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Abstract

This paper proposes a novel approach for segmenting

primary video objects by using Complementary Convo-

lutional Neural Networks (CCNN) and neighborhood re-

versible flow. The proposed approach first pre-trains C-

CNN on massive images with manually annotated salien-

t objects in an end-to-end manner, and the trained CCNN

has two separate branches that simultaneously handle two

complementary tasks, i.e., foregroundness and background-

ness estimation. By applying CCNN on each video frame,

the spatial foregroundness and backgroundness maps can

be initialized, which are then propagated between various

frames so as to segment primary video objects and suppress

distractors. To enforce efficient temporal propagation, we

divide each frame into superpixels and construct neighbor-

hood reversible flow that reflects the most reliable temporal

correspondences between superpixels in far-away frames.

Within such flow, the initialized foregroundness and back-

groundness can be efficiently and accurately propagated a-

long the temporal axis so that primary video objects grad-

ually pop-out and distractors are well suppressed. Exten-

sive experimental results on three video datasets show that

the proposed approach achieves impressive performance in

comparisons with 18 state-of-the-art models.

1. Introduction

Segmenting primary objects in images and videos is an

important step in many computer vision applications. In

recent years, the segmentation of primary image objects,

namely image-based salient object detection, has achieved

impressive success since powerful models can be direct-

ly trained on large image datasets by using Random For-

est [12], Multi-instance Learning [42], Stacked Autoen-

coders [8] and Deep Neural Networks [13, 15, 18, 45]. In

contrast, segmenting primary video objects remains a chal-
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Figure 1. Primary objects may co-occur with or be occluded by

various distractors. They may not always be the most salient ones

in each separate frame but can consistently pop-out in most video

frames (frames and masks are taken from the dataset [17]).

lenging task since the amount of video data with per-frame

pixel-level annotations is much less than that of images,

which may prevent the direct end-to-end training of spa-

tiotemporal model. Moreover, due to the camera or ob-

ject motion, the same primary objects may co-occur with

or be occluded by various distractors in different frames

(see Fig. 1), making them difficult to consistently pop-out

throughout the whole video.

To address the problem of primary video object seg-

mentation, there exist three major categories of models

that can be recognized as fully-automatic, interactive and

weakly-supervised, respectively. In these models, interac-

tive ones require manually annotated primary objects in the

first frame or several key frames before starting the automat-

ic segmentation [5, 19, 26, 27], while weakly-supervised

ones often assume that the semantic tags of primary video

objects are known before segmentation so that additional

tools like object detectors can be reused [31, 44]. Howev-

er, the requirement of interaction or semantic tags prevents

their usage in processing large-scale video data [40].

Beyond these models, fully-automatic models aim to di-

rectly segment primary objects in a single video [10, 22,

40, 36] or co-segment the primary objects shared by a col-

lection of videos [2, 7, 41]. Typically, these models pro-

pose assumptions on what spatial attributes primary objects

should have and how they should behave along the tem-

poral axis. For example, Papazoglou and Ferrari [22] as-

sume that foreground objects should move differently from

its surrounding background in a good fraction of the video.
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Figure 2. Framework of the proposed approach. The framework consists of two major modules. The spatial module trains CCNN to

simultaneously initialize the foregroundness and backgroundness maps of each frame. This module operates on GPU to provide pixel-wise

predictions for each frame. The temporal module constructs neighborhood reversible flow so as to propagate foregroundness and back-

groundness along the most reliable inter-frame correspondences. This module operates on superpixels for efficient temporal propagation.

They first initialize foreground maps with motion informa-

tion and then refine them in the spatiotemporal domain so as

to enhance the smoothness of foreground objects. Zhang et

al. [40] assume that objects are spatially dense and their

shapes and locations change smoothly across frames. A lay-

ered Directed Acyclic Graph based framework is presented

for primary video object segmentation. Actually, similar as-

sumptions can be found in many models [6, 14, 21, 34, 35]

that perform impressively on small datasets (e.g., Seg-

Track [30] and SegTrack V2 [14]). However, these models

sometimes may fail on certain videos from larger dataset-

s (e.g., Youtube-Objects [24] and VOS [17]) that contain

many complex scenarios in which the assumptions may not

always hold. Moreover, many of these models compute

pixel-wise optical flow to temporally refine the initial spa-

tial predictions between adjacent frames. On the one hand,

adjacent frames often have similar content and demonstrate

similar successes and failures in initial predictions, which

may degrade the effect of temporal refinement even though

such short-term optical flow can be very accurate. On the

other hand, the optical flow between far-away frames may

become not very accurate due to the probable occlusion

and large displacements [3], making the long-term temporal

propagation not very reliable.

Considering all these issues, this paper proposes an nov-

el approach that efficiently predicts and propagates spatial

foregroundness and backgroundness within neighborhood

reversible flow for primary video object segmentation. The

framework of the proposed approach is shown in Fig. 2,

which consists of two main modules. In the spatial module,

the Complementary Convolutional Neural Networks (CCN-

N) is trained end-to-end on massive images with manually

annotated salient objects so as to simultaneously handle t-

wo complementary tasks, i.e., foreground and background-

ness estimation, with two separate branches. By using CC-

NN, we can obtain the initialized foregroundness and back-

groundness maps on each individual frame. To efficiently

and accurately propagate such spatial predictions between

far-away frames, we further divide each frame into a set of

superpixels and construct neighborhood reversible flow so

as to depict the most reliable temporal correspondences be-

tween superpixels in different frames. Within such flow, the

initialized spatial foregroundness and backgroundness are

efficiently propagated along the temporal axis by solving

a quadratic programming problem that has analytic solu-

tion. In this manner, primary objects can efficiently pop-out

and distractors can be further suppressed. Extensive exper-

iments on three video datasets show that the proposed ap-

proach acts efficient and achieves impressive performances

compared with 18 state-of-the-art models (7 image-based &

non-deep, 6 image-based & deep, 5 video-based).

The main contributions of this paper include: 1) we pro-

pose a simple yet effective framework for efficient and ac-

curate primary video object segmentation; 2) we train end-

to-end CNNs that simultaneously address two dual tasks so

that primary video objects can be detected from comple-

mentary perspectives; and 3) we construct neighborhood re-

versible flow between superpixels that can effectively prop-

agate foregroundness and backgroundness along the most

reliable inter-frame correspondences.
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2. Training CCNN for Spatial Foregroundness

and Backgroundness Initialization

Without loss of generality, primary video objects can be

defined as the objects that consistently pop-out throughout

a whole video [17]. In other words, distractors, which may

have the capability of suddenly capturing human visual at-

tention in certain video frames, will be well suppressed in

the majority of the same video. Inspired by these facts, we

propose to train deep neural networks that simultaneously

predict both spatial foregroundness and backgroundness of

a frame. The architecture of the proposed CCNN can be

found in Fig. 3, which starts with a shared trunk and ends

up with two separate branches.

The shared trunk are initialized from the VGG16 net-

works [28]. In our experiments, we remove all the pooling

layers after CONV4 1 and conduct dilated convolution in

all subsequent CONV layers to extend the receptive fields

without loss of resolution [39]. Moreover, the last two ful-

ly connected layers are converted into convolutional layers

with 7× 7 and 1× 1 kernels, respectively. The revised VG-

G16 architecture takes a 280× 280 image as the input, and

outputs a 35× 35 feature map with 4096 channels. Finally,

a CONV layer with 1× 1 kernels is adopted to compress the

feature map into 128 channels.

After the shared trunk, the neural networks split into two

separate branches that address two complementary tasks,

i.e., foregroundness and backgroundness estimation. Note

that these two branches utilize the same input and the same

architecture. That is, the input feature map first enter three

parallel CONV layers with 3× 3 kernels and dilation of 1, 2

and 3, respectively. This ensures the measurement of fore-

groundness and backgroundness at three consecutive scales.

After that, the outputs of these three layers are concatenat-

ed, which are then compressed with an 1 × 1 CONV layer

and output foregroundness and backgroundness maps via

DECONV layers and sigmoid activation functions. In this

manner, the foregroundness branch mainly focuses on de-

tecting salient objects, while the backgroundness branch fo-

cuses on suppressing distractors.

As shown in Fig. 4, many foregroundness and back-

groundness maps can already well depict primary video ob-

jects and distractors from various video frames (see Fig. 4

(a)-(d)). However, such maps are not always perfectly com-

plementary. That is, they sometimes leave certain area mis-

takenly predicted in both the foreground and background

branches (see Fig. 4 (h) for the black area in the fusion map-

s that are generated as the maximum of the foregroundness

and backgroundness maps). Typically, Such imperfect pre-

dictions need to be further refined in temporal propagation,

which will be discussed in the next section.

In the training stage, we collect massive images with

labeled salient objects from four datasets for image-based

Figure 3. Architecture of CCNN. Here ’CONV (3×3/2)’ indicates

a convolutional layer with 3× 3 kernels and dilation of 2.

Figure 4. Foregroundness and backgroundness maps initialized by

CCNN as well as their fusion maps (i.e., maximum values from

two maps). (a) and (e) Video frames, (b) and (f) foregroundness

maps, (c) and (g) backgroundness maps, (d) and (h) fusion map-

s. We can see that the foregroundness and backgroundness maps

can well depict salient objects and distractors in many frames (see

(a)-(d)). However, they are not always perfectly complementary,

leaving some area mistakenly predicted in both foreground and

background maps (see the black area in fusion maps (h)).

salient object detection [15, 20, 37, 38]. To speed up the

training process and reduce the number of parameters, we

down-sample all images to 280 × 280 and their ground-

truth saliency maps into 140×140. Suppose that the output

foregroundness and backgroundness maps of the uth train-

ing image are represented by Xu and Yu, we optimize the

parameters of CCNN by minimizing the overall Sigmoid

Cross Entropy loss among {(Xu,Gu)}u and {(Yu,Gu)}u.

Note that Gu is the ground-truth map of the uth image, in

which zeros represent distractors and ones represent salient

objects. In the training process, the loss in the two branches

has equal weights, and we adopt different learning rates at

the shared trunk (5×10−8) and the two branches (5×10−7)

so that the knowledge from VGG16 can be largely main-

tained. Other hyper-parameters include batch size (4), mo-

mentum (0.9) and weight decay (0.0005).
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3. Building Neighborhood Reversible Flow for

Efficient Temporal Propagation

3.1. Neighborhood Reversible Flow

To extend spatial foregroundness and backgroundness

to the spatiotemporal domain, we can propagate them a-

long the temporal axis. In the propagation, we should

first determine which frames should be referred to and how

to build reliable inter-frame correspondences. Consider-

ing that there often exists rich redundancy among adjacen-

t frames, we assume that far-away frames can bring more

valuable cues on how to pop-out primary objects and sup-

press distractors. Unfortunately, the pixel-wise optical flow

may suffer from large displacement in handling far-away

frames. Toward this end, we construct neighborhood re-

versible flow based on superpixels, which is inspired by the

concept of neighborhood reversibility in image search [11].

In building the flow, we first apply the SLIC algorith-

m [1] to divide a frame Iu into Nu superpixels, denoted as

{Oui}. To characterize a superpixel from multiple perspec-

tives, we compute its average RGB, Lab and HSV colors

as well as the horizontal and vertical positions. By normal-

izing these features into the same dynamic range [0, 1], we

compute the ℓ1 distances between Oui and all superpixel-

s in another frame Iv . After that, we denote the k nearest

neighbors of Oui in Iv as Nk(Oui|Iv). As a consequence,

two superpixels are k-neighborhood reversible if they reside

in the k nearest neighbors of each other. That is,

Oui ∈ Nk(Ovj |Iu) and Ovj ∈ Nk(Oui|Iv). (1)

From (1), we find that the smaller k, the more tightly two

superpixels are temporally correlated. Therefore, we initial-

ize the flow between Oui and Ovj as

fui,vj =

{

exp(−2k/k0) if k ≤ k0

0 otherwise
(2)

where k0 is a constant to suppress weak flow and k is a

variable. A small k0 will build sparse correspondences be-

tween Iu and Iv (e.g., k0 = 1), while a large k0 will

cause dense correspondences. In this study, we empirical-

ly set k0 = 15 and represent the flow between Iu and Iv
with a matrix Fuv ∈ R

Nu×Nv , in which the componen-

t at (i, j) equals to fui,vj . Note that we further normalize

Fuv so that each row sums up to 1. To ensure sufficient

variation in content and depict reliable temporal correspon-

dences, we only estimate the flow between a frame Iu and

the frames {It|t ∈ Tu}, where Tu can be empirically set to

{u− 30, u− 15, u+ 15, u+ 30}.

3.2. Temporal Propagation within Flow

The flow {Fuv} depicts how superpixels in various

frames are temporally correlated, which can be used to fur-

ther propagate the spatial foregroundness and background-

ness. Typically, such temporal refinement can obtain im-

pressive performance by solving a complex optimization

problem with constraints like spatial compactness and tem-

poral consistency. However, the time cost will also grow

surprisingly high [44]. Considering the requirement of effi-

ciency in many real-world applications, we propose to min-

imize an objective function that has analytic solution. For a

superpixel Oui, its foregroundness xui and backgroundness

yui can be initialized as

xui =

∑

p∈Oui
Xu(p)

|Oui|
, yui =

∑

p∈Oui
Yu(p)

|Oui|
(3)

where p is a pixel with foregroundness Xu(p) and back-

groundness Yu(p). |Oui| is the area of Oui. For the sake of

simplification, we represent the foregroundness and back-

groundness scores of all superpixels in the uth frame with

column vectors xu and yu, respectively. As a result, we can

propagate such scores from Iv to Iu according to Fuv:

xu|v = Fuvxv, yu|v = Fuvyv, ∀v ∈ Tu. (4)

After the propagation, the foregroundness vector x̂u and

backgroundness vector ŷu can be refined by solving

x̂u = argmin
x

‖x − xu‖
2

2
+ λc

∑

v∈Tu

‖x − xu|v‖
2

2
,

ŷu = argmin
y

‖y − yu‖
2

2
+ λc

∑

v∈Tu

‖y − yu|v‖
2

2
,

(5)

where λc is a positive constant whose value is empirically

set to 0.5. Note that we adopt only the ℓ2 norm in (5) so as

to efficiently compute an analytic solution

x̂u =
1

1 + |Tu|

(

xu + λc

∑

v∈Tu

Fuvxv

)

,

ŷu =
1

1 + |Tu|

(

yu + λc

∑

v∈Tu

Fuvyv

)

.

(6)

By observing (4) and (6), we find that the propagation pro-

cess is actually calculating the average foregroundness and

backgroundness scores within a local temporal slice under

the guidance of neighborhood reversible flow. After the

temporal propagation, we turn superpixel-based scores in-

to pixel-based ones as

Mu(p) =

Nu
∑

i=1

δ(p ∈ Oui) · x̂ui · (1− ŷui), (7)

where Mu is the importance map of Iu that depict the pres-

ence of primary objects. δ(p ∈ Oui) is an indicator function

which equals to 1 if p ∈ Oui and 0 otherwise. Finally, we

calculate an adaptive threshold which equals to the 20% of

the maximal pixel importance to binarize each frame, and a

morphological closing operation is then performed to fill in

the black area in the segmented objects.
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4. Experiments

We test the proposed approach on three video datasets

that have different ways in defining primary video objects.

Details of these datasets are described as follows:

1) SegTrack V2 [14] is a classic dataset in video object seg-

mentation that are frequently used in many previous works.

It consists of 14 densely annotated video clips with 1, 066
frames in total. Most primary objects in this dataset are de-

fined as the ones with irregular motion patterns.

2) Youtube-Objects [24] contains a large amount of In-

ternet videos and we adopt its subset [9] that contains

127 videos with 20, 977 frames. In these videos, 2, 153
keyframes are sparsely sampled and manually annotated

with pixel-wise masks according to the video tags. In oth-

er words, primary objects in Youtube-Objects are defined

from the perspective of semantic attributes.

3) VOS [17] contains 200 videos with 116, 093 frames. On

7, 467 uniformly sampled keyframes, all objects are pre-

segmented by 4 subjects, and the fixations of another 23

subjects are collected in eye-tracking tests. With these an-

notations, primary objects are automatically selected as the

ones whose average fixation densities over the whole video

fall above a predefined threshold. If no primary objects

can be selected with the predefined threshold, objects that

receive the highest average fixation density will be treat-

ed as the primary ones. Different from SegTrack V2 and

Youtube-Objects, primary objects in VOS are defined from

the perspective of human visual attention.

On these three datasets, the proposed approach, denoted

as OUR, is compared with 18 state-of-the-art models for

primary and salient object segmentation, including:

1) Image-based & Non-deep (7): RBD [46], SMD [23],

MB+ [43], DRFI [12], BL [29], BSCA [25], MST [32].

2) Image-based & Deep (6): ELD [13], MDF [15], D-

CL [16], LEGS [18], MCDL [45] and RFCN [33].

3) Video-based (5): ACO [10], NLC [4], FST [22],

SAG [34] and GF [35].

In the comparisons, we adopt two sets of evaluation met-

rics, including the Intersection-over-Union (IoU) and the

Precision-Recall-Fβ . Similar to [17], the precision, recall

and IoU scores are first computed on each frame, which are

then separately averaged over each video and finally aver-

aged over the whole dataset so as to generate the mean Av-

erage Precision (mAP), mean Average Recall (mAR) and

mean Average IoU (mIoU). In this manner, the influence

of short and long videos can be balanced. Furthermore, a

unique Fβ score is computed based on mAR and mAP:

Fβ =
(1 + β2) · mAP · mAR

β2 · mAP + mAR
, (8)

where we set β2 = 0.3 as in many previous works to em-

phasize precision more than recall in the evaluation. Among

these metrics, mAR and mAP explain why a model per-

forms impressive or fail from the complementary perspec-

tives of recall and precision, which can help to provide more

insights beyond a single mIoU score.

4.1. Comparisons with Stateoftheart Models

The performances of our approach and 18 state-of-the-

art models on three video datasets are shown in Table 1.

Some representative results of our approach are demon-

strated in Fig. 5. From Table 1, we find that on Youtube-

Objects and VOS our approach achieves the best Fβ and

mIoU scores, while on SegTrack V2 our approach ranks the

second places (worse than NLC). This can be explained by

the fact that SegTrack V2 contains only 14 videos, among

which most primary objects have irregular motion patterns.

Such videos often perfectly meet the assumption of NLC

on motion patterns of primary objects, making it the best

approach on SegTrack V2. However, when the scenarios

being processed extend to datasets like VOS that are con-

structed without such “constraints” on motion patterns, the

performance of NLC drops sharply as its assumption may

sometimes fail (e.g., VOS contains many videos only with

static primary objects and distractors as well as slow camera

motion, see Fig. 5). These results further validate that it is

quite necessary to conduct comparisons on larger datasets

with daily videos (like VOS) so that models with various

kinds of assumptions can be fairly evaluated.

Moreover, there exist some approaches on the three

datasets that outperform our approach in recall, while some

other approaches may achieve better or comparable preci-

sion with our approach. However, none of these approach-

es simultaneously outperforms our approach in both recall

and precision so that our approach often have better overall

performance. This may imply that the proposed approach

is more balanced than previous works. By analyzing the

results on the three datasets, we find that this phenomena

may be caused by the conduction of complementary tasks

in CCNN. By propagating both foregroundness and back-

groundness, the black area shown in the fusion maps can be

filled in, while the mistakenly popped-out distractors can be

suppressed again, leading to balanced recall and precision.

From Table 1, we also find that there exist inherent cor-

relations between salient image object detection and prima-

ry video object segmentation. As shown in Fig. 5, prima-

ry objects are often the most salient ones in many frames,

which explains the reason that deep models like ELD, R-

FCN and DCL outperforms many video-based models like

NLC, SAG and GF. However, there are several key dif-

ferences between the two problems. First, primary objects

may not always be the most salient ones in all frames (as

shown in Fig. 1). Second, inter-frame correspondences pro-

vide additional cues for separating primary objects and dis-

tractors, which depict a new way to balance recall and pre-
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Table 1. Performances of our approach and 18 models. Bold and underline indicate the 1st and 2nd performance in each column.

Models
SegTrackV2 (14 videos) Youtube-Objects (127 videos) VOS (200 videos)

mAP mAR Fβ mIoU mAP mAR Fβ mIoU mAP mAR Fβ mIoU

Im
a

g
e

+
N

o
n

-d
ee

p DRFI [12] .464 .775 .511 .395 .542 .774 .582 .453 .597 .854 .641 .526

RBD [46] .380 .709 .426 .305 .519 .707 .553 .403 .652 .779 .677 .532

BL [29] .202 .934 .246 .190 .218 .910 .264 .205 .483 .913 .541 .450

BSCA [25] .233 .874 .280 .223 .397 .807 .450 .332 .544 .853 .594 .475

MB+ [43] .330 .883 .385 .298 .480 .813 .530 .399 .640 .825 .675 .532

MST [32] .450 .678 .488 .308 .538 .698 .568 .396 .658 .739 .675 .497

SMD [23] .442 .794 .493 .322 .560 .730 .592 .424 .668 .771 .690 .533

Im
a

g
e

+
D

ee
p MDF [15] .573 .634 .586 .407 .647 .776 .672 .534 .601 .842 .644 .542

ELD [13] .595 .767 .627 .494 .637 .789 .667 .531 .682 .870 .718 .613

DCL [16] .757 .690 .740 .568 .727 .764 .735 .587 .773 .727 .762 .578

LEGS [18] .420 .778 .470 .351 .549 .776 .589 .450 .606 .816 .644 .523

MCDL [45] .587 .575 .584 .424 .647 .613 .638 .471 .711 .718 .713 .581

RFCN [33] .759 .719 .749 .591 .742 .750 .744 .592 .749 .796 .760 .625

V
id

eo
-b

a
se

d NLC [4] .933 .753 .884 .704 .692 .444 .613 .369 .518 .505 .515 .364

ACO [10] .827 .619 .767 .551 .683 .481 .623 .391 .706 .563 .667 .478

FST [22] .792 .671 .761 .552 .687 .528 .643 .380 .697 .794 .718 .574

SAG [34] .431 .819 .484 .384 .486 .754 .529 .397 .538 .824 .585 .467

GF [35] .444 .737 .489 .354 .529 .722 .563 .407 .523 .819 .570 .436

OUR .809 .802 .807 .670 .745 .798 .756 .633 .789 .870 .806 .710

Table 2. Performance of key components of our approach on

VOS. FG: foregroundness branch of CCNN, BK: backgroundness

branch of CCNN, NRF: Neighborhood Reversible Flow

Step mAP mAR Fβ mIoU

FG (pixel-wise) .750 .879 .776 .684

BK (pixel-wise) .743 .884 .771 .680

FG (Superpixel) .730 .895 .762 .674

BK (Superpixel) .722 .901 .756 .669

FG+BK+NRF .789 .870 .806 .710

cision. Third, primary objects may be sometimes close to

video boundary due to camera and object motion, making

the boundary prior widely used in many salient object detec-

tion models no valid any more (e.g., the cow in the 1st row

of the center column of Fig. 5). Last but not least, salient

object detection needs to distinguish a salient object from a

fixed set of distractors, while primary object segmentation

needs to consistently pop-out the same primary object from

a varying set of distractors. To sum up, primary video ob-

ject segmentation is a more challenging task that needs to

be further explored from the spatiotemporal perspective.

4.2. Detailed Performance Analysis

Beyond performance comparison, we also conduct sev-

eral experiments on VOS, the largest one of the three

datasets, to find out how the proposed approach works in

segmenting primary video objects.

Performance of CCNN branches. We conduct several ex-

periments to assess both CCNN branches. As shown in Ta-

ble 2, both CCNN branches show impressive performance

in predicting primary video objects when their pixel-wise

predictions are directly evaluated as the other 6 deep mod-

els. Although the foreground/backgroundness conversion

from pixel to superpixel may slightly decrease the precision

and increase the recall, the overall precision increases by a

large extent after the temporal propagation, at the cost of

small decrease in recall. Considering that high precision is

much more difficult to reach than high recall, such trade-off

can bring increasing Fβ and mIoU scores.

In particular, the performances of both the foreground-

ness and backgroundness branches outperform all the oth-

er 6 deep image-based salient object detection models on

VOS. By analyzing the results, we find that this may be

caused by two reasons: 1) using more training data, and

2) simultaneously handling complementary tasks. To fur-

ther explore the reasons, we retrain CCNN on the same

MSRA10K dataset used by most deep models. In this

case, the Fβ (mIoU) scores of the foregroundness and back-

groundness maps predicted by CCNN will decrease to 0.747

(0.659) and 0.745 (0.658), respectively. Note that both

branches still outperform RFCN on VOS in terms of mIoU

(but Fβ is slightly worse).

To further explore the performance gain by using two

complementary branches, we conduct two more experi-

ments. First, if we cut down the backgroundness branch

and retrain only the foreground branch, the performance de-

creases by about 0.9%. Second, if we re-train a network

with two foreground branches, the Fβ and mIoU scores de-

crease from 0.806 to 0.800 and 0.710 to 0.700, respective-
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Figure 5. Representative results of our approach. Red masks are the ground-truth and green contours are the segmented primary objects.

Figure 6. Influence of parameters k0 and λc to our approach.

ly. These two experiments indicate that, beyond learning

more weights, the background branch does have learned

some useful cues that are ignored by the foreground branch,

which are expected to be high-level visual patterns of typ-

ical background distractors. These results also validate the

idea of training deep networks by simultaneously handling

two complementary tasks.

Effectiveness of neighborhood reversible flow. To prove

the effectiveness of neighborhood reversible flow, we test

our approach with two new settings. In the first setting, we

replace the correspondence from Eq. (2) to the Cosine sim-

ilarity between superpixels. In this case, the Fβ and mIoU

scores of our approach on VOS drop to 0.795 and 0.696, re-

spectively. Such performance is still better than the initial-

ized foregroundness maps but worse than the performance

when using the neighborhood reversible flow (Fβ=0.806,

mIoU = 0.710). This result validates the effectiveness of

neighborhood reversibility in temporal propagation.

In the second setting, we set λc = +∞ in Eq. (5), imply-

ing that primary objects in a frame are solely determined by

the foregroundness and backgroundness propagated from

other frames. When the spatial predictions of each frame

are actually ignored in the optimization process, the Fβ

(mIoU) scores of our approach on VOS only decrease from

0.806 (0.710) to 0.790 (0.693), respectively. This result

proves that the inter-frame correspondences encoded in the

neighborhood reversible flow are quite reliable for efficient

and accurate propagation along the temporal axis.

Parameter setting. In this experiment we smoothly vary

two key parameters used in our approach, including the k0
in constructing neighborhood flow and the λc that controls
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Table 3. Performance of our approach on VOS when using differ-

ent color space in constructing neighborhood reversible flow.

Color Space mAP mAR Fβ mIoU

RGB .785 .862 .801 .703

Lab .786 .860 .802 .702

HSV .787 .866 .804 .707

RGB+Lab+HSV .789 .870 .806 .710

the strength of temporal propagation. As shown in Fig. 6,

larger k0 tends to bring slightly better performance, while

our approach performs the best when λc = 0.5. In exper-

iments, we set k0 = 15 and λc = 0.5 in constructing the

neighborhood reversible flow.

Selection of color spaces. In constructing the flow, we rep-

resent each superpixel with three color spaces. As shown in

Table 3, a single color space performs slightly worse than

their combinations. Actually, using multiple color spaces

have been proved to be useful in detecting salient object-

s [12], while multiple color spaces make it possible to assess

temporal correspondences from several perspectives with a

small growth in time cost. Therefore, we choose to use RG-

B, Lab and HSV color spaces in characterizing a superpixel.

Speed test. We test the speed of the proposed approach

with a 3.4GHz CPU (only use single thread) and a NVIDIA

GTX 1080 GPU (without batch processing). The average

time cost of each key step of our approach in processing

400×224 frames are shown in Table 4. Note that the major-

ity of the implementation runs on the Matlab platform with

several key steps written in C (e.g., superpixel segmentation

and feature conversion between pixels and superpixels). We

find that our approach takes only 0.20s to process a frame,

which is much faster than many video-based models (e.g.,

19.0s for NLC, 6.1s for ACO, 5.8s for FST, 5.4s for SAG

and 4.7s for GF). This may be caused by the fact that we

only build correspondences on superpixels with the neigh-

borhood reversibility, which is very efficient. Moreover,

we avoid using complex optimization objectives and con-

straints. Instead, we use only simple quadratic optimization

objectives so as to obtain analytic solutions. The high effi-

ciency of our approach makes it possible to be used in some

real-world applications.

Failure cases. Beyond the successful cases, we also show

in Fig. 7 some failures. We find that failures can be caused

by the way of defining primary objects. For example, the

salient hand and caption in Fig. 7 (a)-(b) are not labeled as

primary objects as the corresponding videos from Youtube-

Objects are tagged with “dog” and “cow,” respectively.

Moreover, shadow (Fig. 7 (c)), reflection (Fig. 7 (d)) and

regions similar to background (Fig. 7 (e)) are some other

reasons that may cause unexpected failures.

Figure 7. Failure cases of our approach. Rows from top to bottom:

video frames, ground-truth masks and our results.

Table 4. Speed of key steps in our approach

Key Step Speed (s/frame)

Initialization 0.07

Superpixel & Feature 0.08

Build Flow & Propagation 0.04

Primary Object Seg. 0.01

Total ∼0.20

5. Conclusion

In this paper, we propose a simple yet effective approach

for primary video object segmentation. With Deep Neu-

ral Networks pre-trained on massive images from salien-

t object datasets to handle complementary tasks, the fore-

groundness and backgroundness in a video frame can be ef-

fectively predicted from the spatial perspective. After that,

such spatial predictions are efficiently propagated via the

inter-frame flow that has the characteristic of neighborhood

reversibility. In this manner, primary objects in different

frames can gradually pop-out, while various types of dis-

tractors can be well suppressed. Extensive experiments on

three video datasets have validated the effectiveness of the

proposed approach.

In the future work, we tend to improve the proposed ap-

proach by fusing multiple ways of defining primary video

objects like motion patterns, semantic tags and human visu-

al attention. Moreover, we will try to develop a completely

end-to-end spatiotemporal model for primary video object

segmentation by incorporating the recursive mechanism.
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