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Abstract

The interactive image segmentation model allows users

to iteratively add new inputs for refinement until a satis-

factory result is finally obtained. Therefore, an ideal in-

teractive segmentation model should learn to capture the

user’s intention with minimal interaction. However, exist-

ing models fail to fully utilize the valuable user input in-

formation in the segmentation refinement process and thus

offer an unsatisfactory user experience. In order to fully

exploit the user-provided information, we propose a new

deep framework, called Regional Interactive Segmentation

Network (RIS-Net), to expand the field-of-view of the given

inputs to capture the local regional information surround-

ing them for local refinement. Additionally, RIS-Net adopts

multiscale global contextual information to augment each

local region for improving feature representation. We also

introduce click discount factors to develop a novel optimiza-

tion strategy for more effective end-to-end training. Com-

prehensive evaluations on four challenging datasets well

demonstrate the superiority of the proposed RIS-Net over

other state-of-the-art approaches.

1. Introduction

Interactive image segmentation is a popular research do-

main with many important applications, such as medical im-

age analysis (e.g. interactive segmentation of brain tumor

for treatment planning [2]), photo editing and image/video

composition. Unlike semantic segmentation that partitions

an image into multiple regions of pre-defined semantic cat-

egories, interactive image segmentation aims at extracting

the object of interest based on user inputs.

The primary goal of interactive segmentation is to im-

prove overall user experience by extracting the object of

interest accurately with minimal user effort. The typical

interactive image segmentation working flow is as follows:

the user first provides positive and negative inputs to indi-

cate the interested foreground and background; then the al-

gorithm produces an initial output based on the input; and
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Figure 1: Demonstration of our motivation. Existing inter-

active segmentation algorithms do not fully utilize the user-

given information during the refinement process, thus re-

quiring substantial additional interactions from the user in

order to obtain an accurate segmentation result (top row).

In contrast, our proposed RIS-Net fully exploits the user-

provided information by including the local regional con-

text surrounding the clicks, leading to much faster refine-

ment progress (bottom row). Best viewed in color.

more user inputs are added for refinement until the segmen-

tation result is satisfactory.

To achieve this, many algorithms have been proposed

in the literature, such as graph cut [4, 22, 16], random

walker [11], geodesic segmentation [1, 6], the combina-

tion of graph cut and geodesics [21], growcut [26], etc.

However, all these conventional algorithms typically rely

on low-level cues, such as colors, texture or other hand-

crafted features to predict foreground/background segmen-

tation, leading to low accuracy in cases of similar fore-

ground and background appearances, weak edges and clut-

tered background.

Recently, Xu et al. [29] proposed to use a deep fully

convolutional network (FCN) [18] to solve the interactive

segmentation problem, which we denote as iFCN to dif-

ferentiate it from the FCN used in semantic segmenta-
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tion [18, 5, 30, 27, 28]. Given positive and negative clicks

that specify the foreground and background respectively,

[29] transformed the user-provided clicks into Euclidean

distance maps and concatenated them with the input im-

age to train an end-to-end iFCN. Compared to traditional

methods, the iFCN model has a higher level understanding

of objectness and semantics, therefore leading to better seg-

mentation quality.

Despite the outstanding performance of [29] over the

conventional models, the iFCN often struggles to refine its

prediction given additional inputs, thus requiring excessive

user effort to produce desirable outputs (Figure 1). In con-

trast, an ideal interactive segmentation model should be ca-

pable of capturing the user’s intention with minimal user

interaction. In this regard, the user-provided inputs play an

important role in guiding the segmentation process towards

the desired output. However, existing models fail to fully

utilize the valuable user input information in the refinement

process and offer an unsatisfactory user experience.

To address this issue, we devise a new deep neural net-

work model, called Regional Interactive Segmentation Net-

work (RIS-Net), to fully utilize the user-provided informa-

tion. By expanding the field-of-view of each click pair to

a larger local region covering the object boundaries, RIS-

Net exploits the regional context within these regions to re-

fine the whole-image segmentation output. The proposed

model can learn global contextual information to facili-

tate segmentation over each local region. We also intro-

duce the click discount factor to develop an effective train-

ing strategy that enforces the model to decrease the loss

more rapidly in the early stage yet enables end-to-end train-

ing of both whole-image-segmentation and local-region-

refinement tasks. The key contributions of our work are

summarized as follows:

• We propose a new architecture that exploits the local

regional context around the user-provided inputs while

performing segmentation, thus offering a stronger abil-

ity to refine local segmentations.

• We propose to use multiscale global contextual infor-

mation to augment each local region and demonstrate

experimentally that this strategy significantly improves

the performance.

• We develop an effective end-to-end training pipeline

based on the click discount factor.

• We achieve state-of-the-art results on Grabcut, Berke-

ley, Pascal VOC and MSCOCO datasets. On average,

our proposed RIS-Net reduces the number of clicks re-

quired by the iFCN and the best performing conven-

tional method on each dataset by 1.83 and 5.75 clicks

respectively, which significantly reduces the amount of

user interaction required for accurate segmentation.

2. Related Work

Early interactive image segmentation methods, such as

the parametric active contour model [14] and intelligent

scissors [20] mainly consider boundary properties when

performing segmentation, thus performing poorly at weak

edges. More recent interactive image segmentation algo-

rithms are formulated based on graphical models. For in-

stance, Boykov and Jolly [4] formulated interactive seg-

mentation as a graph cut optimization problem and solved

it using the min-cut/max-flow algorithm [3]. Bai and

Sapiro [1] classified each pixel into foreground and back-

ground based on weighted geodesic distances. Grady [11]

estimated the probability that a random walker at each unla-

beled pixel will first reach one of the labeled pixels by for-

mulating it as a combinatorial Dirichlet problem. To further

improve the performance, shape priors such as [9, 25, 7, 12]

have been considered in the literature. However, all these

conventional methods typically rely on low-level cues, such

as colors, texture or other hand-crafted features to pre-

dict foreground/background segmentation. Therefore, these

models often give unsatisfactory results in cases of sig-

nificantly overlapping foreground and background appear-

ances, complex background or varying lighting conditions.

Recently, Xu et al. [29] proposed a deep-learning based

algorithm to address the aforementioned problems by learn-

ing a deep representation. Despite its excellent perfor-

mance over the conventional solutions, the approach typi-

cally struggles to correct its prediction by producing sim-

ilar outputs regardless of additional clicks added. In con-

trast, our model attempts to fully utilize the user-provided

information by attending to the local regions surrounding

the clicks to refine the segmentation output, reducing the

user efforts required to segment an object.

3. Proposed Method

Our proposed RIS-Net consists of the following two

complementary branches: 1) a global branch producing

coarse segmentation on the full image, and 2) a local

branch performing refinement at the fine-grained local re-

gions around the user clicks. After the global branch that

outputs a coarse prediction over the whole image, the local

branch processes each ROI generated based on user inputs

and produces refined local segmentation. However, the re-

stricted view of each ROI may pose a challenge to the re-

finement task. To address this problem, the proposed RIS-

Net reuses global contextual information from the global

branch to augment each ROI for better local segmentation.

Finally, we fuse both the global and local predictions and

combine the fused output with graph cut optimization [4] to

produce the final segmentation result. The overall architec-

ture is illustrated in Figure 2.
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Figure 2: Overall architecture of Regional Interactive Segmentation Network (RIS-Net). It can be decomposed into two

parts: a global branch for whole-image segmentation and a local branch for local regional refinement. In the global branch,

we feedforward the input (image concatenated with the transformed clicks) to an FCN to obtain a coarse global prediction.

In the local branch, we generate ROI proposals based on each click pair and extract a local descriptor for each ROI using

the ROI pooling layer. Multiscale global context is appended to each local descriptor before entering convolution layers to

produce local predictions. Finally, both global and local predictions are fused and combined with graph cut optimization (not

shown here) to output the final segmentation result.

3.1. Global Image Segmentation

We first transform the positive and negative clicks into

two Euclidean distance maps and concatenate them with the

input image, forming a (image, user interaction) pair that

serves as a 5-channel input. Formally, the positive click

set S1 and the negative click set S0 are transformed into

two distance maps, U1 and U
0 using a Euclidean distance

transformation:

uk(p) = min
∀q∈Sk

dist(p, q), ∀k ∈ {0, 1}, (1)

where uk(p) refers to the value of Uk at pixel location p,

while dist(p, q) refers to the Euclidean distance between

pixel locations p and q.

As for the FCN in the global branch, we employ the

state-of-the-art DeepLab-LargeFOV architecture [5], which

we refer to as DeepLab in the rest of this paper. DeepLab

is a fully convolutional variant of the VGG-16 network [24]

with filter dilation and reduced dimensionality at the fully

connected layers (to be precise, these layers are convolution

layers instead). We denote the conv8 layer as conv8global
to differentiate it from the conv8local used in the local re-

gion refinement branch. Note that our proposed interactive

segmentation model is a universal one and any other FCN

architecture may be employed.

3.2. Local Regional Refinement

In the local branch, our RIS-Net first generates NROI

regions of interest based on the user clicks. For each ROI,

besides local representation, we also append global contex-

tual information to each ROI before passing it to convolu-

tion layers for segmentation.

3.2.1 Sampling of ROI Proposals

Following the sampling strategy suggested in [29], we first

randomly sample npos ∈ [1, Npos] positive and nneg ∈
[0, Nneg] negative clicks for each image to simulate user in-

teractions for training. To generate ROI proposals, we find

the nearest negative click for each positive click and con-

struct a bounding box whose size is equal to the distance

between the clicks pair. Since the ROI pooling layer takes

an input of arbitrary size and produces a fixed-size output

(e.g. 41×41), a rectangular ROI may result in unwanted de-

formed content which may harm the performance. To avoid

this, we explicitly constrain the ROI to be square by resizing

the shorter side to be the same as the longer side.

Since the number of ROIs is essentially limited by the

number of positive clicks available in each image, there is

often not enough ROIs for training. To address this, we pro-

pose a sliding-based sampling scheme to sample additional

ROIs given the previously sampled ROIs. For instance, as

shown in Figure 3 (a), we first sample 3 ROIs based on the

nearest clicks pairs (indicated by the green boxes). Then,

we sample extra ROIs between the neighboring ROIs (in-

dicated by the orange boxes) such that the total number of

ROIs can be increased to NROI (we use NROI = 5 in this

work). A general rule is to sample additional ROIs along
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Figure 3: (a) Sliding-based sampling scheme. A bound-

ing box “b1” slides along the object boundaries towards its

neighboring ROI “b2” to generate additional ROI “b3” for

training. (b) Sampling based on all combinations of click

pairs often yields large ROIs that share a similar receptive

field as the whole image.

the shorter path between the neighboring ROIs such that

the newly sampled ROIs do not deviate too much from the

sampled clicks.

There are essentially two benefits of using the sliding-

based sampling scheme here. Firstly, this solves the prob-

lem of insufficient ROIs for training. Secondly, as com-

pared to the ROIs sampled using all the combinations

of click pairs (Figure 3 (b)), the sampled ROIs using

the sliding-based approach typically cover the local fine-

grained details much better.

We use all NROI ROIs for training the local branch. In

the case where there is only one positive click (implying

only one ROI is available), we simply set all ROIs for this

image to be the same. During testing, in the early stages

where there is no negative click, we pass the whole image

as the only ROI to our network. In the latter stages, when

there are more than NROI positive clicks, we either process

all the ROIs or randomly sample the maximum allowable

number of ROIs depending on the available GPU memory.

3.2.2 Global Context-Aware Regional Segmentation

Global Contextualization: Since we restrict the receptive

field of each region proposal to a narrow and incomplete

region, this could be challenging for local refinement with-

out knowing what the object of interest is. To address this

problem, we propose to add global contextual information

to each local representation to enrich the feature representa-

tions before passing them to convolution layers for segmen-

tation.

Since an object may occur at different scales in images,

the ideal global context should be capable of summarizing

the image content at multiple scales to handle scale variabil-

ity in segmentation. Inspired by [30], we use the pyramid

pooling to extract hierarchical global cues from the conv7

feature map in the global branch. In particular, we use a

four-level pyramid pooling with feature map size of 1×1,

2×2, 3×3 and 6×6 respectively. At each level, an average

pooling kernel is applied to extract a smaller feature map

with the corresponding bin size, followed by a 1×1 convo-

lution layer (for dimension reduction), an upsampling layer

and a concatenation layer to produce the global contextual

prior for each local ROI.

Local Regional Segmentation: The RIS-Net first uses

an ROI pooling layer to extract a local regional representa-

tion of each ROI from the conv7 feature map in the global

branch. Then, each local ROI is concatenated with the mul-

tiscale global context before being passed to other two con-

volution layers (conv7local and conv8local) to generate a lo-

cal segmentation. Similarly, the ROI pooling layer is used

to extract the corresponding cropped ground truth for train-

ing, resulting in multiple local losses per image.

3.3. Deep Supervision for Training RISNet

Shared Computation: Our proposed RIS-Net optimizes

both global image segmentation and local regional refine-

ment objectives jointly in an end-to-end manner. To re-

duce the computational complexity, the conv1 1 to conv7

layers are shared across both branches to improve the in-

ference speed. Within the local branch, the conv7local and

conv8local layers are shared across all ROIs with one local

loss per ROI. Due to the shared computation between both

tasks and the end-to-end pipeline, the gradients from the

local branch can be backpropagated to conv7 and the pre-

ceding layers, resulting in an improved representation for

the whole-image segmentation problem.

Click Discounting Factor for Training: Inspired by the

reinforcement learning algorithms, we devise a new train-

ing scheme that incorporates a click discount factor to each

ROI in the local branch such that the latter ROI receives less

reward, enforcing the model to use minimal amount of user

interaction for refinement. The details of the training pro-

cess are described below: 1) a global coarse prediction is

first obtained from the global branch and the difference of

global prediction and ground truth is computed; 2) within

the local branch, the ROI with the largest segmentation er-

ror is first chosen to output the corresponding local predic-

tion; 3) the global and local predictions are fused (details

will be given in the next subsection) and the difference of

the fused output and ground truth is computed; 4) the next

ROI with the second largest segmentation error is selected

to output the corresponding prediction. Steps 3) and 4) are

repeated until all the ROIs are selected. For each image, the

total loss is defined as

Ltotal = Lglobal +

NROI∑

t=1

γt−1 exp (−∆Lt) (2)

where 0 ≤ γ ≤ 1 is the discount factor. Here, the ∆ term

denotes how much the local loss is decreased by adding a

new ROI (i.e. the reward). The latter added ROI will get less
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reward on its contribution to the decrease in loss. Therefore,

the training process enforces the model to decrease the loss

more rapidly at the first few iterations. Note that γ = 1
denotes the case where all the ROIs from the same image

are used simultaneously for training whereas γ = 0 reduces

to the case where there is no local branch.

3.4. Fusion of Global and Local Segmentation

Once we obtain the global and local prediction maps in

a single forward pass, we devise a new approach to fuse

the two to produce the final prediction for both training and

testing. Given N ROIs, let fi be the local prediction map of

the ith ROI and fN+1 be the global prediction map. We first

insert each fi back to its corresponding image space with

zero padding outside fi and we denote this as Fi. Then, we

aggregate all the outputs using a max-pooling operation:

P (x, y) = max
i

(Fi(x, y)), ∀i. (3)

It should be noted that the max pooling operation can also

be replaced by average pooling. We choose the former in

our work since we empirically find that it performs slightly

better.

4. Experiments

4.1. Datasets and Settings

Datasets: We evaluate the performance of the RIS-Net and

compare it with the state-of-the-arts on four public datasets.

GrabCut dataset [22]: The GrabCut dataset consists of

50 natural images with ground truth. This dataset has been

used as a common benchmark for most popular interactive

segmentation algorithms.

Berkeley dataset [19]: This dataset contains 100 single-

object images chosen from the Berkeley dataset to represent

various challenges encountered in interactive segmentation,

including similar foreground/background appearances, tex-

ture, existence of multiple similar objects, etc.

Pascal VOC dataset [8]: We use 1,449 validation im-

ages in the Pascal dataset that are not used in training. Note

that all the categories in this dataset have been included in

our training set.

MSCOCO dataset [17]: MSCOCO contains 80 differ-

ent object categories, where 20 of them are the same as the

Pascal dataset (these 20 are called “seen” categories, and the

rest are “unseen” categories). For fair comparison with [29],

we also split the dataset into 20 seen categories and 60 un-

seen categories, and randomly sample 10 images per cate-

gory for evaluation.

Evaluation Metrics: We follow [15] by running an active

robot user that simulates the user behavior when evaluating

an interactive segmentation model. This is also widely used

in other works [12, 29] for performance evaluation.

The evaluation begins with a single positive click placed

at the center of the object of interest. The model then out-

puts an initial prediction based on this input. Subsequent

clicks are iteratively added to the middle of the largest mis-

labeled regions and this step is repeated until the maximum

number of clicks (20) is achieved. To evaluate, we record

the IU accuracy of the model at each click. As in [29],

we also record the number of clicks required to achieve a

certain IU accuracy on a given dataset. If the IU accuracy

cannot be achieved within 20 clicks, it will be thresholded

to 20. Each metric reported is averaged over all images in

a dataset. Note that we follow [29] by using different IU

thresholds for different datasets (e.g. 90% for Grabcut and

85% for Pascal) for fair comparison.

Training Details: We use the same sampling strategy as

in [29] to sample clicks for training. All the 1,464 training

images from the PASCAL VOC segmentation dataset [8]

are used to sample 15 (image, user interaction) pairs per

image, generating about 80k training samples (including the

flipped version).

For our proposed RIS-Net, we fix the size of the pooling

output after the ROI pooling layer to be 41×41. We set the

discount factor, γ to 0.8. The region proposals for training

are pre-computed. All networks are initialized from VGG-

16 weights pre-trained on ILSVRC 2012 [23]. The weight

matrices of the newly added layers are randomly initial-

ized from a Gaussian distribution with standard deviation of

0.01. We train our model using stochastic gradient descent

with a batch size of 2 images and 5 ROIs per image. We fix

the momentum to 0.9 and weight decay to 0.0005 through-

out the training process. We train all models for roughly 20

epochs with a fixed base learning rate of 10−3, reducing the

rate by 10× after every 5 epochs. We implement our model

based on the Fast R-CNN [10] framework. All our experi-

ments are conducted on the Caffe framework [13]. All net-

works are trained on a single NVIDIA Pascal Titan X GPU

with 12GB memory.

Our proposed RIS-Net typically takes about 0.4 seconds

for a 640 × 480 color image with 6 user inputs (3 positive

and 3 negative clicks) on a Pascal Titan X GPU while the

graph cut optimization takes about 0.25 seconds on modern

CPUs. Therefore, our proposed method is suitable for real-

time applications.

4.2. Comparison with Stateofthearts

Figure 4 and Table 1 show the comparison results with

several state-of-the-art methods over four datasets. Firstly,

from Figure 4, we can see that the deep learning-based

models (RIS-Net and iFCN [29]) outperform the traditional

methods by a large margin, demonstrating the effectiveness

of deep representation over the low-level cues for segmen-

tation. Secondly, we see that our proposed RIS-Net con-
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(d) MS COCO seen categories
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(e) MS COCO unseen categories
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(f) Legend

Figure 4: The plot of the mean IU accuracy against the number of clicks on different datasets. The legend of these plots is

shown in (f).

Segmentation models
Pascal

(85% IU)

Grabcut

(90% IU)

Berkeley

(90% IU)

MSCOCO

seen categories

(85% IU)

MSCOCO

unseen categories

(85% IU)

Graph cut [4] 15.06 11.10 14.33 18.67 17.80

Geodesic matting [1] 14.75 12.44 15.96 17.32 14.86

Random walker [11] 11.37 12.30 14.02 13.91 11.53

Euclidean star convexity [12] 11.79 8.52 12.11 13.90 11.63

Geodesic star convexity [12] 11.73 8.38 12.57 14.37 12.45

Growcut [26] 14.56 16.74 18.25 17.40 17.34

iFCN [29] 6.88 6.04 8.65 8.31 7.82

RIS-Net (ours) 5.12 5.00 6.03 5.98 6.44

Table 1: The mean number of clicks required to achieve the specific IU accuracy on different datasets. The best results are

highlighted in bold.

sistently outperforms the iFCN on all four datasets. For

example, on the Grabcut dataset, our proposed RIS-Net re-

quires fewer than 4 clicks to reach the performance of iFCN

with 6 clicks. Similarly, on the Berkeley dataset, our pro-

posed RIS-Net requires 2.62 fewer clicks than the iFCN to

reach 90% of IU accuracy. Furthermore, we can also see

that our algorithm achieves higher IU accuracy at every step

and increases the IU accuracy much faster than other algo-

rithms during refinement. This is because at every step, our

model learns to fully utilize the local regional information

surrounding the new clicks, therefore accelerating the re-

finement process.

Single-click Performance: Although the proposed RIS-

Net is formulated based on at least two clicks (a positive and
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(a) (b) (c) 

Figure 5: Segmentation results using a single click. The im-

ages selected represent 3 different segmentation challenges:

(a) textured foreground, (b) changing illumination, (c) over-

lapping foreground and background appearances.

(a) (b)(i) (b)(ii) (c) 

Figure 6: Network prediction by a model with (a) global

branch only, (b) both global and local branches (RIS-Net)

and (c) the corresponding ground truth. The (b)(i) and

(b)(ii) show the prediction before and after the fusion of

global and local segmentations.

a negative click) provided for local refinement, we demon-

strate that our algorithm produces very good predictions

even with just a single click (Figure 5). On average, the

RIS-Net achieves about 61% IU accuracy using a single

positive click, which is 6.5% and 26.2% higher than the

iFCN and the best performing traditional model on each

dataset, based on the IU accuracies of other methods re-

ported in [29].

Amount of User Interaction Required: In Table 1,

we also observe that RIS-Net requires the fewest clicks to

achieve a particular IU accuracy on all the datasets. On av-

erage, our proposed RIS-Net reduces the number of clicks

required by the iFCN and the other best performing tradi-

tional model on each dataset by 1.83 and 5.75 clicks re-

spectively, significantly reducing the amount of user effort.

4.3. Ablation Experiments

In Table 2, we quantitatively analyze the effect of each

component in our proposed network to justify our design

choices. All the numbers reported in this section denote the

number of clicks required to achieve 90% IU accuracy on

the Berkeley dataset.

We train a new baseline model with the DeepLab-

LargeFOV model and denote it as iDeepLab. We observe

that this results in a slight improvement over [29]. Adding

global contextual further enhances the performance by re-

ducing the number of clicks needed by 0.63 clicks. This in-

dicates the importance of global cues for the segmentation

task. Introducing the local branch to the model further re-

duces the clicks number needed by another 0.75 click. Here,

Global

context?

Local

branch?

Discount

factor?

# Clicks

(90%IU)

7.60

X 6.97

X X 6.22

X X X 6.03

Table 2: Effects of local branch, global contexts and click

discount factor. The check mark is used to indicate if a par-

ticular component is used. All the numbers reported de-

note the number of clicks required to achieve 90% IU on

the Berkeley dataset.
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(b) Coverage score

Figure 7: Hamming distance and coverage score against

clicks number on the Berkeley dataset. The smaller Ham-

ming distance implies a closer match between the predic-

tion and the ground truth whereas the higher coverage score

suggests a higher recall rate of the model.

we also provide a visual comparison to illustrate the effects

of the local branch. As shown in Figure 6 (b)(ii), the local

branch “diffuses” its prediction within each ROI during re-

finement, increasing its confidence of prediction along the

boundaries. By comparing Figure 6 (a) and (b), we observe

that the local branch also helps optimize the whole-image

segmentation task concurrently since the shared computa-

tion allows the gradient from the local branch to be back-

propagated to the same conv7 layer trained for global image

segmentation. Finally, we observe that the click discount

factor allows effective training of the RIS-Net, leading to a

further reduction in the number of clicks required to 6.03.

To ensure a fair comparison, all the evaluation metrics

reported above are based on the segmentation output com-

bined with graph cut optimization following [29]. Here we

conduct more experiments to analyze more detailedly the

performance of RIS-Net by isolating the effect of the graph

cut. Let xi and yi denote the prediction map and ground

truth at pixel location i respectively. We use the follow-

ing metrics to further evaluate the RIS-Net: (i) Hamming

distance: (
∑N

i=1
xi · (1 − yi) + (1 − xi) · yi)/N and (ii)

coverage score: C =
∑N

i=1
(xi ·yi)/

∑N

i=1
yi. Due to space

limitation, we provide justification on choosing these three

metrics in the supplementary materials instead.
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Figure 9: Some failure cases by RIS-Net.

The results are summarized in Figure 7. In terms of

Hamming distance, our algorithm has an overall smaller

Hamming distance compared to the iDeepLab, implying

that the prediction generated by our algorithm matches

the ground truth more closely. Moreover, our algorithm

has a consistently higher coverage score compared to the

iDeepLab. We also notice that the iDeepLab has a nearly

constant coverage score with respect to the number of clicks

used, suggesting that the improved performance given more

clicks is due to the use of graph cut optimization for better

boundaries localization. On the other hand, the increasing

coverage score of our algorithm indicates a form of infor-

mation propagation towards the local regions covering the

clicks for refinement.

We also present some qualitative comparisons between

our model and other state-of-the-arts given the same set of

user interactions (Figure 8). In general, our proposed RIS-

Net produces relatively good predictions by exploiting both

local regional and global multiscale context to assist the lo-

cal segmentation. We also show some failure cases in Fig-

ure 9 and find that our RIS-Net has difficulties in segment-

ing occluded or hairy objects.

5. Conclusion

In this work, we proposed a region-based interactive im-

age segmentation model that fully exploits the local regional

context highlighted by the user-provided clicks to acceler-

ate the refinement progress. We appended global contextual

information to each local ROI for improved feature repre-

sentation. We also devised a new training pipeline based

on click discounting factor for effective end-to-end training

of our model. Comprehensive evaluations on four challeng-

ing datasets have well demonstrated the superiority of our

algorithm against the state-of-the-art methods.
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