parsing.

Figure 6 provides more qualitative results. We visual-

ize the parsing results on the fovea region (from PEN) with

FoveaNet or with FCN baseline model (the 4th row and the

3rd row respectively). One can observe that perspective-

aware parsing gives results with richer details. Particularly,

the pole, traffic light and traffic sign are parsed very well.

This is also confirmed by their IoU improvement in Table 1

(highlighted in green), which is up to 6%. These qualitative

and quantitative results clearly validate the effectiveness of

the perspective-aware parsing network on objects of small

scales, as it can better address the scale heterogeneity issue

in urban scenes.

Perspective-aware CRFs: Based on the perspective-

aware parsing on the fovea region, we further compare

perspective-aware CRFs, normal dense CRFs and depth-

aware CRFs in Table 1. The depth-aware CRFs model is

similar to the perspective-aware CRFs model, except that

the perspective heatmap in Eqn. (2) is replaced by single

image depth prediction from the method in [10].

We observe that truck, bus and train are the three classes

with most severe “broken-down” errors. Applying the nor-
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Figure 6: Example parsing results on Cityscapes. 1st-2nd row: urban scene images with two types of fovea regions derived from global

prior (red) and PEN (yellow) based on its estimated heatmap (2nd row). 3rd row: parsing result on fovea regions with FCN baseline. 4th

row: parsing result on fovea region with FoveaNet. FoveaNet produces more detailed parsing results on small scale objects e.g., pole,

traffic light, traffic sign. Best viewed in color.

mal dense CRFs improves the IoUclass of these three classes

by up to 10.4% (highlighted in brown). This demonstrates

that the normal dense CRFs model is effective in allevi-

ating the “broken-down” error to some extent. However,

the normal dense CRFs model harms the parsing results

of small-scale objects. This can be observed from IoUclass

of pole, traffic light and traffic sign (highlighted in orange)

which significantly drop w.r.t. results provided by its base-

line (baseline FCN + PEN fovea region). This is due to

over-smoothness artifacts of the normal dense CRFs as it is

unaware of the scale variance within the image.

In contrast, the perspective-aware CRFs model signifi-

cantly boosts the IoUclass of truck, bus, and train by 15.7%,

6.0%, 12.3% respectively (highlighted in red), without

harming the results of small objects. Therefore, by incorpo-

rating perspective information, the perspective-aware CRFs

model successfully reduces the “broken-down” errors with-

out bringing over-smoothness, superior to the normal dense

CRFs. The depth-aware CRFs model is superior to the nor-

mal dense CRFs one, but inferior to the perspective-aware

CRFs one. This demonstrates that considering perspective

geometry is useful but depth prediction is not so discrimi-

native as perspective information predicted by our proposed

model, as discussed in Section 3.3.

Figure 7 gives additional parsing examples from the

perspective-aware CRFs model. The trained Faster R-CNN

model provides several object bounding boxes for the three

urban scene images. PEN predicts perspective scores on

these objects, where a brighter value indicates a higher

probability of being near to the vanishing point (2nd row).

We can observe that before applying perspective-aware

CRFs, large scale objects suffers from “broken-down” er-

rors (3rd row). Perspective-aware CRFs significantly re-

duces such errors in the peripheral region without over-

smoothing small objects (e.g., pole) (4th row).

Comparison with State-of-the-art We fine-tune the

FoveaNet using both training and validation images. Then

on the test set we compare its performance with state-of-

the-art published models which achieved best performance.

Table 3 shows the results. Our FoveaNet outperforms all

the published state-of-the-arts. FoveaNet performs espe-

cially well at instance-level (see iIoU results). Compared

with the FCN model, FoveaNet brings significant improve-

ment on iIoUclass and iIoUcategory, up to 5.2%. These two

instance-level scores reflect the good parsing performance

of FoveaNet on small scale objects. The improvement

of IoUclass and IoUcategory can be largely attributed to our

perspective-aware CRFs, which can significantly reduce

“broken-down” errors. Upon acceptance, we will release

the code and model.
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Figure 7: Parsing results of perspective-aware CRFs on Cityscapes validation set. Top: input images with object detection bounding

boxes (yellow). 2nd row: parsing results from FCN. Large scale objects in peripheral region present “broken-down” errors. 3rd row: the

perspective information by PEN which is integrated into proposed perspective-aware CRFs. Bottom: FoveaNet applies perspective-aware

CRFs to remove the “broken-down” error. Best viewed in color.

Table 3: Performance comparison with baseline models on

Cityscapes test set.

Methods
Class Category

IoU iIoU IoU iIoU

Dilation10 [36] 67.1 42.0 86.5 71.1

NVSegNet [1] 67.4 41.4 87.2 68.1

DeepLabv2-(Resnet-101) [21] 70.4 42.6 86.4 67.7

AdelaideContext [23] 71.6 51.7 87.3 74.1

LRR-4x [11] 71.8 47.9 88.3 74.1

Baseline FCN 71.3 47.2 87.8 72.9

FoveaNet (ours) 74.1 52.4 89.3 77.6

4.3. Results on CamVid

Cambridge-driving Labeled Video Database

(CamVid) [2] consists of over 10min of high quality

videos. There are pixel-level annotations of 701 frames

with resolution 960 × 720. Each pixel is labeled with

one of the 32 candidate classes. Perspective geometry

can also be observed on these frames. Following previous

works [1, 20], we use 11 classes for evaluation and report

the per-pixel and average per-pixel accuracy. To implement

FoveaNet, we reuse PEN and Faster-RCNN trained on

Cityscapes urban scene images. The two-branch FCN

model (coarse and fovea branch) are initialized from

ResNet-101 and fine-tuned on CamVid training and valida-

tion sets. The performance of FoveaNet on the test set and

the comparison with state-of-the-arts are shown in Table 4.

FoveaNet outperforms the best baseline method on this

dataset by 1.7% and 3.7% in global accuracy and average

accuracy respectively. Due to limited space, we defer

Table 4: Performance comparison with baseline models on

CamVid test set.

Global Accuracy Average Accuracy

Zhang et al.[37] 82.1 55.4

Bulo et al.[30] 82.1 56.1

Shuai et al.[32] 91.6 78.1

FoveaNet 93.3 81.8

qualitative results on CamVid to Supplementary Material.

5. Conclusion
We proposed a new urban scene parsing model FoveaNet

by considering the ubiquitous scale heterogeneity when

parsing scene images, which can provide state-of-the-art

performance as validated on the Cityscapes and CamVid

datasets. FoveaNet exploits the perspective geometry infor-

mation through two novel components, perspective-aware

parsing net and perspective-aware CRFs model, which work

jointly and successfully to solve the common scale issues,

including parsing errors on small distant objects, “broken-

down” errors on large objects and over-smoothing artifacts.
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