
Situation Recognition with Graph Neural Networks

Ruiyu Li1, Makarand Tapaswi2, Renjie Liao2, Jiaya Jia1,3, Raquel Urtasun2,4,5, Sanja Fidler2,5

1The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent
4Uber Advanced Technologies Group, 5Vector Institute

ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com

Abstract

We address the problem of recognizing situations in im-

ages. Given an image, the task is to predict the most

salient verb (action), and fill its semantic roles such as

who is performing the action, what is the source and tar-

get of the action, etc. Different verbs have different roles

(e.g. attacking has weapon), and each role can take on

many possible values (nouns). We propose a model based

on Graph Neural Networks that allows us to efficiently

capture joint dependencies between roles using neural net-

works defined on a graph. Experiments with different graph

connectivities show that our approach that propagates in-

formation between roles significantly outperforms existing

work, as well as multiple baselines. We obtain roughly 3-

5% improvement over previous work in predicting the full

situation. We also provide a thorough qualitative analysis

of our model and influence of different roles in the verbs.

1. Introduction

Object [14, 33, 36], action [35, 40], and scene classifi-

cation [50, 51] have come a long way, with performance

in some of these tasks almost reaching human agreement.

However, in many real world applications such as robotics

we need a much more detailed understanding of the scene.

For example, knowing that an image depicts a repairing

action is not sufficient to understand what is really happen-

ing in the scene. We thus need additional information such

as the person repairing the house, and the tool that is used.

Several datasets have recently been collected for such

detailed understanding [22, 27, 47]. In [22], the Visual

Genome dataset was built containing detailed relationships

between objects. A subset of the scenes were further anno-

tated with scene graphs [17] to capture both unary (e.g. at-

tributes) and pairwise (e.g. relative spatial info) object re-

lationships. Recently, Yatskar et al. [47] extended this idea

to actions by labeling action frames where a frame consists

of a fixed set of roles that define the action. Fig. 1 shows a

frame for action repairing. The challenge then consists
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Figure 1. Understanding an image involves more than just predict-

ing the most salient action. We need to know who is performing

this action, what tools (s)he may be using, etc. Situation recog-

nition is a structured prediction task that aims to predict the verb

and its frame that consists of multiple role-noun pairs. The figure

shows a glimpse of our model that uses a graph to model depen-

dencies between the verb and its roles.

of assigning values (nouns) to these roles based on the im-

age content. The number of different role types, their possi-

ble values, as well as the number of actions are very large,

making it a very challenging prediction task. As shown in

Fig. 2, the same verb can appear in very different image

contexts, and nouns that fill the roles are vastly different.

In [47], the authors proposed a Conditional Random

Field (CRF) to model dependencies between verb-role-

noun pairs. In particular, a neural network was trained in

an end-to-end fashion to both, predict the unary potentials

for verbs and nouns, and to perform inference in the CRF.

While their model captured the dependency between the

verb and role-noun pairs, dependencies between the roles

were not modeled explicitly.

In this paper, we aim to jointly reason about verbs and

their roles using a Graph Neural Network (GNN), a gener-

alization of graphical models to neural networks. A GNN

defines observation and output at each node in the graph,
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Figure 2. Images corresponding to the same verb can be quite dif-

ferent in their content involving verb roles. This makes situation

recognition difficult.

and propagates messages along the edges in a recurrent

manner. In particular, we exploit the GNNs to also model

dependencies between roles and predict a consistent struc-

tured output. We explore different connectivity structures

among the role nodes, and show that our approach signifi-

cantly improves performance over existing work. In addi-

tion, we compare with strong baseline methods using Re-

current Neural Networks (RNNs) that have been shown to

work well on joint prediction tasks, such as semantic [49]

and object instance [3] segmentation, as well as on group

activity recognition [8]. We also visualize the learned mod-

els to further investigate dependencies between roles.

2. Related Work

Situation recognition generalizes action recognition to

include actors, objects, and location in the activity. There

has been work to combine activity recognition with scene

or object labels [7, 12, 44, 45]. In [13, 31], visual semantic

role labeling tasks were proposed where datasets are built to

study action along with localization of people and objects.

In another line of work, Yatskar et al. [47] created the imSitu

dataset that uses linguistic resources from FrameNet [10]

and WordNet [29] to associate images not only with verbs,

but also with specific role-noun pairs that describe the verb

with more details. As a baseline approach, in [47], a Con-

ditional Random Field (CRF) jointly models prediction of

the verb and verb-role-noun triplets. Further, considering

that the large output space and sparse training data could be

problematic, a tensor composition function was used [46]

to share nouns across different roles. The authors also pro-

posed to augment the training data by searching images us-

ing query phrases built from the structured situation.

Different from these methods, our work focuses on ex-

plicitly modeling dependencies between roles for each verb

through the use of different neural architectures.

Understanding Images. There is a surge of interest in

joint vision and language tasks in recent years. Visual Ques-

tion Answering in images and videos [1, 38] aims to answer

questions related to image or video content. In image cap-

tioning [19, 39, 42, 26], a natural language sentence is gen-

erated to describe the image. Approaches for these tasks

often use the CNN-RNN pipelines to provide a caption, or

a correct answer to a specific question. Dependencies be-

tween verbs and nouns are typically being implicitly learned

with the RNN. An alternative is to list all important objects

with their attributes and relationships. Johnson et al. [17]

created scene graphs, which are being used for visual re-

lationship detection [27, 30, 48] tasks. In [25], the authors

exploit scene graphs to generate image captions.

In Natural Language Processing (NLP), semantic role

labeling [11, 18, 20, 32, 43, 52] involves annotating a

sentence with thematic or semantic roles. Building upon

resources from NLP, and leveraging collections such as

FrameNet [10] and WordNet [29], visual semantic role la-

beling, or situation recognition, aims to interpret details for

one particular action with verb-role-noun pairs.

Graph Neural Networks. There are a few different ways

for applying neural networks to graph-structured data. We

divide them into two categories. The first group defines con-

volutions on graphs. Approaches like [2, 6, 21] utilized the

graph Laplacian and applied CNNs to spectral domain. Dif-

ferently, Duvenaud et al. [9] designed a special hash func-

tion such that a CNN can be used on the original graphs.

The second group applies feed-forward neural networks

to every node of the graph recurrently. Information is prop-

agated through the network by dynamically updating the

hidden state of each node based on their history and incom-

ing messages from their neighborhood. The Graph Neural

Network (GNN) proposed by [34] utilized multi-layer per-

ceptrons (MLP) to update the hidden state. However, their

learning algorithm is restrictive due to the contraction map

assumption. In the following work, the Gated Graph Neural

Network (GGNN) [23] used a recurrent gating function [4]

to perform the update, and effectively learned model param-

eters using back-propagation through time (BPTT).

Other work [24, 37] designed special update functions

based on the LSTM [16] cell and applied the model to tree-

structured or general graph data. In [28], knowledge graphs

and GGNNs are used for image classification. Here we use

GGNNs for situation recognition.

3. Graph-based Neural Models for Situation

Recognition

Task Definition. Situation recognition as per the imSitu

dataset [47] assumes a discrete set of verbs V , nouns N ,

roles R, and frames F . The verb and its corresponding

frame that contains roles are obtained from FrameNet [10],

while nouns come from WordNet [29]. Each verb v ∈ V is

associated with a frame f ∈ F that contains a set of seman-

tic roles Ef . Each role e ∈ Ef is paired with a noun value
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Figure 3. The architecture of fully-connected roles GGNN. The

undirected edges between all roles of a verb-frame allows to fully

capture the dependencies between them.

ne ∈ N ∪{∅}. Here, ∅ indicates that the noun is unknown

or not applicable. A set of semantic roles and their nouns is

called a realized frame, denoted as Rf = {(e, ne) : e ∈ Ef},

where each role is with a noun.

Given an image, the task is to predict the structured

situation S = (v,Rf ), specified by a verb v ∈ V and

its corresponding realized frame Rf . For example, as

shown on the right of Fig. 2, the verb riding is as-

sociated with three role-noun pairs, i.e., {agent:dog,

vehicle:surfboard, place:sidewalk}.

3.1. Graph Neural Network

The verb and semantic roles of a situation depend on

each other. For example, in the verb carrying, the roles

agent and agent-part are tightly linked with the item

being carried. Small items can be carried by hand, while

heavy items may be carried on the back. We propose mod-

eling these dependencies through a graph G = (A,B). The

nodes in our graph a ∈ A are of two types of verb or role,

and take unique values of V or N , respectively. Since each

image in the dataset is associated with one unique verb,

every graph has a single verb node. Edges in the graph

b = (a′, a) encode dependencies between role-role or verb-

role pairs, and can be directed or undirected. Fig. 1 shows

an example of such a graph where verb and role nodes are

connected to each other.

Background. Modeling structure and learning represen-

tation on graphs have prior work. Gated Graph Neural Net-

works (GGNNs) [23] is one approach that learns the rep-

resentation of a graph, which is then used to predict node-

or graph-level output. Each node of a GGNN is associated

with a hidden state vector that is updated in a recurrent fash-

ion. At each time step, the hidden state of a node is updated

based on its history and incoming messages from its neigh-

bors. These updates are applied simultaneously to all nodes

in the graph at each propagation step. The hidden states af-

ter T propagation steps are used to predict the output. In

contrast, a standard unrolled RNN only moves information

in one direction and updates one “node” per time step.

GGNN for Situation Recognition. We adopt the GGNN

framework to recognize situations in images. Each image i

is associated with one verb v that corresponds to a frame f

with a set of roles Ef . We instantiate a graph Gf for each

image that consists of one verb node, and |Ef | (number of

roles associated with the frame) role nodes. To capture the

dependency between roles to the full extent, we propose cre-

ating undirected edges between all pairs of roles. Fig. 3

shows two example graph structures of this type. We ex-

plore other edge configurations in the evaluation.

To initialize the hidden states for each node, we use fea-

tures derived from the image. In particular, for every image

i, we compute representations φv(i) and φn(i) using the

penultimate fully-connected layer of two convolutional neu-

ral network (CNN) pre-trained to predict verbs and nouns,

respectively. We initialize the hidden states h ∈ R
D of the

verb node av and role node ae as

h0
av

= g(Wivφv(i)) (1)

h0
ae

= g(Winφn(i)⊙Wee⊙Wv v̂) , (2)

where v̂ ∈ {0, 1}|V| corresponds to a one-hot encoding of

the predicted verb and e ∈ {0, 1}|R| is a one-hot encoding

of the role that the node ae corresponds to. Wv ∈ R
D×|V|

is the verb embedding matrix, and We ∈ R
D×|R| is the

role embedding matrix. Wiv and Win are parameters that

transform image features to the space of hidden repre-

sentations. ⊙ corresponds to element-wise multiplication,

and g(·) is a non-linear function such as tanh(·) or ReLU

(g(x) = max(0, x)). We normalize the initialized hidden

states to unit-norm prior to propagation.

For any node a, at each time step, the aggregation of

incoming messages at time t is determined by the hidden

states of its neighbors a′:

xt
a =

∑

(a′,a)∈B

Wph
t−1
a′ + bp . (3)

Note that we use a shared linear layer of weights Wp and

biases bp to compute incoming messages across all nodes.

After aggregating the messages, the hidden state of the

node is updated through a gating mechanism similar to the

Gated Recurrent Unit [4, 23] as follows:

zta = σ(Wzx
t
a + Uzh

t−1
a + bz) ,

rta = σ(Wrx
t
a + Urh

t−1
a + br) ,

h̃t
a = tanh(Whx

(t)
a + Uh(r

t
a ⊙ ht−1

a ) + bh) ,

ht
a = (1− zta)⊙ ht−1

a + zta ⊙ h̃t
a . (4)

This allows each node to softly combine the influence of the

aggregated incoming message and its own memory. Wz ,

Uz , bz , Wr, Ur, br, Wh, Uh, and bh are the weights and

biases of the update function.

Output and Learning. We run T propagation steps. Af-

ter propagation, we extract node-level outputs from GGNN
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Figure 4. The architecture of chain RNN for verb riding. The

time-steps at which different roles are predicted needs to be de-

cided manually, and has an influence on the performance.

to predict the verb and nouns. Specifically, for each image,

we predict the verb and a set of nouns for each role associ-

ated with the verb frame using a softmax layer:

pv = σ(Whvhav
+ bhv) (5)

pe:n = σ(Whnhae
+ bhn) . (6)

Note that the softmax function σ is applied across the class

space for verbs V and nouns N . pe:n can be treated as the

probability of assigning noun n to role e.

Each image i in the imSitu dataset comes with three sets

of annotations (from three annotators) for the nouns. During

training, we accumulate the cross-entropy loss at verb and

noun nodes for every annotation as

L =
∑

i

3
∑

j=1

(

yv log(pv) +
1

|Ef |

∑

e

ye:n log(pe:n)
)

, (7)

where yv and ye:n correspond to the ground-truth verb for

image i and the ground-truth noun for role e of the image,

respectively. Different to the Soft-OR loss in [47], we en-

courage the model to predict all three annotations for each

image. We use back-propagation through time (BPTT) [41]

to train the model.

Inference. At test time, our approach first predicts the

verb v̂ = arg maxv pv to choose a corresponding frame

f and obtain the set of associated roles Ef . We then prop-

agate information among role nodes and choose the highest

scoring noun n̂e = arg maxn pe:n for each role. Thus our

predicted situation is

Ŝ = (v̂, {(e, n̂e) : e ∈ Ef}) . (8)

To reduce reliance on the quality of verb prediction, we ex-

plore beam search over verbs as discussed in Experiments.

3.2. Simpler Graph Architectures

An alternative to model dependencies between nodes is

to use recurrent neural networks (RNN). Here, situation

recognition can be considered as a sequential prediction

problem of choosing the verb and corresponding noun-role

pairs. The hidden state of the RNN carries information

across the verb and noun-role pairs, and the input at each

time-step dictates what the RNN should predict.

FASTENING EDUCATING

AGENT PLACE

DESTINATIONITEMTOOL CONNECTOR

TEACHER

STUDENT SUBJECT

PLACE

Figure 5. The architecture of tree-structured RNN. Like the Chain

RNN, verb prediction is at the root of the tree, and semantic roles

agent-like and place are parents of all other roles.

Chain RNN. An unrolled RNN can be seen as a special

case of a GGNN, where nodes form a chain with directed

edges between them. However, there are a few notable dif-

ferences, wherein the nodes receive information only once

from their (left) neighbor. In addition, the nodes do not per-

form T steps of propagation among each other and predict

output immediately after the information arrives.

In the standard chain structure of a RNN, we need to

manually specify the order of the verb and roles. As the

choice of the verb dictates the set of roles in the frame, we

predict the verb at the first time step. We observe that the

imSitu dataset and any verb-frame in general, commonly

consist of place and agent-like roles (e.g. semantic role

teacher can be considered as the agent for the verb

teaching). We thus predict place and agent roles

as the second and third roles in the chain 1. We make all

other roles for the frame to follow subsequently in descend-

ing order of the number of times they occur across all verb-

frames. Fig. 4 shows an example of such a model.

For a fair comparison to the fully connected roles

GGNN, we employ the GRU update in our RNN. The in-

put to the hidden states matches node initialization (Eqs. 1

and 2). We follow the same scheme for predicting the out-

put (linear layer with softmax), and train the model with the

same cross-entropy loss.

Tree-structured RNN. As mentioned above, the place

and agent semantic roles occur more frequently. We pro-

pose a structure where they have a larger chance to influ-

ence prediction of other roles. In particular, we create a

tree-structured RNN [37] where the hidden states first pre-

dict the verb, followed by agent and place, and all other

roles. Fig. 5 shows examples of resulting structures.
The tree-structured RNN can be deemed as a special case

of GGNN, where nodes have the following directed edges:

B = {(av, a
′) : a′ ∈ Z} ∪ {(a′

, a) : a′ ∈ Z, a ∈ Ef\Z} , (9)

where Z = {agent,place}, and Ef\Z represents all

roles in that frame other than agent and place. Similar

to the chain RNN, we use GRU update and follow the same

learning and inference procedures.

1Predicting place requires a more global view of the image compared

to agent. Changing the order to verb → agent → place → . . .

results in 1.9% drop of performance.
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Method
top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

1 Unaries 36.32 23.74 13.86 61.51 38.57 20.76 58.32 27.57 35.08

2 Unaries, BS=10 36.39 23.74 14.01 61.65 38.64 20.96 58.32 27.57 35.16

3 FC Graph, T=1 36.25 25.99 17.02 61.60 42.91 26.44 64.87 35.52 38.83

4 FC Graph, T=2 36.43 26.08 17.22 61.52 42.86 26.38 65.31 35.86 38.96

5 FC Graph, T=4 36.46 26.26 17.48 61.42 43.06 26.74 65.73 36.43 39.19

6 FC Graph, T=4, BS=10 36.70 26.52 17.70 61.63 43.34 27.09 65.73 36.43 39.39

7 FC Graph, T=4, BS=10, vOH 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32

8 FC Graph, T=4, BS=10, vOH, g=ReLU 36.26 27.22 19.10 62.14 45.59 30.32 69.35 41.71 41.46

9 FC Graph, T=4, BS=10, vOH, Soft-OR 36.75 27.33 18.94 61.69 44.91 29.41 68.29 40.25 40.95

Table 1. Situation prediction results on the development set. We compare several variants of our fully-connected roles model to show the

improvements achieved at every step. T refers to the number of time-steps of propagation in the fully connected roles GGNN (FC Graph).

BS=10 indicates the use of beam-search with beam-width of 10. vOH (verb, one-hot) is included when the embedding of the predicted

verb is used to initialize the hidden state of the role nodes. g=ReLU refers to the non-linear function used after initialization. All other

rows use g=tanh(·). Finally, Soft-OR refers to the loss function used in [47]. Best performance is in bold and second-best is italicized.

4. Evaluation

We evaluate our methods on the imSitu dataset [47] and

use the standard splits with 75k, 25k, and 25k images for

the train, development, and test subsets, respectively. Each

image in imSitu is associated with one verb and three anno-

tations for the role-noun pairs.

We follow [46] and report three metrics: (i) verb: the

verb prediction performance; (ii) value: the semantic verb-

role-value tuple prediction performance that is considered

to be correct if it matches any of the three ground truth an-

notators; and (iii) value-all: the performance when the en-

tire situation is correct and all the semantic verb-role-value

pairs match at least one ground truth annotation.

4.1. Implementation Details

Image Representations. We adopt two pre-trained VGG-

16 CNNs [36] for extracting image features by removing the

last fully-connected and softmax layers, and fine-tuning all

weights. The first CNN (φv(i)) is trained to predict verbs,

and second CNN (φn(i)) predicts the top K most frequent

nouns (K = 2000 cover about 95% of nouns) in the dataset.

Unaries. Creating a graph with no edges, or equivalently

with T = 0 steps of propagation corresponds to using the

initialized features to perform prediction. We refer to this

approach as Unaries, which will be used as the simplest

baseline to showcase the benefit of modeling dependencies

between the roles.

Learning. We implement the proposed models in

Torch [5]. The network is trained using RMSProp [15] with

mini-batches of 256 samples. We choose the hidden state

dimension D = 1024, and train image (Wiv,Win), verb

(Wv) and role (We) embeddings. The image features are

extracted before training the GGNN or RNN models.

The initial learning rate is 10−3 and starts to decay after

10 epochs by a factor of 0.85. We use dropout with a prob-

ability of 0.5 on the output prediction layer (c.f . Eqs. 5 and

6) and clip the gradients to range (−1, 1).

Mapping agent Roles. The imSitu dataset [47] has sit-

uations for 504 verbs. Among them, we notice that 19

verbs do not have the semantic role agent but instead with

roles of similar meaning (e.g. verb educating has role

teacher). We map these alternative roles to agentwhen

determining their position in the RNN architecture. Such a

mapping is not used for the fully connected GGNN model.

Variable Number of Roles. A verb has a maximum of 6

roles associated with it. We implement our proposed model

with fixed-size graphs involving 7 nodes. To deal with verbs

with less than 6 roles, we zero the hidden states at each

time-step of propagation, making them not receive or send

any information.

4.2. Results

We first present a quantitative analysis comparing differ-

ent variants of our proposed model. We then evaluate the

performance of different architectures, and compare results

with state-of-the-art approaches.

Ablative Analysis A detailed study of the GGNN model

with fully connected roles (referred to as FC Graph) is

shown in Table 1. An important hyper-parameter for the

GGNN model is the number of propagation steps T . We

found that the performance increases by a small amount

when increasing T , and saturates soon (in rows 3, 4, and 5).

We believe that this is due to the use of a fully-connected

graph, and all nodes sharing most of the information at

the first-step propagation. Nevertheless, the propagation is

important, as revealed in the comparison between Unaries

(T = 0) from row 1 and T = 1 in row 3. We obtain a mean

improvement of 3.8% in all metrics.

During test we have the option of using beam search,

where we hold B best verb predictions and compute the
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top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

1 Unaries 36.39 23.74 14.01 61.65 38.64 20.96 58.32 27.57 35.16

2 Chain RNN 34.62 24.67 17.94 61.09 41.67 27.80 62.58 36.57 38.36

3 Tree-structured RNN 34.62 24.24 16.04 58.86 39.15 23.65 60.44 30.91 35.98

4 Chain GGNN, T=8 36.63 27.27 19.03 61.88 44.97 29.44 68.20 40.21 40.95

5 Tree-structured GGNN, T=6 36.78 27.48 19.54 61.75 45.12 30.11 68.54 41.01 41.29

6 Fully-connected GGNN, T=4 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32

Table 2. Situtation prediction results on the development set for models with different graph structures. All models use beam search,

predicted verb embedding, and g = tanh(·). Best performance is highlighted in bold, and second-best in each table section is italicized.

top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

d
ev

CNN+CRF [47] 32.25 24.56 14.28 58.64 42.68 22.75 65.90 29.50 36.32

Tensor Composition [46] 32.91 25.39 14.87 59.92 44.50 24.04 69.39 33.17 38.02

Tensor Composition + DataAug [46] 34.20 26.56 15.61 62.21 46.72 25.66 70.80 34.82 39.57

Chain RNN 34.62 24.67 17.94 61.09 41.67 27.80 62.58 36.57 38.36

Fully-connected Graph 36.93 27.52 19.15 61.80 45.23 29.98 68.89 41.07 41.32

te
st

CNN+CRF [47] 32.34 24.64 14.19 58.88 42.76 22.55 65.66 28.96 36.25

Tensor Composition [46] 32.96 25.32 14.57 60.12 44.64 24.00 69.20 32.97 37.97

Tensor Composition + DataAug [46] 34.12 26.45 15.51 62.59 46.88 25.46 70.44 34.38 39.48

Chain RNN 34.63 24.65 17.89 61.06 41.73 28.15 62.94 37.32 38.54

Fully-connected Graph 36.72 27.52 19.25 61.90 45.39 29.96 69.16 41.36 41.40

Table 3. We compare situation prediction results on the development and test sets against state-of-the-art models. Each model was run on

the test set only once. Our model shows significant improvement in the top-1 prediction on all metrics, and performs better than a baseline

that uses data augmentation. The performance improvement on the value-all metric is important for applications, such as captioning and

QA. Best performance is highlighted in bold, and second-best is italicized.

role-noun predictions for each of the corresponding graphs

(frames). Finally, we select the top prediction using the

highest log-probability across all B options. We use a beam

width of B = 10 in our experiments, which yields small im-

provement. Rows 1 and 2 of Table 1 show the improvement

using beam search on a graph without propagation. Rows 5

and 6 show the benefit after multiple steps of propagation.

Rows 6 and 7 of Table 1 demonstrate the impact of us-

ing embeddings of the predicted verb (vOH) to initialize

the role nodes’ hidden states in Eq. (2). Notable improve-

ment is obtained when using the ground-truth verb (3-4%).

The value-all for the top-1 predicted verb increases from

17.70% to 19.15%. We also tested different non-linear func-

tions for initialization, i.e., tanh (row 7) or ReLU (row 8),

however, the impact is almost negligible. We thus use tanh
for all experiments.

Finally, comparing rows 7 and 9 of Table 1 reveals that

our loss function to predict all annotations in Eq. (7) per-

forms slightly better than the Soft-OR loss that aims to fit at

least one of the annotations [47].

Baseline RNNs. Table 2 summarizes the results with dif-

ferent structures on the dev set. As expected, Unaries per-

form consistently worse than models with information prop-

SPRINKLING

AGENT PLACE ITEM SOURCE DEST.

Unaries PERSON KITCHEN MEAT HAND HAND

RNN PERSON KITCHEN FOOD FINGER PIZZA

FC Graph PERSON KITCHEN CHEESE HAND PIZZA

FISHING

AGENT PLACE SOURCE TOOL

Unaries MAN RIVER - FISHING

RNN MAN OUTDOORS BODY FISHING

FC Graph MAN RIVER RIVER FISHING

Figure 6. Example images with their predictions listed from all

methods. Roles are marked with a blue background, and predicted

nouns are in green boxes when correct, and red when wrong. Us-

ing the FC Graph corrects mistakes made by the Unaries or Chain

RNN prediction models.

agation between nodes on the value and value-all metrics.

The Tree-structured RNN provides a 2% boost in value-all

for top-1 predicted verb, while the Chain RNN provides a

3.9% improvement. Owing to the better connectivity be-

tween the roles in a Chain RNN (especially place and

agent), we observe better performance compared to the
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Tree-structured RNN. Note that as the RNNs are trained

jointly to predict both verbs and nouns, and as the noun

gradients dominate, the verb prediction takes a hit.

Different Graph Structures. We can also use chain or

tree-structured graphs in GGNN. Along with the FC graph

in row 6 of Table 2, rows 4 and 5 present the results for

different GGNN structures. They show that connecting

roles with each other is critical and sharing information

helps. Interestingly, the Chain GGNN needs more propa-

gation steps (T=8), as it takes time for the left-most and

right-most nodes to share information. Smaller values of

T are possible when nodes are well-connected as in Tree-

structured (T=6) or FC Graph (T=4). Fig. 6 presents pre-

diction from all models for two images. The FC Graph is

able to reason about associating cheese and pizza rather

than sprinkling meat or food on it.

Comparison with State-of-the-art. We compare the per-

formance of our models against state-of-the-art on both the

dev and test sets in Table 3. Our CNN predicts the verb

well. Beam search leads to even better performance (2-4%

higher) in verb prediction. We note that Tensor Composition

+ DataAug actually uses more data to train models. Nev-

ertheless, we achieve the best performance on all metrics

when using the top-1 predicted verb.

Another advantage of our model is in improvement for

the value-all metric. It yields +8% when using the ground-

truth verb, +6% with top-5 predicted verbs, and +4.5% with

top-1 predicted verb, compared with the baseline without

data augmentation. Interestingly, even with data augmen-

tation, we outperform [46] by 3-4% in value-all for top-1

predicted verb. This property attributes to information shar-

ing between role nodes, which helps in correcting errors and

better predicts frames. Note that value-all is an important

metric to measure a full understanding of the image. Mod-

els with higher value-all will likely lead to better captioning

or question-answering results.

4.3. Further Discussion

We delve deeper into our model and discuss why the FC

Graph outperforms baselines.

Learned Structure. A key emphasis of this model is

on information propagation between roles. In Fig. 7, we

present the norms of the propagation matrices. Each el-

ement in the matrix P (a′, a) is the norm of the incom-

ing message from role a′ to a averaged across all images

(in dev set) at the first time-step, i.e., ‖xt=1
(a′,a)‖ regarding

Eq. (3). In this example, tool is important for the verb

fastening and influences all other roles, while agent

and obstacle influence roles in jumping.

Wrong Verb Predictions. We present a few examples of

top scoring results where the verb prediction is wrong in
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le
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tion

JUMPING

Figure 7. We present the “amount” of information that is propa-

gated between roles for two verbs along with sample images. Blue

corresponds to high, and green to zero. Each element of the ma-

trix corresponds to the norm of the incoming message from differ-

ent roles (normalized column sum to 1). Left: verb fastening

needs to pay attention to the tool used. Right: important com-

ponents to describe jumping are the agent and obstacles

along the path.

GT: FISHING

AGENT PLACE TOOL SOURCE

MAN BOAT FISHING LAKE

PRED: CATCHING

AGENT PLACE TOOL CAUGHTITEM

MAN BOAT BODY FISHING

GT: SLOUCHING

AGENT PLACE CONTACT

WOMAN OFFICE CHAIR

PRED: SITTING

AGENT PLACE CONTACT

WOMAN OFFICE CHAIR

GT: SHELVING

AGENT PLACE ITEM DESTINATION

WOMAN LIBRARY BOOK BOOKSHELF

PRED: BROWSING

AGENT PLACE GOALITEM

WOMAN LIBRARY BOOK

Figure 8. Images with ground-truth and top-1 predictions from

the development set. Roles are marked with blue background.

Ground-truth (GT) nouns are in yellow and predicted (PRED)

nouns with green when correct, or red when wrong. Although the

predicted verb is different from the ground-truth, it is very plausi-

ble. Some of the verbs refer to the same frame (e.g. sitting and

slouching), and contain the same set of roles, which our model

is able to correctly infer.

Fig. 8. Note that in fact these predicted verbs are plausi-

ble options for the given images. The metric value treats

them as wrong, and yet we can correctly predict the role-

noun pairs. One example is the middle one of slouching

vs. sitting. Fig. 8 (bottom) shows that choosing a dif-

ferent verb might lead to the selection of different roles

(goalitem vs. item, destination). Nevertheless,

predicting book for browsing is a good choice.
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DYEING

AGENT PERSON

PLACE OUTDOORS

MATERIAL FABRIC

DYE RED

LEAKING

SUBSTANCE WATER

PLACE OUTSIDE

SOURCE PIPE

DESTINATION LAND

DRUMMING

AGENT MAN

PLACE ROOM

TOOL DRUMSTICK

ITEM DRUM

DOUSING

AGENT MAN

PLACE OUTDOORS

LIQUID WATER

UNDERGOER MAN

MILKING

AGENT FARMER

PLACE OUTDOORS

TOOL COW

SOURCE COW

DESTINATION BUCKET

CLINGING

AGENT MONKEY

PLACE OUTDOORS

CLUNGTO MONKEY

CAMPING

AGENT PEOPLE

PLACE FOREST

SHELTER TENT

OVERFLOWING

AGENT RUBBISH

PLACE OUTDOORS

SOURCE ASHCAN

PAWING

AGENT CAT

PLACE OUTDOORS

AGENTPART PAW

PAWEDITEM FENCE

PICKING

AGENT WOMAN

PLACE OUTDOORS

CROP APPLE

SOURCE TREE

HUGGING

AGENT MAN

PLACE OUTDOORS

HUGGED MAN

AGENTPART ARM

TAXIING

AGENT AIRPLANE

PLACE AIRPORT

GROUND RUNWAY

Figure 9. Images with top-1 predictions from the development set. For all samples, the predicted verb is correct, shown below the image

in bold. Roles are marked with a blue background, and predicted nouns are in green when correct, and red when wrong. Top row: We are

able to correctly predict the situation (verb and all role-noun pairs) for all samples. Bottom row: The first three samples contain errors in

prediction (e.g. the agent for the verb pawing is clearly a dog). However, the latter three samples are in fact correct predictions that are

not found in the ground-truth annotations (e.g. people are in fact camping in the forest).

Predictions with Correct Verb. Fig. 9 shows several ex-

amples of prediction obtained by FC Graph, where the pre-

dicted verb matches the ground-truth one. The top row

corresponds to samples where the metric value-all scores

correctly as all role-noun pairs are correct. Note that the

roles are closely related (e.g. (agent, clungto) and

(material, dye)) and help each other choose the cor-

rect nouns. In the bottom row, we show some failure

cases in predicting role-noun pairs. First, the model fa-

vors predicting place as outdoor (a majority of place is

outdoor in the training set). Second, for the sample with

verb picking, we predict the crop as apple, which

appears 79 times in the dataset compared with cotton

that appears 14 times. Providing more training samples

(e.g. [46]) could help remedy such issues.

In the latter three samples of the bottom row, although

the model makes reasonable predictions, they do not match

the ground-truth. For example, the ground-truth annotation

for the verb taxiing is agent:jet and for the verb

camping is agent:persons. Therefore, even though

each image comes with three annotations, synonymous

nouns and verbs make the task still challenging.

5. Conclusion

We presented an approach for recognizing situations in

images that involves predicting the correct verb along with

its corresponding frame consisting of role-noun pairs. Our

Graph Neural Network (GNN) approach explicitly mod-

els dependencies between verb and roles, allowing nouns

to inform each other. On a benchmark dataset imSitu, we

achieved ∼4.5% accuracy improvement on a metric that

evaluates correctness of the entire frame (value-all). We

presented analysis of our model, demonstrating the need to

capture the dependencies between roles, and compared it

with RNN models and other related solutions.
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