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Abstract

Real-world image recognition systems need to recognize

tens of thousands of classes that constitute a plethora of vi-

sual concepts. The traditional approach of annotating thou-

sands of images per class for training is infeasible in such a

scenario, prompting the use of webly supervised data. This

paper explores the training of image-recognition systems on

large numbers of images and associated user comments,

without using manually labeled images. In particular, we

develop visual n-gram models that can predict arbitrary

phrases that are relevant to the content of an image. Our

visual n-gram models are feed-forward convolutional net-

works trained using new loss functions that are inspired by

n-gram models commonly used in language modeling. We

demonstrate the merits of our models in phrase prediction,

phrase-based image retrieval, relating images and captions,

and zero-shot transfer.

1. Introduction

Research on visual recognition models has traditionally

focused on supervised learning models that consider only a

small set of discrete classes, and that learn their parameters

from datasets in which (1) all images are manually anno-

tated for each of these classes and (2) a substantial num-

ber of annotated images is available to define each of the

classes. This tradition dates back to early image-recognition

benchmarks such as CalTech-101 [18] but is still common

in modern benchmarks such as ImageNet [47] and COCO

[42]. The assumptions that are implicit in such benchmarks

are at odds with many real-world applications of image-

recognition systems, which often need to be deployed in

an open-world setting [3]. In the open-world setting, the

number of classes to recognize is potentially very large and

class types are wildly varying [13]: they include generic

objects such as “dog” or “car”, landmarks such as “Golden

Gate Bridge” or “Times Square”, scenes such as “city park”

∗This work was done while Ang Li was at Facebook AI Research.

Predicted n-grams

lights

Burning Man

Mardi Gras

parade in progress

Predicted n-grams

GP

Silverstone Classic

Formula 1

race for the

Predicted n-grams

navy yard

construction on the

Port of San Diego

cargo

Figure 1. Four high-scoring visual n-grams for three images in our

test set according to our visual n-gram model, which was trained

solely on unsupervised web data. We selected the n-grams that

are displayed in the figure from the five highest scoring n-grams

according to our model, in such a way as to minimize word overlap

between the n-grams. For all figures in the paper, we refer the

reader to the supplementary material for license information.

or “street market”, and actions such as “speed walking” or

“public speaking”. The traditional approach of manually

annotating images for training does not scale well to the

open-world setting because of the amount of effort required

to gather and annotate images for all relevant classes. To

circumvent this problem, several recent studies have tried to

use image data from photo-sharing websites such as Flickr

to train their models [5, 9, 19, 28, 41, 46, 57, 58, 62]: such

images have no manually curated annotations, but they do

have metadata such as tags, captions, comments, and geo-

locations that provide weak information about the image

content, and are readily available in nearly infinite numbers.
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In this paper, we follow [28] and study the training

of models on images and their associated user comments

present in the YFCC100M dataset [55]. In particular, we

aim to take a step in bridging the semantic gap between vi-

sion and language by predicting phrases that are relevant to

the contents of an image. We develop visual n-gram models

that, given an image I, assign a likelihood p(w|I) to each

possible phrase (n-gram) w. Our models are convolutional

networks trained using a loss function that is motivated by

n-gram smoothers commonly used in language modeling

[26, 34]: we develop a novel, differentiable loss function

that optimizes trainable parameters for frequent n-grams,

whereas for infrequent n-grams, the loss is dominated by

the predicted likelihood of smaller “sub-grams”. The re-

sulting visual n-gram models have substantial advantages

over prior open-world visual models [28]: they recognize

landmarks such as “Times Square”, they differentiate be-

tween ‘Washington DC” and the “Washington Nationals”,

and they distinguish between “city park” and “Park City”.

The technical contributions of this paper are threefold:

(1) we are the first to explore the prediction of n-grams rel-

evant to image content using convolutional networks, (2) we

develop a novel, differentiable smoothing layer for such net-

works, and (3) we provide a simple solution to the out-of-

vocabulary problem of traditional image-recognition mod-

els. We present a series of experiments to demonstrate the

merits of our proposed model in image tagging, image re-

trieval, image captioning, and zero-shot transfer.

2. Related Work

There is a substantial body of prior work that is re-

lated to this study, in particular, work on (1) learning from

weakly supervised web data, (2) relating image content and

language, and (3) language modeling. We give a (non-

exhaustive) overview of prior work below.

Learning from weakly supervised web data. Several

prior studies have used Google Images to obtain large col-

lections of (weakly) labeled images for the training of vision

models [5, 9, 19, 46, 54, 58, 62]. We do not opt for such an

approach here because it is very difficult to understand the

biases it introduces, in particular, because image retrieval

by Google Images is likely aided by a content-based image

retrieval model itself. This introduces the real danger that

training on data from Google Images amounts to replicating

an existing black-box vision system. Various other studies

have used data from photo-sharing websites such as Flickr

for training; for instance, to train hierarchical topic mod-

els [38] or multiple-instance learning SVMs [39], to learn

label distribution models [12, 64], to finetune pretrained

convolutional networks [24], and to train weak classifiers

that produce additional visual features [56]. Like this study,

[28] trains convolutional networks on the image-comment

pairs. Our study differs1 from [28] in that we do not just

consider single words, as a result of which our models dis-

tinguish between, e.g., “city park” and “Park City”.

Relating image content and language. Our approach

is connected to a wide body of work that aims at bridg-

ing the semantic gap between vision and language [49]. In

particular, many studies have explored this problem in the

context of image captioning. Most image-captioning sys-

tems train a recurrent network or maximum entropy lan-

guage model on top of object classifications produced by a

convolutional network; the models are either trained sepa-

rately [14, 29, 43] or end-to-end [15, 59]. We do not con-

sider recurrent networks in our study because test-time in-

ference in such networks is slow, which hampers the de-

ployment of such models in real-world applications. An

image-captioning study that is closely related to our work

is [37], which trains a bilinear model that outputs phrase

probabilities given an image feature and combines the rele-

vant phrases into a caption using a collection of heuristics.

Several other works have explored joint embedding of im-

ages and text, either at the word level [20] or at the sen-

tence level [17, 30]. What distinguishes our study is that

prior work is generally limited in the variety of visual con-

cepts it can deal with; these studies rely on vision models

that recognize only small numbers of classes and / or on

the availability of “ground-truth” captions that describe the

image content — such captions are very different from a

typical user comment on Flickr. In contrast to prior work,

we consider the open-world setting with very large num-

bers of visual concepts, and we do not rely on ground-truth

captions provided by human annotators. Our study is most

similar to that of [40], which uses n-gram to generate image

descriptions; unlike [40], we we do not rely on separately

trained image-classification pipelines. Instead, we train our

model end-to-end on a dataset without ground-truth labels.

Language models. Several prior studies have used

phrase embeddings for natural language processing tasks

such as named entity recognition [45], text classifica-

tion [27, 53, 61], and machine translation [68, 71]. These

studies differ from our work in that they focus solely on

language modeling and not on visual recognition. Our

models are inspired by smoothing techniques used in tra-

ditional n-gram language models2, in particular, Jelinek-

Mercer smoothing [26]. Our models differ from traditional

n-gram language models in that they are image-conditioned

and parametric: whereas n-gram models count the fre-

quency of n-grams in a text corpus to produce a distribu-

tion over phrases or sentences, our model measures phrase

likelihoods by evaluating inner products between image fea-

tures and learned parameter vectors.

1Indeed, the models in [28] are a special case of our models in which

only unigrams are considered.
2A good overview of these techniques is given in [8, 22].
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3. Learning Visual N-Gram Models

Below, we describe the dataset we use in our experi-

ments, the loss functions we optimize, and the training pro-

cedure we use for optimization.

3.1. Dataset

We train our models on the YFCC100M dataset, which

contains 99.2 million images and associated multi-lingual

user comments [55]. We applied a simple language detector

to the dataset to select only images with English user com-

ments, leaving a total of 30 million examples for training

and testing. We preprocessed the text by removing punctu-

ations, and we added [BEGIN] and [END] tokens at the

beginning and end of each sentence. We preprocess all im-

ages by rescaling them to 256×256 pixels (using bicubic

interpolation), cropping the central 224×224, subtracting

the mean pixel value of each image, and dividing by the

standard deviation of the pixel values.

For most experiments, we use a dictionary of all English

n-grams (with n between 1 and 5) with more than 1, 000 oc-

currences in the 30 million English comments. This dictio-

nary contains 142, 806 n-grams: 22, 869 unigrams, 56, 830
bigrams, 32, 560 trigrams, 17, 351 four-grams, and 13, 196
five-grams. We emphasize that the smoothed visual n-gram

models we describe below are trained and evaluated on all

n-grams in the dataset, even if these n-grams are not in

the dictionary. However, whereas the probability of in-

dictionary n-grams is primarily a function of parameters

that are specifically tuned for those n-grams, the probability

of out-of-dictionary n-grams is composed from the proba-

bility of smaller in-dictionary n-grams (details below).

3.2. Loss functions

The main contribution of this paper is in the loss func-

tions we use to train our phrase prediction models. In

particular, we explore (1) a naive n-gram loss that mea-

sures the (negative) log-likelihood of in-dictionary n-grams

that are present in a comment and (2) a smoothed n-gram

loss that measures the (negative) log-likelihood of all n-

grams, even if these n-grams are not in the dictionary.

This loss uses smoothing to assign non-zero probabilities to

out-of-dictionary n-grams; specifically, we experiment with

Jelinek-Mercer smoothing [26].

Notation. We denote the input image by I and the im-

age features extracted by the convolutional network with

parameters θ by φ(I; θ) ∈ R
D. We denote the n-gram dic-

tionary that our model uses by D and a comment containing

K words by w ∈ [1, C]K , where C is the total number of

words in the (English) language. We denote the n-gram that

ends at the i-th word of comment w by wi
i−n+1 and the i-

th word in comment w by wi
i . Our predictive distribution

is governed by a n-gram embedding matrix E ∈ R
D×|D|.

With a slight abuse of notation, we denote the embedding

corresponding to a particular n-gram w by ew. For brevity,

we omit the sum over all image-comment pairs in the train-

ing / test data when writing loss functions.

Naive n-gram loss. The naive n-gram loss is a standard

multi-class logistic loss over all n-grams in the dictionary

D. The loss is summed over all n-grams that appear in the

sentence w; that is, n-grams that do not appear in the dic-

tionary are ignored:

ℓ(I, w; θ,E) = −

n
∑

m=1

K
∑

i=n

I
[

wi
i−m+1 ∈ D

]

log pobs
(

wi
i−m+1|φ(I; θ);E

)

,

where the observational likelihood pobs(·) is given by a

softmax distribution over all in-dictionary n-grams w that is

governed by the inner product between the image features

φ(I; θ) and the n-gram embeddings:

pobs (w|φ(I; θ);E) =
exp

(

−e
⊤
wφ(I; θ)

)

∑

w′∈D exp
(

−e⊤w′φ(I; θ)
) .

The image features φ(I; θ) are produced by a convolutional

network φ(·), which we describe in more detail in 3.3.

The naive n-gram loss cannot do language modeling be-

cause it does not model a conditional probability. To cir-

cumvent this issue, we construct an ad-hoc conditional dis-

tribution based on the scores produced by our model at pre-

diction time using a “stupid” back-off model [6]:

p
(

wi
i|w

i−1
i−n+1

)

∝

{

pobs
(

wi
i|w

i−1
i−n+1

)

, if wi
i−n+1 ∈ D

λp
(

wi
i|w

i−1
i−n+2

)

, otherwise.

For brevity, we dropped the conditioning on φ(I; θ) and E.

Jelinek-Mercer (J-M) loss. The simple n-gram loss has

two main disadvantages: (1) it ignores out-of-dictionary n-

grams entirely during training and (2) the parameters E that

correspond to infrequent in-dictionary words are difficult to

pin down. Inspired by Jelinek-Mercer smoothing, we pro-

pose a loss function that aims to address both these issues:

ℓ(I, w; θ,E) = −

K
∑

i=1

log p
(

wi
i|w

i−1
i−n+1, φ(I; θ);E

)

,

where the likelihood of a word conditioned on the (n−1)
words appearing before it is defined as:

p
(

wi
i|w

i−1
i−n+1

)

= λpobs
(

wi
i|w

i−1
i−n+1

)

+(1−λ)p
(

wi
i|w

i−1
i−n+2

)

.

Herein, we removed the conditioning on φ(I; θ) and E

for brevity. The parameter 0 ≤ λ ≤ 1 is a smoothing
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constant that governs how much of the probability mass

from (n−1)-grams is (recursively) transferred to both in-

dictionary and out-of-dictionary n-grams. The probability

mass transfer prevents the Jelinek-Mercer loss from assign-

ing zero probability (which would lead to infinite loss) to

out-of-vocabulary n-grams, and it allows it to learn from

low-frequency and out-of-vocabulary n-grams.

The Jelinek-Mercer loss proposed above is different

from traditional is Jelinek-Mercer smoothing: in particular,

it is differentiable with respect to both E and θ. As a result,

the loss can be backpropagated through the convolutional

network. In particular, the loss gradient with respect to φ is

given by:

∂ℓ

∂φ
= −

K
∑

i=1

p
(

wi
i|w

i−1
i−n+1, φ(I; θ);E

) ∂p

∂φ
,

where the partial derivatives are given by:

∂p

∂φ
= λ

∂pobs
∂φ

+ (1− λ)
∂p

∂φ

∂pobs
∂φ

= pobs(w|φ(I; θ);E) (E[ew′ ]w′∼pobs
− ew) .

This error signal can be backpropagated directly through the

convolutional network φ(·).

3.3. Training

The core of our visual recognition models is formed by

a convolutional network φ(I; θ). For expediency, we opt for

a residual network [23] with 34 layers. Our networks are

initialized by an Imagenet-trained network, and trained to

minimize the loss functions described above using stochas-

tic gradient descent using a batch size of 128 for 10 epochs.

In all experiments, we employ Nesterov momentum of 0.9,

a weight decay of 0.0001, and an initial learning rate of 0.1;

the learning rate is divided by 10 whenever the training loss

stabilizes (until a minimum learning rate of 0.001).

A major bottleneck in training is the large number of out-

puts of our observation model: doing a forward-backward

pass with 512 inputs (the image features) and 142, 806 out-

puts (the n-grams) is computationally intensive. To circum-

vent this issue, we follow [28] and perform stochastic gradi-

ent descent over outputs [4]: we only perform the forward-

backward pass for a random subset (formed by all positive

n-grams in the batch) of the columns of E. This simple ap-

proximation works well in practice, and it can be shown to

be closely related to the exact loss [28].

4. Experiments

Below, we present the four sets of experiments we per-

formed to assess the performance of our visual n-gram

models in: (1) phrase-level image tagging, (2) phrase-based

image retrieval, (3) relating images and captions, and (4)

zero-shot transfer.

Loss / Smoothing “Stupid” back-off Jelinek-Mercer

Imagenet + linear 349 233

Naive n-gram 297 212

Jelinek-Mercer 276 199

Table 1. Perplexity of visual n-gram models averaged over

YFCC100M test set of 10, 000 images (evaluated on in-dictionary

words only). Results for two losses (rows) with and without

smoothing at test time (columns). Lower is better.

4.1. Phraselevel image tagging

We first gauge whether relevant comments for images

have high likelihood under our visual n-gram models.

Specifically, we measure the perplexity of predicting the

correct words in a comment on a held-out test set of 10, 000
images, and average this perplexity over all images in the

test set. The perplexity of a model is defined as 2H(p),

where H(p) is the cross-entropy:

H(p) = −
1

K

K
∑

i=1

log2 p
(

wi
i|w

i−1
i−n+1, φ(I; θ);E

)

.

We only consider in-dictionary unigrams in our perplex-

ity measurements. As is common in language model-

ing [22], we assume a uniform conditional distribution

pobs
(

wi
i|w

i−1
i−n+1

)

for n-grams whose prefix is not in the

dictionary (i.e., for n-grams for which wi−1
i−n+1 /∈ D). Based

on the results of preliminary experiments on a held-out val-

idation set, we set λ=0.2 in the Jelinek-Mercer loss.

We compare models that use either of the two loss

functions (the naive in-dictionary n-gram loss and Jelinek-

Mercer loss) with a baseline trained with a linear layer on

top of Imagenet-trained visual features trained using naive

n-gram loss. We consider two settings of our models at

prediction time: (1) a setting in which we use the “stupid”

back-off model with λ=0.6; and (2) a setting in which we

smooth the p(·) predictions using Jelinek-Mercer smooth-

ing (as described above) using λ=0.2.

The resulting perplexities for all experimental settings

are presented in Table 1. From the results presented in the

table, we observe that: (1) the use of smoothing losses for

training image-based phrase prediction models leads to bet-

ter models than the use of a naive n-gram loss; and (2) the

use of additional smoothing at test time may further reduce

the perplexity of the n-gram model. The former effect is the

result of the ability of smoothing losses to direct the learn-

ing signal to the most relevant n-grams instead of equally

spreading it over all n-grams that are present in the target.

The latter effect is the result of the ability of prediction-

time smoothing to propagate the probability mass from in-

dictionary n-grams to relevant out-of-dictionary n-grams.

To obtain more insight into the phrase-prediction perfor-

mance of our models, we also assess our model’s ability
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Model R@1 R@5 R@10 Accuracy

Imagenet + linear 5.0 10.7 14.5 32.7

Naive n-gram 5.5 11.6 15.1 36.4

Jelinek-Mercer 6.2 13.0 18.1 42.0

Table 2. Phrase-prediction performance on YFCC100M test set

of 10, 000 images measured in terms of recall@k at three cut-off

levels k (lefthand-side; see text for details) and the percentage of

correctly predicted n-grams according to human raters (righthand-

side) for one baseline model and two of our phrase prediction mod-

els. Higher is better.

to predict relevant phrases (n-grams) for images. To cor-

rect for variations in the marginal frequency of n-grams,

we calibrate all log-likelihood scores by subtracting the av-

erage log-likelihood our model predicts on a large collection

of held-out validation images. We predict n-gram phrases

for images by outputting the n-grams with the highest cal-

ibrated log-likelihood score for an image. Examples of the

resulting n-gram predictions are shown in Figure 1.

We quantify phrase-prediction performance in terms of

recall@k on a set of 10, 000 images from the YFCC100M

test set. We define recall@k as the average percentage of n-

grams appearing in the comment that are among the k front-

ranked n-grams when the n-grams are sorted according to

their score under the model. In this experiment and all ex-

periments hereafter, we only present results where the same

smoothing is used at training and at prediction time: that

is, we use the “stupid” back-off model on the predictions

of naive n-grams models and we smooth the predictions

of Jelinek-Mercer models using Jelinek-Mercer smoothing.

As a baseline, we consider a linear multi-class classifier

over n-grams (i.e., using naive n-gram loss) trained on fea-

tures produced by an Imagenet-trained convolutional net-

work. The results are shown in the lefthand-side of Table 2.

Because the n-grams in the YFCC100M test set are

noisy targets (many words that are relevant to the image

content are not present in the comments), we also performed

an experiment on Amazon Mechanical Turk in which we

asked two human raters whether or not the highest-scoring

n-gram was relevant to the content of the image. We filter

out unreliable raters based on their response time, and for

each of our models, we measure the percentage of retrieved

n-grams that is considered relevant by the remaining raters.

The resulting accuracies of the visual n-gram models are

reported in the righthand-side of Table 2.

The results presented in the table are in line with the

results presented in Table 1: they show that the use of a

smoothing loss substantially improves the results compared

to baseline models based on the naive n-gram loss. In par-

ticular, the relative performance in recall@k between our

best model and the Imagenet-trained baseline model is ap-

proximately 20%. The merits of the Jelinek-Mercer loss are

Cut-off value k
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Figure 2. Recall@k on n-gram retrieval of five models with in-

creasing maximum length of n-grams included in the dictionary

(n=1, . . . , 5), for varying cut-off values k. The dictionary size of

each of the models is shown between brackets. Higher is better.

confirmed by our experiment on Mechanical Turk: accord-

ing to human annotators, 42.0% of the predicted phrases is

relevant to the visual content of the image.

Next, we study the performance of our Jelinek-Mercer

model as a function of n; that is, we investigate the effect of

including longer n-grams in our model on the model perfor-

mance. As before, we measure recall@k of n-gram retrieval

as a function of the cut-off level k, and consider models with

unigrams to five-grams. Figure 2 presents the results of this

experiment, which shows that the performance of our mod-

els increases as we include longer n-grams in the dictionary.

The figure also reveals diminishing returns: the improve-

ments obtained from going beyond trigrams are limited.

4.2. Phrasebased image retrieval

In the second set of experiments, we measure the ability

of the system to retrieve relevant images for a given n-gram

query. Specifically, we rank all images in the test set ac-

cording to the calibrated log-likelihood our models predict

for the query-image pairs.

In Figure 3, we show examples of twelve images that

are most relevant from a set of 931, 588 YFCC100M test

images (according to our model) for four different n-gram

queries; we manually picked these n-grams to demonstrate

the merits of building phrase-level image recognition mod-

els. The figure shows that the model has learned accurate

visual representations for n-grams such as “Market Street”

and “street market”, as well as for “city park” and “Park

City” (see the caption of Figure 3 for details on the queries).

We show a second set of image retrieval examples in Fig-

ure 4, which shows that our model is able to distinguish vi-

sual concepts related to Washington: namely, between the

state, the city, the baseball team, and the hockey team.

As in our earlier experiments, we quantify the image-

retrieval quality of our model on a set of 10, 000 test images
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Market Street City park

Park CityStreet market

Figure 3. Four highest-scoring images for n-gram queries “Mar-

ket Street”, “street market”, “city park”, and “Park City” from

a collection of 931, 588 YFCC100M images. Market Street is a

common street name, for instance, it is one of the main thorough-

fares in San Francisco. Park City (Utah) is a popular winter sport

destination. The figure only shows images from the YFCC100M

dataset whose license allows reproduction. We refer to the supple-

mentary material for detailed copyright information.

from the YFCC100M dataset by measuring the precision

and recall of retrieving the correct image given a query n-

grams. We compute a precision-recall curve by averaging

over the 10, 000 n-gram queries that have the highest tf-

idf value in the YFCC100M dataset: the resulting curve is

shown in Figure 5. The results from this experiment are in

accordance with the previous results: the naive n-gram loss

substantially outperforms our Imagenet baseline, which in

turn, is outperformed by the model trained using Jelinek-

Mercer loss. Admittedly, the precisions we obtain are fairly

low even in the low-recall regime. This low recall is the re-

sult of the false-negative noise in the “ground truth” we use

for evaluation: an image that is relevant to the n-gram query

may not be associated with that n-gram in the YFCC100M

dataset, as a result of which we may consider it as “incor-

rect” even when it ought to be correct based on the visual

content of the image.

4.3. Relating Images and Captions

In the third set of experiments, we study to whether vi-

sual n-gram models can be used for relating images and

captions. While many image-conditioned language models

have focused on caption generation, accurately measuring

the quality of a model is still an open problem: most current

metrics poor correlated with human judgement [1]. There-

fore, we focus on caption-based retrieval tasks instead: in

particular, we evaluate the performance of our models in

caption-based image retrieval and image-based caption re-

Model R@1 R@5 R@10 Accuracy

Imagenet + linear 1.1 3.3 4.8 38.3

Naive n-gram 1.3 4.4 6.9 42.0

Jelinek-Mercer 7.1 16.7 21.5 53.1

Table 3. Caption retrieval performance on YFCC100M test set of

10, 000 images measured in terms of recall@k at three cut-off

levels k (lefthand-side; see text for details) and the percentage of

correctly retrieved captions according to human raters (righthand-

side) one baseline model and two of our phrase prediction models.

Higher is better.

Image retrieval COCO-5K Flickr-30K

R@1 R@5 R@10 R@1 R@5 R@10

Retrieval models

Karpathy et al. [30] – – – 10.2 30.8 44.2

Klein et al. [33] 11.2 29.2 41.0 25.0 52.7 66.0

Deep CCA [65] – – – 26.8 52.9 66.9

Wang et al. [60] – – – 29.7 60.1 72.1

Language models

STD-RNN [50] – – – 8.9 29.8 41.1

BRNN [29] 10.7 29.6 42.2 15.2 37.7 50.5

Kiros et al. [32] – – – 16.8 42.0 56.5

NIC [59] – – – 17.0 – 57.0

Ours

Naive n-gram 0.3 1.1 2.1 1.0 2.9 4.9

Jelinek-Mercer 5.0 14.5 21.9 8.8 21.2 29.9

J-M + finetuning 11.0 29.0 40.2 17.6 39.4 50.8

Table 4. Recall@k (for three cut-off levels k) of caption-based im-

age retrieval on the COCO-5K and Flickr-30K datasets for eight

baseline models and our models (with and without finetuning).

Baselines are separated in models dedicated to retrieval (top) and

image-conditioned language models (bottom). Higher is better.

trieval. In caption-based image retrieval, we rank images

according to their log-likelihood for a particular caption and

measure recall@k: the percentage of queries for which the

correct image is among the k first images.

We first perform an experiment on 10, 000 images and

comments from the YFCC100M test set. In addition to

recall@k, we also measure accuracy by asking two human

raters to assess whether the retrieved caption is relevant to

the image content. The results of these experiments are pre-

sented in Table 3: they show that the strong performance of

our visual n-gram models extends to caption retrieval3. Ac-

cording to human raters, our best model retrieves a relevant

caption for 53.1% of the images in the test set. To assess

if visual n-grams help, we also experiment with a unigram

model [28] with a dictionary size of 142, 806. We find that

3We also performed experiments with a neural image captioning model

that was trained on COCO [59], but this model performs poorly: it obtains

a recall@k of 0.2, 1.0, and 1.6 for k=1, 5, and 10, respectively. This is

because many of the words that appear in YFCC100M are not in COCO.
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Washington State Washington DC Washington Nationals Washington Capitals

Figure 4. Four highest-scoring images for n-gram queries “Washington State”, “Washington DC”, “Washington Nationals”, and “Washing-

ton Capitals” from a collection of 931, 588 YFCC100M test images. Washington Nationals is a Major League Baseball team; Washington

Capitals is a National Hockey League hockey team. The figure only shows images from the YFCC100M dataset whose license allows

reproduction. We refer to the supplementary material for detailed copyright information.
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Figure 5. Precision-recall curve for phrase-based image retrieval of

our models on YFCC100M test set of 10, 000 images one baseline

model and two of our phrase-prediction models. The curves were

obtained by averaging over the 10, 000 n-gram queries with the

highest tf-idf value.

this model performs worse than visual n-gram models: its

recall@k scores of are 1.2, 4.2, and 6.3, respectively.

To facilitate comparison with existing methods, we also

perform experiments on the COCO-5K and Flickr-30K

datasets [42, 66] using visual n-gram models trained on

YFCC100M4. The results of these experiments are pre-

sented in Table 4; they show that our model performs

roughly on par with the state-of-the-art based on language

models on both datasets. We emphasize that our mod-

els have much larger vocabularies than the baseline mod-

els, which implies the strong performance of our models

likely generalizes to a much larger visual vocabulary than

the vocabulary required to perform well on COCO-5K and

Flickr-30K. Like other language models, our models per-

form worse on the Flickr-30K dataset than dedicated re-

trieval models [30, 33, 60, 65]. Interestingly, our model

does perform on par with a state-of-the-art retrieval model

[33] on COCO-5K.

4Please see supplementary materials for additional results in COCO-1K

and additional baseline models for relating images and captions.

Caption retrieval COCO-5K Flickr-30K

R@1 R@5 R@10 R@1 R@5 R@10

Retrieval models

Karpathy et al. [30] – – – 16.4 40.2 54.7

Klein et al. [33] 17.7 40.1 51.9 35.0 62.0 73.8

Deep CCA [65] – – – 27.9 56.9 68.2

Wang et al. [60] – – – 40.3 68.9 79.9

Language models

STD-RNN [50] – – – 9.6 29.8 41.1

BRNN [29] 16.5 39.2 52.0 22.2 48.2 61.4

Kiros et al. [32] – – – 23.0 50.7 62.9

NIC [59] – – – 23.0 – 63.0

Ours

Naive n-gram 0.7 2.8 4.6 1.2 5.9 9.6

Jelinek-Mercer 8.7 23.1 33.3 15.4 35.7 45.1

J-M + finetuning 17.8 41.9 53.9 28.6 54.7 66.0

Table 5. Recall@k (for three cut-off levels k) of caption retrieval

on the COCO-5K and Flickr-30K datasets for eight baseline sys-

tems and our visual n-gram models (with and without finetuning).

Baselines are separated in models dedicated to retrieval (top) and

image-conditioned language models (bottom). Higher is better.

We also perform image-based caption retrieval experi-

ments: we retrieve captions by ranking all captions in the

COCO-5K and Flick-30K test set according to their log-

likelihood under our model. The results of this experiment

are presented in Table 5, which shows that our model per-

forms on par with state-of-the-art image-conditioned lan-

guage models on caption retrieval. Like all other language

models, our model performs worse than approaches tailored

towards retrieval on the Flickr-30K dataset. On COCO-5K,

visual n-grams perform on par with the state-of-the-art.

4.4. ZeroShot Transfer

Because our models are trained on approximately 30

million photos and comments, they have learned to recog-

nize a wide variety of visual concepts. To assess the abil-

ity of our models to recognize visual concepts out-of-the-
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aYahoo Imagenet SUN

Class mode (in dictionary) 15.3 0.3 13.0

Class mode (all classes) 12.5 0.1 8.6

Jelinek-Mercer (in dictionary) 88.9 35.2 34.7

Jelinek-Mercer (all classes) 72.4 11.5 23.0

Table 6. Classification accuracies on three zero-shot transfer learn-

ing datasets on in-dictionary and on all classes. The number of

in-dictionary classes is 10 out of 12 for aYahoo, 326 out of 1, 000

for Imagenet, and 330 out of 720 for SUN. Higher is better.

box, we perform a series of zero-shot transfer experiments.

Unlike traditional zero-shot learners (e.g., [7, 35, 69]), we

simply apply the Flickr-trained models on a test set from

a different dataset. We automatically match the classes in

the target dataset with the n-grams in our dictionary. We

perform experiments on the aYahoo dataset [16], the SUN

dataset [63], and the Imagenet dataset [10]. For a test image,

we rank the classes that appear in each dataset according to

the score our model assigns to the corresponding n-grams,

and predict the highest-scoring class for that image. We re-

port the accuracy of the resulting classifier in Table 6 in two

settings: (1) a setting in which performance is measured

only on in-dictionary classes and (2) a setting in which per-

formance is measured on all classes.

The results of these experiments are shown in Table 6.

For reference, we also present the performance of a model

that always predicts the a-priori most likely class. The

results reveal that, even without any finetuning or re-

calibration, non-trivial performances can be obtained on

generic vision tasks. The performance of our models is

particularly good on common classes such as those in the

aYahoo dataset for which many examples are available in

the YFCC100M dataset. The performance of our models

is worse on datasets that involve fine-grained classification

such as Imagenet, for instance, because YFCC100M con-

tains few examples of specific, uncommon dog breeds.

5. Discussion and Future Work

Visual n-grams and recurrent models. This study has

presented a simple yet viable alternative to the common

practice of training a combination of convolutional and re-

current networks to relate images and language. Our visual

n-gram models differ in several key aspects from models

based on recurrent networks. Visual n-gram models are less

suitable for caption generation5 [44] but they are much more

efficient to evaluate at inference time, which is very impor-

tant in real-world applications of these models. Moreover,

visual n-gram models can be combined with class activation

5Our model achieves a METEOR score [11] of 17.2 on COCO cap-

tioning with a test set of 1, 000 images, versus 15.7 for a nearest neighbor

baseline method and 19.5 for a recurrent network [29].

on the grass the grass red brick the football being pushed

open mike a string her hair the equipment performing at the

the table sitting around a plate friends at the the foliage

Figure 6. Discriminative regions of five n-grams for three images,

computed using class activation mapping [48, 70].

mapping [48, 70] to perform visual grounding of n-grams,

as shown in Figure 6. Such grounding is facilitated by the

close relation between predicting visual n-grams and stan-

dard image classification. This makes visual n-gram mod-

els more amenable to transfer to new tasks than approaches

based on recurrent models, as demonstrated by our zero-

shot transfer experiments.

Learning from web data. Another important aspect that

discerns our work from most approaches in vision is that our

models are capable of being learned purely from web data,

without any manual data annotation. We believe that this

type of training is essential if we want to construct models

that are not limited to a small visual vocabulary and that are

readily applicable to real-world computer-vision tasks. In-

deed, this paper fits in a recent line of work [9, 28] that aban-

dons the traditional approach of gathering images, manually

annotating them for a small visual vocabulary, and training

and testing on the resulting image-target distribution. As

a result, models such as ours may not necessarily achieve

state-of-the-art results on established benchmarks, because

they did not learn to exploit the biases of those benchmarks

as well [25, 51, 52]. Such “negative” results highlight the

necessity of developing less biased benchmarks that provide

more signal on progress towards visual understanding.

Future work. The Jelinek-Mercer loss we studied in this

paper is based on just one of many n-gram smoothers [22].

In future work, we plan to perform an in-depth compari-

son of different smoothers for the training of convolutional

networks. In particular, we will consider loss functions

based as absolute-discounting smoothing such as Kneser-

Ney smoothing [34], as well as back-off models [31]. We

also plan to explore the use of visual n-gram models in sys-

tems that operate in open-world settings, combining them

with techniques for zero-shot and few-shot learning. Fi-

nally, we aim to use our models in tasks that require recog-

nition of a large variety of visual concepts and relations be-

tween them, such as visual question answering [2, 67], vi-

sual Turing tests [21], and scene graph prediction [36].
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