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Abstract

The ability to ask questions is a powerful tool to gather

information in order to learn about the world and resolve

ambiguities. In this paper, we explore a novel problem of

generating discriminative questions to help disambiguate

visual instances. Our work can be seen as a comple-

ment and new extension to the rich research studies on

image captioning and question answering. We introduce

the first large-scale dataset with over 10,000 carefully an-

notated images-question tuples to facilitate benchmarking.

In particular, each tuple consists of a pair of images and

4.6 discriminative questions (as positive samples) and 5.9

non-discriminative questions (as negative samples) on av-

erage. In addition, we present an effective method for vi-

sual discriminative question generation. The method can be

trained in a weakly supervised manner without discrimina-

tive images-question tuples but just existing visual question

answering datasets. Promising results are shown against

representative baselines through quantitative evaluations

and user studies.

1. Introduction

Imagine a natural language dialog between a computer

and a human (see Fig. 1):

Kid : “What sport is the man playing?”.

Computer : “What is the color of his shirt?”

Kid : “Blue.”

Computer : “He is playing tennis.”

In the conversation, the kid refers to an object but the de-

scription is linguistically underspecified. The computer an-

alyzes the visual differences of plausible targets and then re-

acts by asking a discriminative question “What is the color

of his shirt?” to resolve the reference.

We define the aforementioned problem as Visual Dis-

criminative Question Generation (VDQG). Specifically, the

computer is given with two visual instances, and the goal is

to ask a good question to distinguish or disambiguate them.

In this study, we call the pair images as ambiguous pairs

Good What color is the man’s shirt?
Good What sport is the man playing?

Bad How many people are there?

Bad Where is the man?

Figure 1: Example ambiguous image pair and both good

and bad discriminative questions.

– the ambiguity may not necessarily be due to their subtle

visual differences. They may just belong to the same ob-

ject class with close proximity in their deep representation.

Although such ambiguity can be easily resolved by human,

they can be difficult to a machine. Distinguishing differ-

ent image pairs require asking different types of questions,

ranging from color, action, location, and number. Akin to

the classic “Twenty Questions” game, a careful selection of

questions can greatly improve the odds of the questioner to

narrow down the answer. A bad question would fail to elim-

inate ambiguities. Figure 1 gives good and bad examples of

questions. This questioning capability can subsequently be

extended to generating a sequence of discriminative ques-

tions and prompting a human-in-the-loop to answer them.

In the process, the machine accumulates evidence that can

gradually refine the language expression from humans and

finally distinguish the object of interest.

Such VDQG ability allows a machine to play a more

natural and interactive role in Human-Computer Interaction

(HCI), or improve a robot to bind the references made by a

speaker more accurately to objects in a scene. While there

have been various attempts to build a system that can pro-

vide explanations [14] or ask questions [30, 33] based on

visual instances, the problem of VDQG has not been ex-
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plored. The goal of VDQG is to resolve inter-object am-

biguities through asking questions. It is thus differs from

image captioning that aims at generating a literal descrip-

tion based on a single visual instance. It also differs from

Visual Question Answering (VQA), which takes an image

and a question as inputs and provides an answer. A closer

work is Visual Question Generation (VQG) [30, 33]. Un-

like the setting of generating one possible question from an

image, VDQG operates on two visual instances and gener-

ates a discriminating question for them. The most relevant

work to ours is Yu et al. [50], which generates unambiguous

referring expressions for an object by incorporating visual

comparison to other objects in an image. Our problem dif-

fers in that we generate one single question to distinguish

multiple objects instead of referring expressions for all ob-

jects.

It is non-trivial to train a machine to ask discriminative

questions in an automatic and human understandable way.

Firstly, it should ask a natural and object-focused question.

Secondly, and importantly, the machine is required to pin-

point the most distinguishing characteristics of two objects

to perform a comparison. Addressing the problem is fur-

ther compounded by the lack of data. In particular, there

are no existing datasets that come readily with pair images

annotated with discriminative questions. Thus we cannot

perform a direct supervised learning.

To overcome the challenges, we utilize the Long Short-

Term Memory (LSTM) [13] network to generate natural

language questions. To generate discriminative questions,

which are object-focus, we condition the LSTM with a vi-

sual deep convolutional network that predicts fine-grained

attributes. Here visual attributes provide a tight constraint

on the large space of possible questions that can be gener-

ated from the LSTM. We propose a new method to identify

the most discriminative attributes from noisy attribute de-

tections on the two considered objects. Then we feed the

chosen attributes into the LSTM network, which is trained

end-to-end to generate an unambiguous question. To ad-

dress the training data problem, we introduce a novel ap-

proach to training the LSTM in a weakly-supervised man-

ner with rich visual questioning information extracted from

the Visual Genome dataset [23]. In addition, a large-scale

VDQG dataset is proposed for evaluation purposes.

Contributions: We present the first attempt to address the

novel problem of Visual Discriminative Question Genera-

tion (VDQG). To facilitate future benchmarking, we extend

the current Visual Genome dataset [23] by establishing a

large-scale VDQG dataset of over 10, 000 image pairs with

over 100, 000 discriminative and non-discriminative ques-

tions. We further demonstrate an effective LSTM-based

method for discriminative question generation. Unlike ex-

isting image captioning and VQG methods, the proposed

LSTM is conditioned on discriminative attributes selected

through a discriminative score function. We conduct both

quantitative and user studies to validate the effectiveness of

our approach.

2. Related Work

Image Captioning. The goal of image captioning is to

automatically generate natural language description of im-

ages [9]. The CNN-LSTM framework has been commonly

adopted and shows good performance [7, 19, 29, 43, 45].

Xu et al. [47] introduce attention mechanism to exploit spa-

tial information from image context. Krishna et al. [23] in-

corporate object detection [38] to generate descriptions for

dense regions. Jia et al. [16] extracts semantic information

from images as extra guide to caption generation. Krause

et al. [22] uses hierarchical RNN to generates entire para-

graphs to describe images, which is more descriptive than

single sentence caption. In contrast to these studies, we are

interested in generating a question rather than a caption to

distinguish two objects in images.

Visual Question Answering (VQA). VQA aims at gen-

erating answer given an input image and question. It dif-

fers from our task of generating questions to disambiguate

images. Deep encoder-decoder framework [27] has been

adopted to learn a joint representation of input visual and

textual information for answer prediction (multiple-choice)

or generation (open-ended). Visual attention [26, 41, 46,

48] and question conditioned model [2, 35] have been ex-

plored to capture most answer-related information from im-

ages and questions. To facilitate VQA research, a number

of benchmarks has been introduced [3, 23, 32, 37, 49, 53].

Johnson et al. [17] introduce a diagnostic VQA dataset by

mitigating the answer biases which can be exploit to achieve

inflated performance. Das et al. [5] extend VQA to a di-

alog scenario. Zhang et al. [52] build a balanced binary

VQA dataset on abstract scenes by collect counterpart im-

ages that yield opposite answers to the same question. A

concurrent work to ours is [12], which extends the popu-

lar VQA dataset [3] by collecting complementary images

such that each question will be associated to a pair of simi-

lar images that result in to different answers. Both [52] and

[12] contribute a balanced VQA dataset do not explore the

VDQG problem. Although our model can be trained on bal-

anced VQA data, we show that it performs reasonably well

by just learning from unbalanced VQA datasets.

Referring Expression Generation (REG). A closely re-

lated task to VDQG is REG, where the model is required to

generate unambiguous object descriptions. Referring ex-

pression has been studied in Natural Language Process-

ing (NLP) [11, 21, 44]. Kazemzadeh et al. [20] intro-

duce the first large-scale dataset for the REG in real-world

scenes. They use images from the ImageCLEF dataset [8],

and collect referring expression annotations by developing

a ReferIt game. The authors of [28, 50] build two larger
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REG datasets by using similar approaches on top of MS

COCO [25]. CNN-LSTM model has been shown effective

in both generation [28, 50] and comprehension [15, 34] of

REG. Mao et al. [28] introduce a discriminative loss func-

tion based on Maximum Mutual Information. Yu et al. [50]

study the usage of context in REG task. Yu et al. [51]

propose a speaker-listener-reinforcer framework for REG,

which is end-to-end trainable by reinforcement learning.

Visual Question Generation (VQG). Natural-language

question generation from text corpus has been studied for

years [1, 4, 18, 40]. The task of generating question about

images, however, has not been extensively studied. A key

problem is the uncertainty of the questions’ query targets,

which makes the question generation subjective and hard to

evaluate. Masuda-Mora et al. [30] design a question-answer

pair generation framework, where a CNN-LSTM model is

used to generate image-related questions, and a following

LSTM will decode the hidden representation of the ques-

tion into its answer. Their model is trained using VQA an-

notations [3]. Mostafazadeh et al. [33] introduce the first

VQG dataset. Mostafazadeh et al. [32] further extend the

scenario to image-grounded conversation generation, where

the model is repurposed for generating a sequence of ques-

tions and responses given image contexts. These tasks are

essentially same as image captioning, because the goal is to

model the joint distribution of image and language (ques-

tions), without explicitly considering the query target of

the generated question. A concurrent work [6] proposes to

use yes-no question sequences to locate unknown objects

in images, and introduces a large-scale dataset. This work

strengthens our belief on the importance of visual disam-

biguation by natural-language questions. The differences

between this work and ours are: 1) We do not restrict a

question to be yes-no type but more open-ended. 2) We

explore the usage of semantic attributes in discriminative

question generation. 3) No training data is available for

training our VDQG. We circumvent this issue through a

weakly-supervised learning method, which learns discrimi-

native question generation from general VQA datasets.

3. VDQG Dataset for Evaluation

Existing VQG and VQA datasets [3, 17, 23, 33, 37, 53]

only contain questions annotated on single image1, which

is inadequate for quantitative evaluation and analysis of

VDQG methods. To fill the gap, we build a large-scale

dataset that contains image pairs with human-annotated

questions. We gather images from the Visual Genome

dataset [23] and select image pairs as those that possess the

same category label and high CNN feature similarity. Fi-

nally we employ crowd-sourcing to annotate discriminative

1Apart from the concurrent work [12], which released a large-scale bal-

anced VQA dataset. Unfortunately the dataset was released in late March

so we were not able to train/test our model on this data.

Table 1: Statistics of VDQG dataset. The length of a ques-

tion is given by the number of tokens.

No. of images 8, 058

No. of objects 13, 987

No. of ambiguous image pairs 11, 202

No. of questions 117, 745

Avg. pos-question number per object pair 4.57

Avg. neg-question number per object pair 5.94

Avg. token number per question 5.44

and non-discriminative questions on these pairs. Some of

the example pairs and the associated questions are shown in

Fig. 2. As can be observed, many of these pairs are ambigu-

ous not only because they are of the same object class, but

also due to their similar visual appearances. We detail the

data collection process as follows.

Ambiguous Pair Collection. The Visual Genome dataset

provides object annotations with their category labels and

bounding boxes. We select 87 object categories that con-

tain rich and diverse instances. Incorrect labeled and low-

quality samples are discarded. Subsequently, we cluster im-

age instances in each object category by their features ex-

tracted with Inception-ResNet [42]. Image pairs are ran-

domly sampled from a cluster to form the ambiguous pairs.

Question Annotation. Question annotation is a laborious

process. We therefore adopt a two-step approach to col-

lect annotations by crowd-sourcing, and augment with more

questions automatically followed by human verification. In

the first step, the workers are prompted to ask questions that

can tell the differences between two images in an ambigu-

ous pair. In this way we collect 2 to 3 discriminative ques-

tions for pair. It is worth pointing out that we collect ‘7W’

questions, consistent with protocol adopted by the Visual

Genome dataset [23]. This is the major difference between

our dataset and [6], which only contains ‘yes-no’ questions.

Then we augment the question set of each ambiguous

pair by 1) retrieving questions from other visually similar

ambiguous pair and 2) automatically generating questions

using a CNN-LSTM model trained on Visual Genome VQA

annotations. After augmentation each ambiguous pair has

over 8 question annotations. The added questions are ex-

pected to be related to the given images, but not guaranteed

to be discriminative. Thus in the second step, the workers

are shown with an ambiguous pair and a question, and they

will judge whether the question would provide two differ-

ent answers respectively to the images pair. Specifically, the

worker will rate the question in a range of strong-positive,

weak-positive and negative, which will serve as the label of

the question.

Statistics. Our dataset contains 13, 987 images covering 87
object categories. We annotated 11, 202 ambiguous image

pairs with 117, 745 discriminative and non-discriminative

questions. Table 1 summarizes key statistics of our dataset.
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+ What color is the court?

+ What color are the man’s pants?
+ What is the man wearing on his head?

- What sports is being played?

- What is the man holding?

- How many people are there?

+ How many cats are there?

+ What is the cat sitting on?

+ What is next to the cat?

- What color is the cat?

- What animal is shown?

- What is the cat looking at?

+ What color is the car?

+ How is the weather?

+ How many cars are in the picture?

- Where is the car?

- When is the photo taken?

- What is on the road?

+ What color is the person’s shirt?
+ What is the man wearing on the head?

+ How may people are there?

- What sport is the boy doing?

- What is the child holding?

- Who is skateboarding?

Figure 2: Example of ambiguous pairs and the associated positive and negative question annotations in the proposed VDQG

dataset. Positive and negative questions are written in blue and red, respectively. More examples in supplementary material.
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Figure 3: Statistics of the VDQG dataset.

We provide an illustration in Fig. 3 to show more statistics

of the proposed dataset. Further statistics and examples of

this dataset can be found in the supplementary material.

4. Visual Discriminative Question Generation

Our goal is to generate discriminative questions collab-

oratively from two image regions RA and RB . We show

the proposed VDQG approach in Fig. 4. The approach can

be divided into two steps. The first step is to find discrimi-

native attribute pairs. An attribute recognition and attribute

selection components will be developed to achieve this goal.

In particular, each region will be described by an attribute,

and collectively, they should form a pair that best distin-

guish the two regions. For instance, as shown in Fig. 4,

the ‘blue-white’ attributes constitute a pair that is deemed

more discriminative than the ‘tennis-baseball’ pair, since

the baseball bat is hardly visible. Given the discriminative

attributes, the second step is to use the attributes to condi-

tion an LSTM to generate discriminative question.

Inspired by [15, 28], the image region is represented by

a concatenation of its local feature, image context and rela-

tive location/size: f = [fcnn(R), fcnn(I), lr]. Specifically,

fcnn(R) and fcnn(I) represent the 2048-d region and im-

age features, respectively. The features are extracted using

a Inception-ResNet [42] pre-trained on ImageNet [39]. The

vector lr = [xtl

W , ytl

H , xbr

W , ybr

H , Sr

SI
] denotes the relative loca-

tion and size of the region.

4.1. Finding Discriminative Attribute Pairs

To find a pair of discriminative attributes, our method

first recognizes visual attributes from each region to form

an paired attribute pool. The method then applies attribute

selection to select a pair of attributes that best distinguish

the two regions.

Attribute Recognition: Attributes offer important mid-

level cues of objects, usually in the form of a single

word [9, 45]. Since we only use attributes for discerning the

two images, we extend the notion of ‘single-word attribute’

to a short phrase to enhance its discriminative power. For

example, the attribute of “next to building” is actually fre-

quent in everyday conversation and can be more expressive

and discriminative than those single “location” attributes.

To this end, we extract the commonly used n-gram expres-

sions (n ≤ 3) from region descriptions in Visual Genome

dataset. We add the part-of-speech constraint to select for

descriptive expressions. An additional constraint is added

so that the expressions should intersect with the top 1000

most frequent answers in the dataset. This helps filtering

expressions that are less frequent or too specific. Exam-

ples of expressions chosen to serve as our attributes include

“man”, “stand”, “in white shirt”, “on wooden table”, “next

to tree”. More examples can be found in the supplementary

material. The top K = 612 constrained expressions are

collected to form our attribute list {attk}.

Next, we can associate each image region with its

ground-truth attributes and train a visual attribute recogni-

tion model. We cast the learning as a multi-label classifica-
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Figure 4: Overview of the attribute-conditioned question generation process. Given a pair of ambiguous images, we first

extract semantic attributes from the images respectively. The attribute scores are sent into a selection model to select the

distinguishing attributes pair, which reflects the most obvious difference between the ambiguous images. Then the visual

feature and selected attribute pair are fed into an attribute-conditioned LSTM model to generate discriminative questions.

tion problem. Specifically, we feed the visual representation

f of each region into Multi-layer Perceptions (MLP) with a

sigmoid layer to predict a K-d attribute score vector, v. The

MLP parameters are trained under a cross-entropy loss.

Attribute Selection: Given the attribute score vectors vA,

v
B ∈ R

K extracted from two image regions RA and RB ,

we want to choose an attribute pair (atti, attj) that best dis-

tinguishes them. The chosen attributes should possess the

following three desired properties:

1) Each attribute in the chosen pair should have highly con-

trasting responses on two regions. For examples, two re-

gions with “red” and “green” attributes respectively would

fulfill this requirement.

2) The chosen pair of attributes should be able to serve as

a plausible answer for a single identical question. For in-

stance, the “red” and “green” attributes both provide plau-

sible answers to the question of “What color is it?”.

3) The chosen pair of attributes should be easily distin-

guished by visual observations. We define the visual dis-

similarity as an intrinsic property of attributes independent

to particular images.

We integrate these constraints into the following score

function. Here we use a shorthand (i, j) to represent

(atti, attj).

s(i, j) = vAi (1− vBi ) · vBj (1− vAj )
︸ ︷︷ ︸

attribute score contrast

· eαsq(i,j)
︸ ︷︷ ︸

question similarity

· e−βsf (i,j)
︸ ︷︷ ︸

visual dissimilarity

,
(1)

where α, β are the balancing weights among the three con-

straints, and sq(·, ·) and sf (·, ·) encode the question and

feature similarities, respectively. We use the full score in

VQA Model

CNN LSTM

FC-Layer 

Weights

FC CNN

QuestionImage

FC LSTM

Answer Prediction

Answer Set

White

Man

Tree

Fire

Figure 5: Question similarity scoring. We train a VQA

model (left) using question-answer annotations of Visual

Genome [23]. Since the answers overlap with our defined

attributes, question similarity between two attributes atti
and attj can be computed as the inner product of the corre-

sponding i-th and j-th row vectors in the weight matrix of

the FCLSTM layer.

Eq. (1) to rank all K2 attribute pairs in an efficient way,

and select the top scoring pair to guide our VDQG. Next we

explain each term in the score function:

Attribute score contrast. This term computes the score con-

trast of attributes between two image regions, where vAi ∈
v
A represents the score/response of i-th attribute on region

RA. Similar notational interpretation applies to other vari-

ables in this term. The score contrast of a discriminative

attribute pair should be high.

Question similarity sq(i, j). The question similarity score

of a discriminative attribute pair should be large because

they are intended to respond to the same identical question.

Finding this similarity is non-trivial. To compute the ques-

tion similarity sq(i, j) of attributes atti and attj , we train a

small VQA model (see Fig. 5) that is capable of providing

an answer given an input question and image. The model is

trained using question-answer annotations from the Visual
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Genome dataset [23]. Note that we only train the model us-

ing question-answer annotations of which the answer is one

of the attributes in {attk} that we define earlier (recall that

our attribute set overlaps with the answer set). Thus the an-

swer output of the VQA model is actually our attribute set

and the model captures the question-attribute relations.

As illustrated in Fig. 5, the fully-connected layer after

LSTM (FCLSTM) contains a weight matrix Wq , of which

the i-th row vector, denoted as −→w qi, is trained for predic-

tion of attribute atti. In other words, this vector −→w qi could

serves as the representation of attribute atti in the question

space. Hence, the question similarity between atti and attj
can be computed as the inner product of −→w qi and −→w qj , de-

noted as 〈−→w qi,
−→w qj〉.

Visual similarity sf (i, j). The visual similarity score of a

discriminative attribute pair should be small. To determine

the visual similarity sf (i, j) between attribute atti and attj ,

we use the technique which we compute the question simi-

larity. Specifically, the fully-connected layer of our attribute

recognition model contains a weight matrix Wf , of which

the i-th row vector, denoted as −→w fi, is trained for predic-

tion of attribute atti. Consequently, the visual similarity

between atti and attj can be computed as the inner product

of −→w fi and −→w fj , denoted as 〈−→w fi,
−→w fj〉.

4.2. CNNLSTM with Attribute Conditions

In this section, we describe the formulation of the

attribute-conditioned LSTM. We start with a brief review

of conventional CNN-LSTM.

Conventional CNN-LSTM. In the typical CNN-LSTM

language generation framework, CNN features f are first

extracted from an input image. The features are then fed

into the LSTM to generate language sequences. The model

is trained by minimizing the negative log likelihood:

L =
∑

n
− log p(Qn|fn)

=
∑

n

∑

t
− log p(qnt |q

n
t−1,...,1, fn),

(2)

where each question Qn comprises of a word sequence

{qnt }.

Attribute-Conditioned LSTM. To generate questions with

specific intent, we utilize semantic attributes as an auxiliary

input of the LSTM to condition the generation process. Ide-

ally, when the model takes a “red” attribute, it would gener-

ate question like “What is the color?”. We train such con-

ditioned LSTM using the tuple (f , Q, atti), where atti is

made out of the groundtruth answer of Q. Similar to Eq. (2),

we minimize the negative log likelihood as follows:

L =
∑

n
−log p(Qn|fn, σ(att

n
i )), (3)

where σ(·) is a feature embedding function for attribute

input. We use Word2Vec [31] as the embedding function

that can generalize across natural language answers and at-

tributes.

Our goal is to generate one discriminative question col-

laboratively from two image regions RA and RB with the

selected attribute pair (atti, attj). Thus we duplicate the

attribute-conditioned LSTM for each region and compute

a joint question probability p(Q|fA, fB , σ(atti), σ(attj)),
which can be expressed as

p(qt|qt−1,...,1, f
A, fB , σ(atti), σ(attj)) =

p(qt|qt−1,...,1, fA, σ(atti)) · p(qt|qt−1,...,1, fB , σ(attj))
∑

q∈V
p(q|qt−1,...,1, fA, σ(atti)) · p(q|qt−1,...,1, fB , σ(attj))

,

(4)

where V is the whole vocabulary. We use beam search to

find the most probable questions according to Eq. (4).

Learning from Weak Supervision. As mentioned be-

fore, there are no public available paired-image datasets an-

notated with discriminative questions for fully-supervised

learning. Fortunately, due to the unique formulation of our

approach, which extends CNN-LSTM to generate questions

collaboratively from two image regions (see Eq. 4), our

method can be trained by just using ‘single image + sin-

gle question’ dataset. We choose to utilize the rich infor-

mation from Visual Genome dataset [23]. In particular, we

extract 1445k image-related question-answer pairs and their

grounding information, i.e., region bounding box. We ran-

domly split the question-answer pairs into training (70%),

validation (15%) and testing (15%) sets, where questions

referring to the same image will only appear in the same set.

We also utilize the associated region descriptions to enrich

the textual information for our attribute-conditioned model

(Sec. 4.1). It is worth noting that the training and valida-

tion sets are only used for our model training in a weakly-

supervised manner, while the testing set is used to construct

the VDQG dataset as introduced in Sec. 3.

5. Experiments

Methods. We perform experiments on the proposed VDQG

datasets and evaluate the following methods:

1) Our Approach (ACQG). We call our approach as

Attribute-Conditioned Question Generation (ACQG). We

establish a few variants based on the way discriminative at-

tributes are selected. ACQGac only uses the attribute score

contrast in Eq. (1). ACQGac+qs uses both attribute score

contrast and question similarity. Lastly, ACQGfull uses all

the terms for attribute selection. For each sample,we se-

lect top-5 attribute pairs and generate questions for each

pair. The final output is the question with the highest score,

which is the product of its attribute score (Eq. 1) and ques-

tion probability (Eq. 4). This achieves a better performance

than only using top-1 attribute pair.

2) CNN-LSTM. We modify the state-of-the-art image cap-

tioning CNN-LSTM model [7] for the VDQG task. Specif-
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ically, we adopt Inception-ResNet [42] as the CNN part,

followed by two stacked 512-d LSTMs. We also extend

the framework to accommodate image pair input following

Eq. (4) without using pair attributes as the condition.

3) Retrieval-based Approach (Retrieval). It is shown in [33]

that carefully designed retrieval approaches can be compet-

itive with generative approaches for their VQG task. In-

spired by [33], we prepare a retrieval-based baseline for the

VDQG task. Our training set consists of questions anno-

tated on image regions. Given a test image pair, we first

search for the k nearest neighbor (k = 100) training image

regions for the pair, and use the training questions annotated

on these retrieved regions to build a candidate pool. For

each question in the candidate pool, we compute its simi-

larity to the other questions using BLEU [36] score. The

candidate question with the highest score will be associated

with the input image pair.

Evaluation Metrics. To evaluate a generated question,

we hope to reward a match with the positive ground-truth

questions, and punish a match with the negative ground-

truth questions. To this end, we use ∆BLEU [10] as our

main evaluation metric, which is tailored for text genera-

tion tasks that admit a diverse range of possible outputs.

Mostafazadeh et al. [33] show that ∆BLEU has a strong

correlation with human judgments in visual question gen-

eration task. In particular, given a reference (annotated

question) set {ri,j} and the hypothesis (generated question)

set{hi}, where i is the sample index and j is the annotated

question index of i-th sample, ∆BLEU score is computed

as:

∆BLEU = BP · exp(
∑

n
log pn) (5)

The corpus-level n-gram precision is defined as:

pn =

∑

i

∑

g∈n−grams(hi)
maxj:g∈ri,j{wi,j ·#g(hi, ri,j)}

∑

i

∑

g∈n−grams(hi)
maxj{wi,j ·#g(hi)}

,

(6)

where #g(·) is the number of occurrences of n-gram g

in a given question, and #g(u, v) is the shorthand for

min{#g(u),#g(v)}. And the brevity penalty coefficient

BP is defined as:

BP =

{
1 if ρ > η

e1−η/ρ if ρ ≤ η
, (7)

where ρ and η are respectively the length of generated ques-

tion and effective annotation length. We respectively set the

score coefficients of strong-positive samples, weak-positive

samples and negative samples to be 1.0, 0.5 and -0.5. We

use a equal weights for up to 4-grams.

As a supplement, we also use BLEU [36] and ME-

TEOR [24] to evaluate the textual similarity between gen-

erated questions and positive annotations in the test set.

Table 2: Experiment results on full VDQG dataset.

Model ∆BLEU BLEU METEOR

Humantop 69.2 85.5 57.5

Humanrandom 62.9 82.4 54.9

Retrieval 24.3 42.5 29.1

CNN-LSTM 33.4 56.2 37.3

ACQGac 29.4 52.9 35.3

ACQGac+qs 40.1 59.1 39.6

ACQGfull 40.6 59.4 39.7

Table 3: Experiment results on VDQG hard subset.

Model ∆BLEU BLEU METEOR

Humantop 62.3 79.2 52.2

Humanrandom 53.7 74.9 48.9

Retrieval 13.4 36.9 25.9

CNN-LSTM 20.3 47.8 32.7

ACQGac 13.5 44.3 30.4

ACQGac+qs 32.6 53.2 36.1

ACQGfull 33.5 53.6 36.4

5.1. Results

We conducted two experiments based on the VDQG

dataset. The first experiment was conducted on the full sam-

ples. The second experiment was performed by using only

a hard subset of VDQG. We constructed the hard subset by

selecting 50% samples with a lower ratio of positive anno-

tations within each object category.

Table 2 summarizes the results on the full VDQG

dataset. The proposed method outperforms baseline meth-

ods according to all metrics. We also performed ablation

study by gradually dropping the similarity terms in Eq. (1)

out of our full model. The results suggest that question sim-

ilarity dominates the performance improvement while other

terms also play an essential role. It is noted that ACQGac

yields poor results in comparison to the baseline CNN-

LSTM. Based on our conjecture, the attribute score contrast

term may be too simple therefore overwhelmed by the noisy

prediction scores of attributes. Experimental results on the

hard subset are shown in Table 3. Compared with the re-

sults in Table 2, the performance gap between ACQGfull

and non-attribute-guided models increases in hard cases,

which shows the significance of discriminative attributes in

the task of VDQG.

We also performed an interesting experiment based

on the collected question annotations in VDQG dataset.

Specifically, ‘Humantop’ indicates the first-annotated pos-

itive question of each sample, while ‘Humanrandom’ indi-

cates a random positive annotation among all the human an-

notations of each sample. It is reasonable to assume that

the first-written questions are likely to ask the most distin-

guishing differences between two images. From both Ta-

bles 2 and 3, we observe that ‘Humantop’ consistently out-

performs ‘Humanrandom. The results suggest the effective-
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Figure 6: User study on VDQG full.
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Figure 7: User study on VDQG hard subset.

ness of the proposed VDQG dataset and metric settings for

VDQG evaluation.

5.2. User Study

We gathered a total of 27 participants to join our user

study. Each time we showed the participant an image pair

and four questions generated respectively by a human an-

notator (the groundtruth), the proposed ACQGfull, CNN-

LSTM, and Retrieval. Then the participant was asked to

rank these questions according to their capability of distin-

guishing the given image pair. Figure 6 shows the results

of user study. We also separately analyze the hard samples,

and show the results in Fig. 7. The proposed ACQGfull

outperforms other baseline models in the user study. It is

observed that the performance gap becomes more signifi-

cant on hard samples.

6. Comparison with Referring Expression

A referring expression is a kind of unambiguous descrip-

tion that refers to a particular object within an image. De-

spite the linguistic form differences between the discrimi-

native question and the referring expression, they have the

common objective of disambiguation. In this section, we

compared discriminative question with referring expression

by conducting a user study with 14 participants. Specifi-

cally, each time we showed the participant an image with

two ambiguous objects marked with their respective bound-

RE Baby.

DQ Who is in the picture? (Woman)

RE Zebra with head up.

DQ How many zebras are there? (One)

RE Man.

DQ Who is in the picture? (Man)

RE White cow.

DQ What is the cow doing? (Stand)

RE Catcher.

DQ What color is the batter’s shirt? (White)

RE Blue truck.

DQ What color is the truck? (Blue)

Figure 8: Visualization of the Discriminative Question

(DQ) and Referring Expression (RE) generated from the

ambiguous objects in images. Referred objects and distrac-

tors are marked with green and red bounding boxes respec-

tively. The second row shows some failure cases.

ing boxes. Meanwhile, we showed the participant a refer-

ring expression2 or a discriminative question with its con-

ditioning attribute that refers to one of the objects. Then

the participant was asked to retrieve the referred object by

the given information. We compute the mean retrieval accu-

racy to measure the disambiguation capability of the given

textual information.

The results are interesting – showing referring expres-

sions results in a mean retrieval accuracy of 65.14%, while

showing discriminative question+attribute achieves a com-

petitive result of 69.51%. In Fig. 8 we show some of the

generated referring expressions and discriminative ques-

tions on ambiguous objects within images. It is interesting

to notice that referring expressions and discriminative ques-

tions fail in different cases, which indicates that they could

be further studied as complementary approaches to visual

disambiguation.

7. Conclusion

We have presented a novel problem of generating dis-

criminative questions to help disambiguate visual instances.

We built a large-scale dataset to facilitate the evaluation

of this task. Besides, we proposed a question generation

model that is conditioned on discriminative attributes. The

method can be trained by using weak supervisions extracted

from existing VQA dataset (single image + single question),

without using full supervision that consists of paired-image

samples annotated with discriminative questions.
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2We generate referring expressions using the state-of-the-art REG

model [28] trained on RefCOCO+ dataset [50]. The images used in the

user study are selected from the validation set of RefCOCO+. In particu-

lar, we select the images containing two ambiguous objects.
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