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Abstract

Fully convolutional network (FCN) has been success-

fully applied in semantic segmentation of scenes repre-

sented with RGB images. Images augmented with depth

channel provide more understanding of the geometric in-

formation of the scene in the image. The question is how to

best exploit this additional information to improve the seg-

mentation performance.

In this paper, we present a neural network with multiple

branches for segmenting RGB-D images. Our approach is

to use the available depth to split the image into layers with

common visual characteristic of objects/scenes, or common

“scene-resolution”. We introduce context-aware receptive

field (CaRF) which provides a better control on the relevant

contextual information of the learned features. Equipped

with CaRF, each branch of the network semantically seg-

ments relevant similar scene-resolution, leading to a more

focused domain which is easier to learn. Furthermore, our

network is cascaded with features from one branch aug-

menting the features of adjacent branch. We show that such

cascading of features enriches the contextual information

of each branch and enhances the overall performance. The

accuracy that our network achieves outperforms the state-

of-the-art methods on two public datasets.

1. Introduction

Semantic image segmentation is a fundamental problem

in computer vision. It enables the pixel-wise categoriza-

tion of objects [9, 26] and scenes [30, 2]. Recently, deep

convolutional neural networks [21, 34, 15] pre-trained on

large-scale image data are adopted for semantic segmenta-

tion [28, 1, 27, 38, 23]. The emergence of powerful con-

volutional networks have significantly improved the perfor-

mances of semantic segmentation.

There has also been an increasing interest in leveraging

depth information to assist semantic segmentation. Depth

data becomes widespread, as it can be easily captured by

commercially cheap sensors. Undoubtedly, depth informa-

tion is able to improve segmentation, as it captures geomet-
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Figure 1: There is correlation between depth and scene-

resolution: the near field (highlighted in blue rectangle)

consists of high scene-resolution, while the far field (high-

lighted in red rectangle) has low scene resolution.

ric information that is not captured by the color channels,

and can directly enrich the image representation learned by

deep networks. In [12, 28, 16], the depth data is added as

a fourth channel in addition to the RGB channels as input

to the networks. This straightforward approach increased

the segmentation performance. More recent works [36, 17]

have developed networks that jointly learn from the depth

and color modalities, to further improve the segmentation.

Although depth data clearly helps to separate between ob-

jects/scenes, it has much less semantic information than col-

ors do. Moreover, there is little correlation between depth

and color channels [36], which motivates better means to

exploit the depth to enhance semantic segmentation.

In this paper, we present a different approach to exploit

depth information. The key idea is to use the depth to

split the image into layers representing similar visual char-

acteristic, or the “scene-resolution”. We refer to scene-

resolution as the resolution of the objects and scenes in

general, as observed in the input images1. As shown in

Figure 1, there is correlation between depth and scene-

resolution; lower scene-resolution appears in regions that

have higher depth, and higher scene-resolution appears in

the near field. In lower scene-resolution regions, objects and

scenes densely co-exist, forming more complex correlation

between objects/scenes relative to higher scene-resolution

1We assume the images are with similar resolution, which can be

achieved in pre-processing.
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Figure 2: The overview of our cascaded feature network (CFN). Given the color image, we use CNN to compute the con-

volutional feature map. The discrete depth image is layered, where each layer represents a scene-resolution and is used to

match the image regions to corresponding network branches that share the same convolutional feature map. Each branch has

context-aware receptive field (CaRF), which produces contextual representation to combine with the feature from adjacent

branch. The predictions of all branches are combined to achieve the eventual segmentation result.

regions. Therefore, to better represent and learn the vari-

ant object/scene relationships, appropriate features should

be constructed for different scene-resolutions.

Regular Receptive Field To compute the representation

of object/scene relationships, recently numerous segmen-

tation networks [13, 38, 27, 25, 37, 24] enriched the con-

textual information of convolutional features using a set of

receptive fields. Their receptive fields are in general pre-

defined with regular forms of diverse sizes. However, such

regular receptive fields are context-oblivious in the sense

that they do not consider their extent with respect to the un-

derlying image structure.

Branched Network Note that fully convolutional net-

work (FCN) [32, 4] with multiple branches has been used

to generate distinct features for distinct regions of interest,

which are applicable to different scene-resolutions. Specif-

ically, FCN has separate branches that can segment re-

gions with different scene-resolutions. Although different

branches are linked by the shared features, each indepen-

dent branch only influences the shared convolutional fea-

tures in the regions of the corresponding scene-resolution. It

implies that, in the training phase, the shared convolutional

features cannot be updated by signals that capture the rela-

tionship between the regions of different scene-resolutions.

It inevitably limits the context of regions that can indeed

effectively update the network.

Our Approach We address the above two problems in the

context of RGB-D images segmentation. First, to make the

feature more focused on the common visual characteristic

of the observed scene, we introduce a context-aware recep-

tive field (CaRF). The CaRF provides a better control on

the relevant contextual information of the learned features.

Our CaRFs are computed based on super-pixels, which are

defined by the underlying scene structures. Thus, the con-

textual information provided by CaRF can alleviate nega-

tive effect of mixing the features of overly small or large

regions. Second, we present a cascaded feature network

(CFN) with parallel branches, each of which focuses on se-

mantic segmentation of regions of certain scene-resolution.

Figure 2 illustrates our CFN architecture. Each branch is

equipped with a CaRF. It is trained and operated on a more

focused context with similar scene-resolution. The combi-

nation of CaRF and cascaded network, enables regions in

different scene-resolutions to communicate each other so as

to wisely update shared convolutional features.

We show that the cascading of features enriches the con-

textual information of each branch and enhances the overall

performance. The performance of our network is demon-

strated on two public datasets. With our presented CFN,

the mean intersection-over-union of 47.7 on the NYUDv2

dataset [33] and 48.1 on the SUN-RGBD dataset [35] are

achieved, which outperform the state-of-the-art results.

2. Related Work

2.1. FCN for Semantic Segmentation

Fully convolutional network (FCN) [28] has been

broadly used in semantic segmentation systems [1, 27,

38, 25, 24, 37]. The stacked pooling operations in FCN,

however, inevitably reduce the image resolution, result-

ing in segmentation information loss on image regions.

Some works are proposed to address this problem, for in-

stances, applying atrous convolution to maintain relatively

high-resolution information [1], or employing deconvolu-

tion operation to recover high-resolution regions from low-

resolution ones [31].
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Figure 3: The two-level Context-aware Receptive Field (CaRF): (a) the image partitioned into super-pixels with different

sizes; (b) at each node of the coarse grid we aggregate the features that reside in the same super-pixel; (c) the content of

adjacent super-pixels is aggregated; (d) the aggregated content in a feature map represents a CaRF. The two-level CaRF

is repeatedly applied to the images partitioned by super-pixels with diverse sizes. Note that the feature map has smaller

resolution than the image due to down-sampling of network.

Contextual information of multiple receptive fields is

used as well to alleviate the problematic prediction. Sev-

eral works [1, 27, 38, 25] integrate graphical models to cap-

ture the context of multiple pixels. From another perspec-

tive, Lin et al. [24] and Zhao et al. [37] utilize the convolu-

tional/pooling kernels with diverse sizes to capture different

receptive fields of images. In this way, the contextual infor-

mation is effectively enriched. Our method also makes use

of the convolutional features extracted from receptive fields

with different sizes. In contrast to [24, 37] that use different

kernels, we control the size of super-pixel to capture recep-

tive fields, which are more aware of the relationships be-

tween image regions. Similarly, the works [29, 16, 22] use

super-pixel to group the convolutional features from a set

of receptive fields. Nonetheless, different from ours, these

works do not combine neighboring super-pixels, which may

result in loss of relationship between super-pixels.

2.2. Semantic Segmentation of RGB­D Images

Semantic segmentation of RGB-D image has been stud-

ied for more than a decade [33, 11, 12, 36, 16]. Differ-

ent from traditional semantic segmentation of RGB im-

ages [9, 30, 2], additional depth channel is available now.

It allows better understanding of the geometric information

of the scene images. Many prior works harness useful infor-

mation from the depth channel. Silberman et al. [33] pro-

pose an approach to parse the spatial characteristics, such

as support relations, by using RGB image along with the

depth cue. Gupta et al. [11] use depth image to construct

geometric contour cue to benefit both object detection and

segmentation of RGB-D images.

Recently, CNN/FCN is used for learning features from

depth to help the segmentation of RGB-D images. Couprie

et al. [3] propose to learn CNN using the combination of

RGB and depth image pairs such that the convolutional fea-

ture maintains depth information. Gupta et al. [12] and He

et al. [16] encode depth image as HHA image [11], which

maintains each pixel’s horizontal disparity, height above

ground, and the angle of the local surface normal. The net-

works trained on different modalities, e.g., RGB and HHA

image, are fused by Long et al. [28] to boost the segmen-

tation accuracy. Compared to direct fusion of segmentation

scores as in [28], the network proposed by Wang et al. [36]

produces better segmentation result by harness deeper cor-

relation of RGB and depth image pairs.

In our scenario, depth information plays a more signif-

icant role in guiding the feature learning for the regions

of different scene-resolutions. The depth image is layered

to identify the scene-resolution of the region. An effec-

tive design of neural network structure is thus facilitated to

consider the characteristic of the region in specific scene-

resolution. This technique can be applied to benefit feature

learning from different data modalities, as shown in results.

3. Context-aware Receptive Field

The receptive fields of common networks are pre-

defined. Here, we present a Context-aware Receptive Field

(CaRF) where the receptive field is spatially-variant and de-

fined its extent according the local context. The idea is to

aggregate convolutional features of local context into richer

features that learn better the relevant content.

The contextual information generated by CaRF is con-

trolled by adjusting the sizes of the super-pixels. For the re-

gions in low scene-resolution, we select larger super-pixels

that include more objects and scenes information, while in

higher scene-resolution, we switch to finer super-pixels so

as to avoid too much diverse information; see also Fig-

ure 3(a). The adaptive size of the super-pixels helps to

capture the complex object/scene relationship in different

regions. The relevant context comprises of the local neigh-

borhoods of a super-pixel as shown in Figure 3(d). That is,

an entry M(h,w) in the feature map M is an aggregation of

all the convolutional features that are within the super-pixel

that contains (h,w) and its adjacent super-pixels.

Using such context-aware receptive fields rather than

fixed regular ones, leads to better segmentation. In our ex-
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periments, we apply CaRF on top of the convolutional fea-

ture of the network to gather more contextual information.

As we shall show, the addition of CaRF makes a decent im-

provement in the semantic segmentation performance.

Note that the CaRFs overlap. Thus, to save significant

computations of repeatedly integrating the same regions,

the CaRFs are computed in two levels as elaborated below.

Given an image I , we utilize the toolkit [7] to gener-

ate a set of non-overlapping super-pixels denoted as {Si},

satisfying
⋃

i Si = I and Si

⋂
Sj = ∅, ∀i, j. As shown

in Figures 3(b-c), at first, we sum features that reside on the

same super-pixels. This context-aware summation produces

a feature map R ∈ R
C×H×W :

R(c, h, w) =
∑

(h′,w′)∈Φ(Si)

F (c, h′, w′), (1)

where (h,w) ∈ Φ(Si). F ∈ R
C×H×W denotes the com-

mon shared convolutional features of the widely-used CNN

architectures, such as fc7 of FCN-VGG [28] or res5c of

ResNet [15], as illustrated in Figure 2. C is the number

of channels with index c, and H and W are the height and

width of the feature map. The spatial coordinate (h,w)
uniquely corresponds to a center of regular receptive field

in the image space. Thus, Φ(Si) defines a set of centers

of regular receptive fields that are located within the super-

pixel Si. The local feature R(c, h, w) remains the same for

the set Φ(Si).
At the second level (Figures 3(c-d)), we aggregate the

features of R that are associated with adjacent super-pixels

to model a new feature map M ∈ R
C×H×W :

M(c, h, w) =R(c, h, w)+
∑

Sj∈N (Si)

∑

(h′,w′)∈Φ(Sj)

λjR(c, h′, w′), (2)

where (h,w) ∈ Φ(Si). Here Sj ∈ N (Si) means super-

pixel Si and Sj are adjacent, and λj = 1
|Φ(Sj)|

with that

|Φ(Sj)| denotes the number of regular receptive field cen-

ters located within the super-pixel Sj . Again, the entry

M(c, h, w) remains the same for the set Φ(Si), as the iden-

tical adjacent super-pixels provide the same context.

This process forms the contextual representation M used

below, where each entry M(h,w) represents a CaRF.

4. Cascaded Feature Network

We present a deep Cascaded Feature Network (CFN)

for semantic segmentation of RGB-D images. CFN has

multiple network branches for the segmentation in differ-

ent scene-resolutions. The multiple-branch CFN allows dis-

tinct CaRF to provide specify contextual information for a

certain scene-resolution. More importantly, the cascaded

structure of CFN enables the information propagated from

one branch to help the adjacent branch. In what follows, we

elaborate the construction of CFN.

The architecture of the CFN is illustrated in Figure 2.

Assume CFN has K branches, each of which accounts for

the segmentation in a certain scene-resolution. The 1st

branch is for the highest scene-resolution. Given a depth

image D, we project each pixel to one of the K branches.

Each branch deals with a set of pixels that have depth values

within a certain range. Given a color image I as input, the

kth branch outputs the feature Fk as

Fk = Fk−1 +Mk, k = 1, ...,K, (3)

where K is the number of branches, and Mk is the con-

textual representation formulated in Eq. (2). We define

F0 = F , where F is the shared convolutional feature de-

fined in Eq. (1). The feature Fk is in a combination form,

which is modeled by adding the feature Fk−1 with the con-

textual representation Mk produced by CaRF.

The feature Fk is fed to a predictor for segmentation.

Given all the pixels assigned to the kth branch, we denote

their class labels as a set yk, which is determined as:

yk = f(Fk). (4)

The function f(:) is softmax predictor that is widely used

for pixel-wise categorization. For the pixel that has the lo-

cation (h,w), we denote yk(h,w) as its class label.

Combining the prediction results of all branches forms

the final segmentation y on the image I .

Network Training We denote y∗ as the ground-truth an-

notation of the image I . Using Eq. (4), we compute the seg-

mentation of the image I . To train CFN for segmentation,

the overall objective function is defined as:

J(F1, ..., FK) =

K∑

k=1

Jk(Fk), (5)

where

Jk(Fk) =
∑

(h,w)∈Ωk

L(y∗k(h,w), yk(h,w)). (6)

Jk is the objective function for the kth branch. The Ωk

denotes the set of pixels handled by the kth branch. The

function L is softmax loss for penalizing pixel-wise catego-

rization error. The network training is done by minimizing

the objective formulated as Eq. (5).

We utilize the standard back-propagation (BP) algo-

rithm [21] to train CFN. In BP stage, the feature in Eq. (6)

are updated in each iteration. To update the feature Fk, we

use the definition of Eq. (3) and compute the gradient of
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objective function J with respect to Fk as:

∂J

∂Fk

∝
∂Jk

∂Fk

+
∂Jk+1

∂Fk+1

∂Fk+1

∂Fk

=
∂Jk

∂Fk

+
∂Jk+1

∂Fk+1
. (7)

The update signal of Fk functions as the compromise be-

tween back-propagated information of the feature Fk and

Fk+1. The update signal ∂Jk

∂Fk
accounts for the kth branch.

With the cascaded structure connecting two branches, the

signal
∂Jk+1

∂Fk+1
of the (k+1)th branch influences the update of

Fk in training phase. As each adjacently indexed branches

communicate via the cascaded structure, we find that any

two branches can be balanced in an effective way.

In the kth branch, the update signal is passed from the

combined feature Fk to the contextual representation Mk.

It influences the update of the local regions of the share con-

volutional feature. To update the feature Rk(c, h, w), which

represents a local region of the share convolutional feature

F , we use the definition of Eq. (2) and compute the gradient

of objective function J with respect to Rk(c, h, w) as:

∂J

∂Rk(c, h, w)
∝

∂J

∂Mk(c, h, w)

∂Mk(c, h, w)

∂Rk(c, h, w)
+

∑

Sjk∈N (Sik)

∑

(h′,w′)∈Φ(Sjk)

λjk

∂J

∂Mk(c, h′, w′)

∂Mk(c, h
′, w′)

∂Rk(c, h, w)
,

(8)

where (h,w) ∈ Φ(Sik). As modeled by Eq. (8), the up-

date of the local feature Rk(c, h, w) is impacted by the

signal of its neighborhoods satisfying Sjk ∈ N (Sik) and

(h′, w′) ∈ Φ(Sjk). Though this communication is defined

on spatially-adjacent local regions, the non-adjacent ones

can affect each other along a path of adjacent members.

With cascaded structure, one branch can receive the sig-

nals from other branches. Further, with the adjacent rela-

tionship defined by CaRF, the signals from other branches

can be diffused to any local region in a branch. As a re-

sult, the share convolutional feature F can be updated by

signals that capture the relationship between local regions

in different branches.

5. Implementation Details

Preparation of Image Data The original RGB images

are used as data source. In addition, we encode each single-

channel depth image as a 3-channel HHA image introduced

in [11, 12], which maintains the geometric information of

the pixels. The sets of RGB and HHA images are used to

train segmentation networks. When preparing the images

for the network training, we use four common strategies,

i.e., flipping, cropping, scaling and rotating of the image, to

argument the training data.

Settings of CFN and CaRF CFN has multiple branches

to handle different scene-resolutions. The number of

branches is pre-defined before constructing the network.

Each branch accounts for a certain range of depth value.

We obtain the global range of depth value from all the

depth maps provided by the datasets. For example, the

depth value of NYUDv2 dataset varies from 0 to 102.7 me-

ters. The global range is then divided by the number of

branches. Given a pixel in the image, it is assigned to the

corresponding branch with respect to its depth value. In

our experiment, we compare the results of 1-, 2-, 3-, 4- and

5-branch CFNs. The super-pixels are controllable in our

CaRF components. For lower scene-resolution, CaRF uses

larger super-pixels to capture richer contextual information.

Following this principle, we enlarger the scale, which is a

parameter of the toolkit [7], to broaden the super-pixels.

We empirically set the scales as {1600, 3000, 4200, 6000,

10000} for the five branches, respectively.

Network Construction We modify the Caffe platform

[18] to construct our network. Our network is based on

the FCN [28]. The network structure pre-trained on Ima-

geNet [5], i.e., VGG-16 [34], serves as the architecture on

top of which we build our CFN. We apply atrous convo-

lution [1] to achieve 8-stride network. We use RefineNet-

152 [24], which is based on the prevalently deeper ResNet-

152 [15], to further improve segmentation performance

when we compare our CFN to state-of-the-art methods.

We optimize the segmentation network using BP algorithm.

The network is fine-tuned with a learning rate of 1e-10 for

60K mini-batches. After that, we decay the learning rate

to 1e-11 for the next 40K min-batches. The size of each

min-batch is set to 8. As suggested in [28], we use a heavy

momentum 0.99 so as to achieve stable optimization on rel-

atively small-scale data.

6. Results and Evaluation

To show the efficacy of our CFN and evaluate its perfor-

mance, we tested on two public datasets: NYUDv2 [33] and

SUN-RGBD [35]. The NYUDv2 dataset is more widely

used for analysis. We therefore conduct most of our eval-

uation on it, while using the SUN-RGBD dataset to extend

the comparison with state-of-the-art methods.

The NYUDv2 dataset [33] contains 1,449 RGB-D scene

images. Among them, 795 images are split for training and

654 images are for testing. In [12], a validation set that

comprises of 414 images, is selected from the original train-

ing set. We follow the segmentation annotations provided

in [11], where all pixels are labeled by 40 classes.

Following the common way to evaluate semantic seg-

mentation schemes [24, 37], we perform the multi-scale

testing. Four scales, i.e., {0.6, 0.8, 1, 1.1}, are used to re-

size the testing image before feeding it to the network. The
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Figure 4: The network can have separate branches (a), combined branches (b) or cascaded branches (c). For clarity, we

illustrate it with two branches only. Each network can be extended to have more branches.

# branches 1 2 3 4 5

mean IoU 31.2 33.8 35.5 35.0 34.6

Table 1: Sensitivities to the number of branches, e.g.,

{1, 2, 3, 4, 5}. The performances are evaluated on the

NYUDv2 validation set. Each segmentation accuracy is re-

ported in terms of mean IoU (%).

output scores of the four re-scaled images are then averaged

and processed by dense CRF [20] for the final prediction.

Following [28, 24, 12], we report on the segmentation per-

formance in terms of mean intersection-over-union (IoU).

Sensitivities to the Number of Branches First, we re-

port on our investigation of the sensitivity of our model to

the number of branches. We tested with different number

({1, 2, 3, 4, 5}). For every case, we report the segmentation

accuracy on the validation set. We train our CFN based on

VGG-16 [34] model. The segmentation accuracies on the

validation set are reported in Table 1.

The input to CFN includes RGB image for segmenta-

tion and depth image for splitting image regions for dif-

ferent branches. The performances of the different CFN

configurations are listed in Table 1. We note the single-

branch CFN achieves the accuracy score of 31.2, which

is lower than the scores of other CFNs that have two or

more branches. As only one CaRF is used in the single-

branch network, specific contextual representations can not

be achieved for different scene-resolutions. We find that

3-branch CFN achieves the best result. We also observe

that further increasing the number of branches, i.e., using

4- or 5-branch CFNs, causes a performance drop. In these

cases, larger super-pixels are used. It suggests that too large

super-pixels are not suitable to use, as they may much diver-

sify the object/scene classes and therefore distract the stable

patterns that should be learned by CFN.

Strategies of Using CaRF CaRF defines the adaptive

extent of the receptive field and plays a critical role in

adjusting the contextual information for different scene-

resolutions in our cascaded network. To demonstrate the

CFN strategy mean IoU

single-branch
w/o CaRF 31.8

w/ CaRF 32.0

multiple-branch

w/o CaRF 31.7

w/ regular-RF 33.8

w/ CaRF 36.3

Table 2: Strategies of using CaRF, evaluated on the

NYUDv2 test set. Each segmentation accuracy is reported

in terms of mean IoU (%).

importance of CaRF, we conduct an experiment that mea-

sure the performance of our CFN without CaRF.

We use RGB images to train different CFNs, and their

results are listed in Table 2. First, we investigate the single-

branch network. Without CaRF, the single-branch network

degrades to the VGG-FCN [28], which yields the score

of 31.8. This result is lower than the score of 32.0 pro-

duced by single-branch network that has CaRF. We also ex-

perimented with different scene-resolutions, and we train

multiple-branch (3-branch) CFNs for comparison. With-

out CaRF, the multiple-branch CFN performs similarly as

the single-branch counterpart. By adding CaRFs to differ-

ent branches, CFN improves the segmentation accuracy to

the score of 36.3. These comparisons manifest that CaRFs

provide useful contextual information for different scene-

resolutions.

We note that enlarging the regular receptive field can

gather more contextual information as well. In the case of

multiple-branch CFN, we thus use multiple regular recep-

tive fields in place of CaRFs. This is implemented by using

diverse average-pooling kernels to handle different scene-

resolutions. This manner is similar to the method described

in [37]. We hand-tune the average-pooling kernels to the

sizes of {3, 5, 7} to achieve a reasonable accuracy score of

33.8; see the entry w/ regular-RF in Table 2. Nonetheless,

this score is still lower than that of multiple-branch CFN

having CaRFs. The performance gap suggests that CaRF

provides finer means to utilize contextual information than

regular receptive field.
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(a) Image (b) Ground-truth (c) Baseline (d) CFN

Figure 5: A sample of the comparison to the baseline model [24] and our CFN. The first two and last rows are scenes taken

from NYUDv2 [33] and SUN-RGBD [35] dataset, respectively.

strategy separate-branch combined-branch CFN

mean IoU 33.0 34.0 36.3

Table 3: Strategies of using CFN, evaluated on the

NYUDv2 test set. Each segmentation accuracy is reported

in terms of mean IoU (%).

Strategies of Using CFN We exploit cascaded structure

to handle different scene-resolutions. In different cases, we

evaluate the performance on segmentation and experiment

with removing the connecting links between the branches.

We compare the performances in Table 3.

Without cascaded structure, each branch accounts for the

corresponding scene-resolution in an isolated way, as shown

in Figure 4(a). This network has CaRFs integrated in all

branches. Though CaRF provides contextual information

for each scene-resolution, the information propagation be-

tween branches is lacking. It makes the shared convolu-

tional feature oblivious of the relationship between regions

in different scene-resolutions. In comparison to our CFN

that connects different branches, as shown in Figure 4(c),

the separate-branch network yields inferior performance.

The branches can be combined to segment image, as il-

lustrated in Figure 4(b). With combined-branch network,

all scene-resolutions share the same contextual information.

The low scene-resolutions benefit from the local contextual

information, however, mixing the contextual information is

not desirable for high scene-resolutions. Thus, the perfor-

mance of combined-branch network lags behind our CFN.

Comparisons with State-of-the-art Methods In Table 4,

we compare our CFN with state-of-the-art methods that are

also based on deep neural networks. According to the train-

ing and testing data, the methods to compare are divided

into two groups.

In the first group, the methods use only RGB images for

segmentation. In the column RGB-input of Table 4, we re-

port the performances of these methods. We find that the

deep network proposed by Lin et al. [24] achieves the best

accuracy in this group. This network is based on ResNet-

152 [15], which is much deeper than the previous ones used

in [28, 19, 25]. It suggests that using deeper network can

help improving segmentation accuracy.

In the second group, the methods take both RGB and

depth images as input. We report the performances in the

column RGB-D-input of Table 4. We note each depth image

can be encoded as a 3-channel HHA image, which main-

tains richer geometric information as introduced in [11, 12].

Following Long et al. [28], we use HHA images to train

segmentation network, in place of RGB image. Given an

image, the segmentation network trained on HHA images is
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RGB-input mean IoU RGB-D-input mean IoU

Gupta et al. [12] 28.6

Fayyaz et al. [10] 30.9

Deng et al. [6] 31.5

Long et al. [28] 29.2 Long et al. [28] 34.0

Kendall et al. [19] 32.4 Eigen et al. [8] 34.1

Lin et al. [25] 40.6 He et al. [16] 40.1

Lin et al. [24] 46.5 Lin et al. [24] 47.0

CFN (VGG-16) 41.7

CFN (RefineNet-152) 47.7

Table 4: Comparisons with other state-of-the-art methods

on the NYUDv2 test set. Each segmentation accuracy is

reported in terms of mean IoU (%).

used to compute score map, which is fused with the score

map derived from the network trained on RGB images. The

fusion strategy is implemented by averaging the score maps.

Using this fusion strategy and the network proposed by Lin

et al. [24], the previous best result 47.0 is obtained. Com-

pared to the network in [24] that uses RGB images only, the

one using both RGB and HHA images improves the seg-

mentation accuracy. As the network structures are based on

ResNet-152, we conclude that the performance gap is solely

attributed to using HHA images for assisting segmentation.

Our CFN belongs to the second group. We use RGB

and HHA images for training and testing. Our CFN that is

based on VGG-16 achieves the score of 41.7. Comparing to

the previous network proposed by He et al. [16], which also

use RGB and HHA image for training VGG-16 model, our

CFN produces better results. We further use deeper model

introduced in [24], and the score of 47.7 is achieved. This

result is better than state-of-the-art methods. In the first two

rows of Figure 5, we show the visual improvement against

the baseline model of [24]. The comparison demonstrates

that our CFN is compatible to different network structures

and improves the segmentation accuracy.

Experiments on SUN-RGBD Dataset We conduct more

experiments on the SUN-RGBD dataset [35], which com-

prises of 10,335 images labeled with 37 classes. We use

5,285 images for training and the rest for evaluation. SUN-

RGBD dataset provides more images than the NYUDv2

dataset [33]. It thus can verify whether our CFN is able to

effectively handle more diverse scene and depth conditions.

We show the segmentation accuracy of our CFN in Ta-

ble 5. Again, the compared methods are divided into two

groups. Similarly to the previous experiments, we compare

our method to the group of methods that consider both RGB

and HHA images as input. With VGG-16 model trained

on RGB and HHA images, the previous best performance

is produced by the method of Hazirbas et al. [14]. Using

the same model and data, our CFN yields a better score of

RGB-input mean IoU RGB-D-input mean IoU

Noh et al. [31] 22.6

Long et al. [28] 24.1

Chen et al. [1] 27.4

Kendall et al. [19] 30.7 Long et al. [28] 35.1

Lin et al. [25] 42.3 Hazirbas et al. [14] 37.8

Lin et al. [24] 45.9 Lin et al. [24] 47.3

CFN (VGG-16) 42.5

CFN (RefineNet-152) 48.1

Table 5: Comparisons with other state-of-the-art methods

on the SUN-RGBD test set. Each segmentation accuracy is

reported in terms of mean IoU (%).

42.5. Again, with a deeper model RefineNet-152 introduced

in [24], we are able to achieve the accuracy score of 48.1,

which outperforms the state-of-the-art results. The visual-

ization results of our CFN on SUN-RGBD dataset [35] can

be found in the last two rows of Figure 5.

7. Conclusions

Recent developments in semantic segmentation of image

have leveraged the power of convolutional networks that are

trained on large datasets. In our work, we have shown that

with depth information we can further increase the accu-

racy of the segmentation. The increased performance is at-

tributed to the use of context-aware receptive fields, which

have irregular extents that adapt and learn relevant data in

the appropriate scene-resolution. We have presented a cas-

caded feature network that takes advantage of the spatially-

variant receptive field to enable a flexible modeling of the

data with a good balance between image regions in different

scene-resolutions. We have showed that our CFN is efficient

and outperforms recent state-of-the-art methods.

In the future, we would like to further explore the poten-

tial of the context-aware receptive fields, first for semantic

segmentation of RGB images with no depth, and second,

for other applications rather than recognition or segmenta-

tion. Another research direction is extending context-aware

receptive fields to 3D or higher dimension.
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