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Abstract

The ability of learning from noisy labels is very useful

in many visual recognition tasks, as a vast amount of data

with noisy labels are relatively easy to obtain. Traditionally,

label noise has been treated as statistical outliers, and tech-

niques such as importance re-weighting and bootstrapping

have been proposed to alleviate the problem. According to

our observation, the real-world noisy labels exhibit multi-

mode characteristics as the true labels, rather than behaving

like independent random outliers. In this work, we propose

a unified distillation framework to use “side” information,

including a small clean dataset and label relations in knowl-

edge graph, to “hedge the risk” of learning from noisy labels.

Unlike the traditional approaches evaluated based on sim-

ulated label noises, we propose a suite of new benchmark

datasets, in Sports, Species and Artifacts domains, to eval-

uate the task of learning from noisy labels in the practical

setting. The empirical study demonstrates the effectiveness

of our proposed method in all the domains.

1. Introduction

With the recent advancements in deep convolutional

neural networks (CNN) [13], learning from a clean large-

scale dataset, e.g., ImageNet [19], has been very successful

in various visual recognition tasks. However, collecting

such datasets is time consuming and expensive. Recent

efforts, therefore, have been focused on building and learn-

ing from an Internet-scale dataset with noisy labels such

as YFCC100M [22] and YouTube8M [1]. These datasets

have the potential of leveraging seemingly infinite amount

of images and videos on the Internet. But labels in those

datasets are noisy in terms of visual correlation and hence

challenging for the learning process.

Previous approaches tried to circumvent the problem of

learning from noisy samples by treating them as statistical
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Figure 1: Overview of the proposed system to learn from

noisy labels by leveraging a knowledge graph. The left

panel shows the large scale noisy dataset, out of which we

collect a small set of images with clean labels to guide the

learning process. On the right panel, we demonstrate the

knowledge graph on the species domain constructed from

DBpedia-Wikipedia.

outliers and discarding them using some variants of outlier

detection methods [18, 14, 20]. However, in practice, it

is typical that noisy samples are not statistical outliers but

rather some form of significant mass. Existing approaches

have shown to produce inferior results on these cases. For ex-

ample, images collected by searching polysemy words, such

as apple, will show a multi-modal distribution of visual con-

cepts, in which case statistical outlier detection techniques

will fail to figure out which concept to be associated with.

Another example, images labeled with basketball on Flickr

may contain a significant amount of group shots, selfies,

and photos taken before or after the game – these are less

visually relevant to the event itself but regardless forming a

significant mass; statistically, they are not outliers.

Recently, Hinton et al. [11] introduced the concept of

“distillation” to transfer the knowledge learned from one

11910



model (expert or teacher model) to another (a lightweight

student model), by treating the prediction results produced

from the first model (usually more expensive to train) as the

“soft target” labels for training the second light model (usu-

ally trained in a more constrained setting). Inspired by this,

we propose a new technique that uses a similar distillation

process to learn from noisy datasets. In our scenario, we

assume that we have a small clean dataset and a large noisy

dataset. The small clean dataset can either be an existing pub-

lic dataset or labeled from part of the noisy data. Our goal is

to use the large amount of noisy data to augment the small

clean dataset to learn a better visual representation and clas-

sifier. Concretely, we distill the knowledge learned the small

clean dataset to facilitate learning a better model from the

entire noisy dataset. This is different from Hinton et al. [11],

where distillation is used to transfer knowledge from a better

model (e.g., an ensemble model) to guide learning a light

but typically inferior model. Furthermore, we propose to

integrate a knowledge graph to guide the distillation process,

where rich relational information among labels are explicitly

encoded in the learning process. This helps the algorithm to

disambiguate noisy labels by, e.g., knowing that apple can

either be a fruit category or a company name.

To evaluate our technique, we collect a suite of new

datasets on three topics: sports, species, and artifacts. Our

dataset contains a total of 480K images from 780 class cat-

egories and exhibit the real-world labeling noise we men-

tioned above. We build a textual knowledge graph on top

of these three topics based on Wikipedia, where labels are

related by their definitions. We show that, our proposed dis-

tillation process, as well as leveraging the knowledge graph

to guide the distillation process, can achieve the best results

on our datasets compared with competing methods.

In summary, we make the following contributions:

• We propose a novel algorithm based on a distillation

process to learn from noisy data, with a theoretical

analysis under some conditions.

• We leverage a knowledge graph to guide the distillation

process to further “hedge the risk” of learning from

noisy labels.

• We collect several new benchmark datasets with real-

world labeling noises. We extensively compare with

different baselines and show that our proposed algo-

rithm achieves the best results 1.

2. Related Work

In this section, we review related works on learning with

noisy labels and network distillation.

Learning with noisy labels has been an important research

topic since the beginning of machine learning. Recently,

Reed et al. proposed a bootstrap technique to modify the

1Code and dataset: https://goo.gl/6XRiss

labels on-the-fly, in order to alleviate the potential dam-

age caused by the noisy labels [18]. Liu et al. proposed

an importance re-weighting method to deal with random

classification noise [14], where the level of label noise is esti-

mated from a pretrained classifier. This approach extends the

idea of unbiased loss function [16] in the traditional impor-

tance re-weighting framework. Sukhbaatar et al. proposed a

noise layer on top of softmax to “absorb” label noise [20].

Szegedy, et al. proposed a simple yet effective way to avoid

over-trusting the noisy labels [21], by uniformly redistribut-

ing the energy of the noisy labels. Interestingly, Krause et al.

discovered that, in the case of fine grained classification, the

label noise does not hurt the performance, because the noisy

examples are not shown in the evaluation [12].

Learning with noisy labels is an important technique with

many applications [9, 5, 10, 25]. Especially a number of

researchers studied the problem of learning from text based

image search results. For example, Divvala et al. introduced

a fully automatic system to learn visual concepts and their

variations using image search results from the Internet [7].

Chen et al. proposed a two-step approach to learn ConvNet

by image search on the Internet [4].

To handle the noisy labels, a number of researchers con-

sider the classification with side information strategy to han-

dle data noise and accelerate optimization. For example, Wu

et al. proposed a framework with mixed graph to handle

missing labels in the task of multi-label classification [24].

Bergamo et al. also proposed to exploit small manually la-

beled dataset to learn with text based image search in the

framework of domain adaptation [2]. Frome et al. proposed

to use the word2vec distance of the labels to scale the Con-

vNet learning process to a larger vocabulary size. These

methods are thought-provoking, however, differ from our

approach in the way of leveraging clean and noisy labels.

Sukhbaatar and Fergus [20] proposed a novel layer to

handle the noisy labels in the context of neural network. Af-

ter the network is trained with the baseline method, an extra

linear layer is added on top of the network to “absorb” label

switch noise. This new layer estimates the label switching

probability with a linear function, which works well with

simulated noise that conforms to the label switch assumption.

However, it is not clear how well this approach works in real

world scenarios. We will compare this method with ours in

the experiments.

Our approach is motivated by the recent works of network

distillation [11, 15]. Hinton et al. developed the idea of dis-

tillation [11] to learn a student model with simpler network

structure to replace the teacher model with a cumbersome

ensemble of models. Similarly, Bulò et al. used distilla-

tion to extract an optimal predictor from a model trained

with dropout, which outperforms the standard scaling based

dropout [3]. Lopez-Paz et al. unified distillation and privi-

leged information into one framework [15]. A key insight
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from these works is that the soft distillation scores are better

than hard labels when guiding the learning of student net-

works. However, as discussed before, our approach uses a

different setting as traditional distillation approaches. Table 1

summarizes these key differences. In addition, traditional

distillation approaches assume the teacher network has better

performance with better empirical risk bounds [15]. In this

paper, we show that the student network can do better than

the teacher. Given a teacher network is trained from clean

dataset, this paper proposes to leverage a bigger dataset with

noisy labels with the outputs of teacher network, which leads

to a student model that consistently outperforms the teacher.

3. Our method

In this section, we formulate the problem of learning from

noisy labels based on distillation, and explain how we can

further improve the learning process by using a knowledge

graph as a guide to the distillation process.

3.1. Problem Formulation

Consider an L way multi-class classification dataset,

D : {(xi, yi)|i = 1 . . . N} ∼ P (xi, yi) (1)

where xi ∈ Rw×h is the i-th image, yi ∈ {0, 1}L is the

i-th observed noisy label vector, and N is the number of

samples. The noisy label yi is corrupted from the true label

y∗i ∈ {0, 1}L by an unknown process yi ∼ P (yi|xi, y
∗
i ). In

this work, we assume that we have a small portion of the

dataset cleaned up, i.e., D = Dc∪Dn, where Dc is the small

clean dataset and Dn is the remaining noisy data, and we

have N = |Dc|+ |Dn| with |Dc| < |Dn|.

Our goal is to train an optimal classifier using the entire

dataset D. The classifier is optimal in the sense that the risk

on unseen test data is minimized [23],

f∗ = argminfRDt
(f) = argminfEDt

{l[y∗, f(x)]}, (2)

where f∗ is the optimal classifier, Dt is the unseen test

dataset, y∗ is the ground truth label of x, and l[·, ·] is a loss

function, e.g., the commonly used cross entropy loss,

lce(y
∗, f(x)) = −

∑L

m=1 CE(y∗[m], δ(f(x)[m]))
CE(a, b) = a ln b+ (1− a) ln(1− b),

(3)

where δ(a) = 1/(1 + e−a) is the sigmoid activation, and m
in the bracket denotes the m-th element of the vector.

In the following sections, we introduce our distillation

based algorithm to maximally leverage the partially labeled

dataset D, provide an analysis for the distillation algorithm,

and extend the algorithm to use external knowledge graph

information to further improve performance.

3.2. Knowledge Distillation

Our distillation framework is designed to be general, so

that we do not rely on any particular assumption on label

noise, because in practice the label noise is very diverse,

non-stationary, and falls in multi-mode. Concretely, we first

train an auxiliary model from the small clean dataset, and

then transfer the knowledge learned from the auxiliary model

to guide learning our primary model on the entire dataset.

Our rationale is that the model trained from the small clean

dataset produces an independent source of variance that can

be used to cancel out the variance introduced by the label

noise. We will have more analysis later in the section.

Given an auxiliary model fDc
trained from the small

clean dataset Dc, we train our primary model with the entire

dataset D, using the following loss function [15, 11],

LD(yi, f(xi)) = λl(yi, f(xi)) + (1− λ)l(si, f(xi)), (4)

where si = δ[fDc
(xi)/T ] and T is the temperature [11]. In

our experiments, we tried different temperatures, but the

performance is not sensitive so we simply set T = 1 (See

the sensitivity analysis in Table 5).

In Eqn. (4), the first term is the primary loss, and the

second term is called the imitation loss [15]. The model is

learned from the noisy labels with the primary loss, and at

the same time to imitate the auxiliary model output si. λ
is a parameter to balance the noisy labels and the auxiliary

model output. In the case of the cross entropy loss defined in

Eqn. (3), the loss function is linear with respect to the label

yi, and Eqn. (4) can be rewritten as,

LD(yi, f(xi)) = l(λyi + (1− λ)si, f(xi)). (5)

We define ŷλi = λyi + (1− λ)si as the pseudo label, which

combines the noisy label yi with the prediction of the aux-

iliary model output si. Both terms are deviated from the

unknown true label y∗i , but because the deviations are inde-

pendent, this combined soft label can be closer to the true

label under some conditions. By driving the pseudo labels

closer to the ground truth label statistically, we can train a

better model. We provide some analysis in the following.

Rationale behind our distillation: First, we define a

risk Ry associated with the unreliable label ỹ:

Rỹ = EDt
[‖ỹ − y∗‖2], (6)

where y∗ is the unknown ground truth label, and expectation

is defined on the test set. The random variable ỹ denotes

the unreliable label corrupted from the true label y∗, e.g., s
and y. Although Rỹ does not relate directly with the final

accuracy of the classifier, and the ℓ2 distance is different

from the cross entropy loss function (3) 2, it is an indicator

2Ideally, we would like to define the risk according to the training loss,

but ℓ2 distance is used for the tractability of analysis.
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of the level of noise seen by the training process, which

implicitly affects the final performance.

Next, we show that the risk of using the proposed pseudo

label in Eqn. (5) can be smaller than using either the full

noisy labels or only the partial clean labels. Specifically, we

have the following proposition:

Proposition 1. The optimal risk associated with ŷλ is

smaller than both risks with y and s, i.e.

min
λ

Rŷλ < min{Ry, Rs}, (7)

where y is the unreliable label on D, and s is the soft label

output from fDc
. By setting λ = Rs

Rs+Ry
, Rŷλ reaches its

minimum,

min
λ

Rŷλ =
RyRs

Rs +Ry

. (8)

See proof in Appendix A. Eqn. (7) and (8) indicate that,

by properly setting the balance weight λ, we can obtain

a pseudo label ŷλ that is closer to the ground truth label

in the sense of ℓ2 distance. Therefore, we can potentially

train a better classification model based on our distillation

framework proposed in Eqn. (4).

Based on similar analysis as Eqn. (7), we can exam-

ine the effectiveness of other approaches including label

smoothing [21] and bootstrap [18]. The label smoothing

algorithm [21] revises the target label as,

ŷλu = λy + (1− λ)u, (9)

where u is a vector of constants with each element set to 1/L.

Effectively, the label smoothing algorithm revises the noisy

labels by damping the original y and adding a uniform prior

over all labels. Because u is a constant, the independence

assumption also holds, and the risk of the revised label can

be reduced to,

min
λ

Rŷλ
u
=

RyRu

Ry +Ru

, (10)

where Ru = EDt
[‖u − y∗‖2] is the risk of using a uni-

form distribution. It can be shown that the optimal risk in

Eqn. (8) is smaller than that of Eqn. (10), i.e., minλ Rŷλ <
minλu

Rŷλ
u

, if Rs < Ru. This is typically true because the

auxiliary model is better than a uniform guess. Therefore,

our distillation framework is more effective than the label

smoothing algorithm, verified by our experiments as well.

The bootstrapping algorithm [18] revises the label as

ŷλs′ = λy + (1− λ)s′, (11)

where y is the noisy label and s′ is the prediction from the

current model in previous iteration. Because there is no

additional side information used to train their model, s′ and

y are highly correlated, meaning that the revised label by

bootstrap will have very similar risk as using the noisy label

itself, and therefore, it is not as effective in handling labeling

noise, which is also verified by our experiments.

3.3. Distillation Guided by Knowledge Graph

As the auxiliary model fDc
is trained on a small clean

dataset, it is highly likely to overfit to the small set of sam-

ples. To avoid over-certainty of the auxiliary model on its

predictions [21], we propagate the label confidence among

related labels to reduce the model variance for distillation.

At the same time, different labels convey another source of

independent variances that might be beneficial for canceling

out the labeling noise.

We leverage a knowledge graph G that encodes the struc-

ture of the label space. The knowledge graph has the form of

a constrained matrix G ∈ RL×L
+ , where G(i, j) denotes the

relationship between label i and j, and G(i, j) = 0 indicates

that the two labels are independent. We normalize the matrix

such that each row sums up to one. We show how we use

Wikipedia to construct such matrix as a knowledge graph in

Section 4.1.

With this knowledge graph, we define the new soft label:

ŝi , Gsi, (12)

based on the outputs of our auxiliary model. We then use the

following loss function to train our primary model:

LD(yi, f(xi)) = λl(yi, f(xi))+(1−λ)l(ŝi, f(xi)), (13)

where the soft label in Eqn. (4) is replaced with the new soft

label ŝi guided by our knowledge graph.

4. Datasets and Evaluation

In this section, we explain how we construct the noisy

datasets in real-world scenarios and extensively compare our

proposed approach with baselines on these datasets.

4.1. Datasets

Most existing work use simulated approaches to evaluate

their method on learning from label noise [14, 20], where

they inject label noise based on some controlled and known

corruption process to the clean dataset. In contrast, our

datasets reflect the practical setup: 1) Our datasets contain

real-world label noise harvested from photo sharing sites.

2) Our datasets cover three domains of visual concepts, with

varying levels of noise that come from different sources (e.g.,

text ambiguity such as polysemy words, real-world user be-

havior on photo tagging, etc.). 3) Background images are

included in the evaluation set. Background images refer to

images that do not belong to any of the classes in consid-

eration. As shown in Krause et al. [12], if the evaluation
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Reference Teacher Network Student Network

Hinton et al. [11] Ensemble of strong ConvNets Single fast ConvNet

Lopez-Paz et al. [15] ConvNet with privileged features ConvNet with generic features

Ours ConvNet trained with clean dataset ConvNet trained with noisy labels

Table 1: Compare different distillation schemes.

YCCC100M	
(photo,	-tle,	tags)	

Noisy	Label	

Dataset		D Par-ally	Clean	Dataset	

DD	= D
c
 + D

n

Text	Based	En-ty	Linking	

Manual	Labeling	or	

Cross	referencing	

Figure 2: The data collection pipeline

set contains only the clean labeled images, the label noise

does not affect the performance much for fine-grained clas-

sification. However, this is unlikely to be true in practice for

image annotation – to evaluate our method in the real-world

setting, we include background images into the evaluation.

We collect our training sets using Yahoo Flickr Creative

Commons 100 Million (YFCC100M) [22], which is the

largest public multimedia collection with a total of 100 mil-

lion images and videos. YFCC100M provides a rich resource

over large amount of visual concepts, and reflects well the

user preferences on the Flickr platform. However, compared

with well adopted datasets, such as ImageNet, YFCC100M

is missing clean annotations. Due to YFCC100M’s large

scale and real-world noisy labels, we believe it is a good

resource to test our method. Figure 2 illustrates the overall

workflow of collecting datasets from YFCC100M. Next, we

explain how we build the noisy dataset to get D and Dc.

From the YFCC100M dataset, we employ text based en-

tity linking to connect images with the corresponding tags.

We choose DBpedia Spotlight [6], an off-the-shelf tool that

links a photo’s title and tags with a Wikipedia entity. Given

an ambiguous text term (e.g. apple), DBpedia Spotlight dis-

ambiguates different entities (e.g. Apple Inc. or apple the

fruit) based on textual context. DBpedia Spotlight takes

many text-related factors into consideration, such as syn-

onyms and text morphological transformations. Based on the

entity linking results, we label the photos into Wikipedia enti-

ties. This automatic labeling process produces the dataset D
with label noise, where the label corruption process is un-

known and complicated. Table 2 shows the statistics of the

entity linking results for each domain.

We select three domains from the YFCC100M dataset,

namely Species, Sports and Artifacts, which have enough

training images and contain mostly visual entities. We avoid

including certain domains where domain-specific model can

excel, e.g., geo-tag based techniques can handle the Places

domain. We also choose our domains by considering the

overlap with ImageNet for cross-referencing.

Domain #Entity #Photo

Place 41,512 46,621,528

People 27,658 16,825,688

Species 5,958 4,086,366

Work 6,973 2,813,881

Artifacts 337 2,683,104

Sports 966 1,023,651

Event 1,519 1,088,173

Food 946 731,749

Award 57 32,724

Table 2: Statistics of the entity linking results on

YFCC100M. Highlighted are those used in our evaluation.

The text-based entity linking introduces label noises for

the dataset. To collect a partially clean dataset Dc on each do-

main, we try both crowdsourcing and automatic data linking

approaches. For the Species and the Sports domains, we ask

for the help of crowd-sourcing labeling from CrowdFlower 3

to clean part of the noisy labels. For Species and Artifacts,

we cross-link their entities with ImageNet [19] synsets using

the BabelNet dataset [17], which is a multilingual database

linking various linguistic datasets, including WordNet and

Wikipedia. We then use part of the images from ImageNet as

the corresponding partial clean data. To differentiate differ-

ent sources of clean data for the Species domain, we denote

Species-Y and Species-I as two separate datasets where the

partial clean data is from YFCC100M and ImageNet, re-

spectively. Table 3 summarizes descriptive statistics of our

datasets. We split each dataset into train/test/dev splits using

the ratio of 6:3:1. We use the dev to select hyperparameters.

Figure 3 shows some examples images and their labels

from our datasets. These examples show that the real-world

label noises are caused by various reasons: 1) Weak associ-

ation. Figure 3c is mistakenly labeled as the sport Abseiling,

but the photo is not visually about Abseiling but shows a

group of people, who are probably watching the sport event.

2) Text ambiguity. Figure 3p is mistakenly labeled as the

species Tulip, but the image shows it was the texture pattern.

4.2. Implementation Details

Since we focus on the methodology of learning from

noisy labels rather than squeezing the performance numbers,

3http://www.crowdflower.com/
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Name Clean Set Dc Noisy Set Dn |Dc| : |Dn| #Categories #Train #Dev #Test

Sports YFCC100M YFCC100M 1:1 238 86K 18K 52K

Species-Y YFCC100M YFCC100M 1:1 219 50K 10K 28K

Species-I ImageNet YFCC100M 1:4 219 93K 14K 40K

Artifacts ImageNet YFCC100M 1:4 323 112K 16K 48K

Table 3: Datasets statistics. The suffix (-Y and -I) refers to the source of the clean dataset Dc.

(a) abseiling (b) abseiling (c) abseiling (d) abseiling (e) canoeing (f) canoeing (g) canoeing (h) canoeing

(i) lobster (j) lobster (k) lobster (l) lobster (m) tulip (n) tulip (o) tulip (p) tulip

Figure 3: Example images and their noisy labels from our dataset. The two rows are from Sports and Species, respectively.

The images with blue box are correctly labeled, and images with red box are mislabeled. The noisy labels are obtained by text

based entity linking on the title and tag of the YFCC100M images. The noisily labeled images demonstrate various types of

label noise seen in our dataset.

we use a simple variant of AlextNet [13] with batch normal-

ization as the network for our evaluation. Adam optimizer

is used to train the network. We train the network with 250
epochs, and with every 5 epochs, we reduce the learning

rate by 0.9, and the initial learning rate is set to 0.001. Dur-

ing training, the performance is monitored based on the dev

set to avoid overfitting. The datasets we collect are essen-

tially multi-tag data. Instead of using top-K accuracy for

evaluation, we use mean Average Precision (mAP) for the

evaluation measurement.

As shown in the analysis of Section 3.2, the distillation

parameters λ and knowledge graph G need to be properly

chosen and designed, in order for the soft labels to achieve

lower risk than the noisy labels. According to Eqn. (8),

the optimal λ can be computed according to the relative

performance of the auxiliary model and the level of noise

in the noisy dataset. Based on this principle, we use the

following heuristics to find λ.

λ =
mAPDc

mAPD + mAPDc

, (14)

where mAP score is computed from the dev set, and the

subscript denotes the training dataset. The mAP is calculated

as following:

mAP =
1

L

L
∑

i=1

APi, (15)

where APi is the average precision score for class i.

We employ predefined label relations to specify G, and

one of the predefined label relations can be found easily at

large scale on Wikipedia. We define the knowledge graph

as G : (V,E), where V denotes the entities, and the triplet

(u ∈ V, v ∈ V, r ∈ R) ∈ E denotes the entity relation-

ship. R denotes the type of relations in the knowledge graph.

For example, on the Species domain, the top label relations

are “class”, “division”, “family”, “kingdom”, “order” and

“phylum”, which are aligned with the tree of the life struc-

ture. On the Sports domain, the top label relations are “cate-

gory”, “equipment” and “genre”. On the Artifacts domain,

the top label relations are “type”, “origin”, “manufacturer”,

“genre”,“category”, and “instrument”. The number of rela-

tionship instances are 273, 2833 and 557 on Sports, Species

and Artifacts, respectively. The directed edge (u, v, r) means

the entity u is the relation r of v. For example, (“Mammal”,

“Rabbit”, “class”) means “Mammal” is the “class” of “Rab-

bit”.

Given the directed knowledge graph G, the label relation

matrix G in the Eqn. (12) is defined as,

G(m,n) ∝











1,m = n
β

|N (n)| , ifm ∈ N (n)

0, if (m,n) /∈ E,

(16)

where N (n) denotes the siblings of the entities n in the

directed knowledge graph G and β is a constant we set as

0.4 across different datasets.
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Sports Species-Y Species-I Artifacts

Baseline-Clean 44.0 18.1 22.0 19.2

Baseline-Noisy [12] 50.7 23.7 38.5 22.0

Bootstrap [18] 50.6 23.6 38.8 23.4

Label Smooth [21] 51.9 25.1 41.4 22.9

Finetune 50.8 22.2 37.5 19.7

Noise Layer [20] 50.8 23.7 38.5 22.0

Importance Re-weighting [14] 50.8 23.7 41.6 24.8

Distillation (Eqn. (4)) 53.5 26.1 41.6 26.0

Semantic Guided Distillation (Eqn. (13)) 53.7 25.2 42.3 26.0

Baseline-Ensemble 52.2 25.1 39.1 26.9

Upper Bound 54.1 27.4 - -

Table 4: Experiment results. The numbers are the mAP scores (%) defined in Eqn. (15).

Figure 4: Ranking noisy dataset D with pseudo labels. All images are observed as the class Bison of the Species domain. The

two rows, with the same set of images, are ranked by the distillation and guided distillation pseudo labels, respectively. The

red and blue borders denotes noise/clean observations, respectively. Analysis in Section 4.3.

4.3. Qualitative Results

The key of the proposed distillation framework is to drive

the pseudo label ŷi = λyi+(1−λ)si and the guided pseudo

label by knowledge graph ŷgi = λyi + (1− λ)ŝi statistically

closer to the unknown true label y∗i . Figure 4 show examples

of the class Bison from the Species domain, assuming it is

the mth class. yi[m], the observed labels, is all 1 for these

images, i.e. only the observed positive images are shown

in the example. y∗i [m], the hidden ground truth labels, is

illustrated by the color of the boxes, the red box means the

y∗i [m] = 0, and the blue box means the y∗i [m] = 1. The first

row is ranked by elements in ŷi of Eqn. (5), the distillation

pseudo labels. The second row is ranked by elements in ŷgi
of Eqn. (12), the guided distillation pseudo labels.

Figure 4 shows that the ŷi improves over yi by ranking

the true positives higher, and false positives lower, and the

guided pseudo labels ŷgi further improve over yi by picking

up confidences from related classes, and ranked more true

positives higher.

4.4. Comparison

Table 4 shows the experimental results. We can see that

our distillation method and graph guided distillation consis-

tently outperforms all baselines and existing methods. Next

we will discuss the comparisons in details.

Comparing with Baselines. Following Krause et

al. [12], we define Baseline-Clean and Baseline-Noisy to de-

note the baseline models trained with the partial clean dataset

Dc and the entire noisy dataset D, respectively. These mod-

els share the same network structure as our distillation model,

except that the input of labels during training is different.

The model trained with Baseline-Clean is used as the auxil-

iary model (e.g., teacher model) in our distillation method.

Our new model consistently outperforms these two models.

Especially, if we view our new model as the student model

and the Baseline-Clean as the teacher model, the student

model is better than the teacher. This is because the stu-

dent learns from more training examples, and it leverage the

teacher model to reduce the effect of noisy label. We also

compare with the Baseline Ensemble, which combines the

two baseline models Baseline-Clean and Baseline-Noise by

geometric mean. The results show that our distillation model

is better than Baseline Ensemble in three of the four datasets,

and works comparably on the last one. However, our method

has a big advantage over the Baseline Ensemble in that we

only need one forward pass on our CNN model while Base-

line Ensemble need to run two CNN models, which is twice
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T 0.5 1 5 10

mAP(%) 41.5 41.6 39.8 35.3

Table 5: mAP performance using different T on the Species-I

dataset

time consuming as well as doubles storage compared to ours.

Comparing with Bootstrapping and Label Smooth-

ing. The Bootstrapping method [18] and Label Smooth-

ing [21] are popular approaches to reduce the noise effects.

Section 3.2 has discussed in theory the advantage of our

distillation based approach against these two approaches.

The experiment results verify that our method consistently

outperforms these two approaches in all the four datasets.

Comparing with Finetuning, Importance Re-

weighting, and Noisy Layer. As discussed in the related

work section, there are a number of practices in the recent

deep learning literature improving the performance with

noisy labels. The simplest one is Finetune, which initialize

network weights from the Baseline-Clean model, and

subsequently finetune using the entire noisy dataset Dn.

To further reduce the noise label effects, Importance

Re-weighting [14] introduces estimated weights on the noisy

labels, while Noisy Layer [20] employs an extra linear

layer on top of the network to “absorb” label switch noise.

Among these three approaches, Importance Re-weighting

outperforms the other two, but is still inferior to our method

with a significant gap.

Comparing Distillation and Guided Distillation with

Upper Bound. Inevitably, the label noise will hurt per-

formance, compared with using full clean dataset. On the

Species-Y and Sports datasets, where the clean datasets are

collected by crowd sourcing, we continue to label the rest

of the noisy dataset D, and use the fully labeled dataset to

train a ConvNet. The performance of this ConvNet can be

seen as an “Upper Bound” of the learning with noisy labels,

because the goal of learning with noisy labels is to approach

the performance of the model trained with the fully cleaned

dataset. For the Sports and Species-Y datasets, the proposed

guided distillation is very close to the upper bound, which

means the proposed distillation method can save the budget

of labeling the rest of the dataset.

Comparing Different Temperature T We perform sen-

sitivity analysis of the hyper-parameter, i.e., the temperature

T , in Eqn. (4) on the Species-I dataset. The results are listed

in Table 5, which shows that the performances with different

small temperatures T is stable.

5. Conclusion

This paper developed a new framework to learn from

noisy labels, by leveraging the knowledge learned from a

small clean dataset and semantic knowledge graph to correct

the noisy labels. To standardize the evaluation protocol for

systems that learn from noisy labels, we collected a suite

of new datasets in Species, Sports and Artifacts domains,

which reflect the real-world labeling noise. The proposed

methods not only produce superior performance on the task

of learning from noisy data, but also provide unique and

novel perspectives on the distillation framework.

Moving forward, we intend to explore in distillation with

new source of guidance in addition to knowledge graphs. We

are also interested in applying our method to other scenarios

with noisy labels, such as Web-scale photo search.

A. Proof for Proposition 1

Proof. The risk of using labels corrupted by noise as y ∼
PD(y|(x, y

∗)) is quantified by the following residual term,

Ry = EDt
[‖y − y∗‖2], (17)

Consider our auxiliary model fDc
trained from a clean

dataset Dc, the expected prediction error can be decomposed

into the variance term and the bias term [8],

EDt
[l(s, y∗)] = l(s̄, y∗) + EDt

[l(s, s̄)], (18)

where l(·, ·) is the loss function, and s̄(x) is called the “main”

prediction, defined according to the loss function. For the

squared loss s̄(x)sq = averageDt
(fDc

(x)), and for the 0-1

loss s̄(x)0-1 = medianDt
(fDc

(x)) [8]. For simplicity of

proving Eqn. (7), we use the squared loss. Since we are

training a high capacity CNN model, we can make a reason-

able assumption that the bias term l(s̄, y∗) is close to zero.

Therefore, we have,

l(s̄, y∗) ≈ 0 ⇒ s̄ ≈ y∗

EDt
(‖s− y∗‖2) ≈ EDt

(‖s− s̄‖2) , Rs.
(19)

The label corruption process is unknown, but we can assume

that it is independent of the model variance. This leads to

EDt
[(y − y∗)T (s− y∗)] = [EDt

[y − y∗]]TEDt
[s− y∗]

∵ Eqn. (19) s̄ ≈ y∗ ⇒ = [EDt
[y − y∗]]TEDt

[s− s̄]
∵ EDt

(s) = s̄ ⇒ = [EDt
(y − y∗)]T0 = 0,

(20)

where 0 denotes a zero vector.

Now, we are ready to show Eqn. (7),

Rŷλ = EDt
[‖ŷλ − y∗‖2]

= EDt
[‖λy + (1− λ)s− y∗‖2]

= EDt
[‖λ(y − y∗) + (1− λ)(s− y∗)‖2]

∵ Eqn. (20) = λ2Ry + (1− λ)2Rs,
(21)

By setting λ = Rs

Rs+Ry
, Rŷλ reaches its minimum,

min
λ

Rŷλ =
RyRs

Rs +Ry

, (22)

which concludes the proof of Proposition 1.
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