
Focal Loss for Dense Object Detection

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár

Facebook AI Research (FAIR)

0 0.2 0.4 0.6 0.8 1

probability of ground truth class

0

1

2

3

4

5

lo
s
s

 = 0
 = 0.5

 = 1
 = 2

 = 5

well-classi�ed
examples

well-classi�ed
examples

CE(pt) = − log(pt)

FL(pt) = −(1− pt)
γ log(pt)

Figure 1. We propose a novel loss we term the Focal Loss that

adds a factor (1 − pt)
γ to the standard cross entropy criterion.

Setting γ > 0 reduces the relative loss for well-classified examples

(pt > .5), putting more focus on hard, misclassified examples. As

our experiments will demonstrate, the proposed focal loss enables

training highly accurate dense object detectors in the presence of

vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based

on a two-stage approach popularized by R-CNN, where a

classifier is applied to a sparse set of candidate object lo-

cations. In contrast, one-stage detectors that are applied

over a regular, dense sampling of possible object locations

have the potential to be faster and simpler, but have trailed

the accuracy of two-stage detectors thus far. In this paper,

we investigate why this is the case. We discover that the ex-

treme foreground-background class imbalance encountered

during training of dense detectors is the central cause. We

propose to address this class imbalance by reshaping the

standard cross entropy loss such that it down-weights the

loss assigned to well-classified examples. Our novel Focal

Loss focuses training on a sparse set of hard examples and

prevents the vast number of easy negatives from overwhelm-

ing the detector during training. To evaluate the effective-

ness of our loss, we design and train a simple dense detector

we call RetinaNet. Our results show that when trained with

the focal loss, RetinaNet is able to match the speed of pre-

vious one-stage detectors while surpassing the accuracy of

all existing state-of-the-art two-stage detectors.

50 100 150 200 250

inference time (ms)

28

30

32

34

36

38

C
O

C
O

 A
P

B C

D

E

F

G

RetinaNet-50

RetinaNet-101

AP time

[A] YOLOv2† [26] 21.6 25

[B] SSD321 [21] 28.0 61

[C] DSSD321 [9] 28.0 85

[D] R-FCN‡ [3] 29.9 85

[E] SSD513 [21] 31.2 125

[F] DSSD513 [9] 33.2 156

[G] FPN FRCN [19] 36.2 172

RetinaNet-50-500 32.5 73

RetinaNet-101-500 34.4 90

RetinaNet-101-800 37.8 198
†Not plotted ‡Extrapolated time

Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.

Enabled by the focal loss, our simple one-stage RetinaNet detec-

tor outperforms all previous one-stage and two-stage detectors, in-

cluding the best reported Faster R-CNN [27] system from [19]. We

show variants of RetinaNet with ResNet-50-FPN (blue circles) and

ResNet-101-FPN (orange diamonds) at five scales (400-800 pix-

els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms

an upper envelope of all current detectors, and a variant trained for

longer (not shown) achieves 39.1 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on

a two-stage, proposal-driven mechanism. As popularized

in the R-CNN framework [11], the first stage generates a

sparse set of candidate object locations and the second stage

classifies each candidate location as one of the foreground

classes or as background using a convolutional neural net-

work. Through a sequence of advances [10, 27, 19, 13], this

two-stage framework consistently achieves top accuracy on

the challenging COCO benchmark [20].

Despite the success of two-stage detectors, a natural

question to ask is: could a simple one-stage detector achieve

similar accuracy? One stage detectors are applied over a

regular, dense sampling of object locations, scales, and as-

pect ratios. Recent work on one-stage detectors, such as

YOLO [25, 26] and SSD [21, 9], demonstrates promising

results, yielding faster detectors with accuracy within 10-

40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-

stage object detector that, for the first time, matches the

12980



state-of-the-art COCO AP of more complex two-stage de-

tectors, such as the Feature Pyramid Network (FPN) [19]

or Mask R-CNN [13] variants of Faster R-CNN [27]. To

achieve this result, we identify class imbalance during train-

ing as the main obstacle impeding one-stage detector from

achieving state-of-the-art accuracy and propose a new loss

function that eliminates this barrier.

Class imbalance is addressed in R-CNN-like detectors

by a two-stage cascade and sampling heuristics. The pro-

posal stage (e.g., Selective Search [34], EdgeBoxes [37],

DeepMask [23, 24], RPN [27]) rapidly narrows down the

number of candidate object locations to a small number

(e.g., 1-2k), filtering out most background samples. In the

second classification stage, sampling heuristics, such as a

fixed foreground-to-background ratio (1:3), or online hard

example mining (OHEM) [30], are performed to maintain a

manageable balance between foreground and background.

In contrast, a one-stage detector must process a much

larger set of candidate object locations regularly sampled

across an image. In practice this often amounts to enumer-

ating ∼100k locations that densely cover spatial positions,

scales, and aspect ratios. While similar sampling heuris-

tics may also be applied, they are inefficient as the training

procedure is still dominated by easily classified background

examples. This inefficiency is a classic problem in object

detection that is typically addressed via techniques such as

bootstrapping [32, 28] or hard example mining [36, 8, 30].

In this paper, we propose a new loss function that acts

as a more effective alternative to previous approaches for

dealing with class imbalance. The loss function is a dy-

namically scaled cross entropy loss, where the scaling factor

decays to zero as confidence in the correct class increases,

see Figure 1. Intuitively, this scaling factor can automati-

cally down-weight the contribution of easy examples during

training and rapidly focus the model on hard examples. Ex-

periments show that our proposed Focal Loss enables us to

train a high-accuracy, one-stage detector that significantly

outperforms the alternatives of training with the sampling

heuristics or hard example mining, the previous state-of-

the-art techniques for training one-stage detectors. Finally,

we note that the exact form of the focal loss is not crucial,

and we show other instantiations can achieve similar results.

To demonstrate the effectiveness of the proposed focal

loss, we design a simple one-stage object detector called

RetinaNet, named for its dense sampling of object locations

in an input image. Its design features an efficient in-network

feature pyramid and use of anchor boxes. It draws on a va-

riety of recent ideas from [21, 6, 27, 19]. RetinaNet is effi-

cient and accurate; our best model, based on a ResNet-101-

FPN backbone, achieves a COCO test-dev AP of 39.1

while running at 5 fps, surpassing the previously best pub-

lished single-model results from both one and two-stage de-

tectors, see Figure 2.

2. Related Work

Classic Object Detectors: The sliding-window paradigm,

in which a classifier is applied on a dense image grid, has

a long and rich history. One of the earliest successes is the

classic work of LeCun et al. who applied convolutional neu-

ral networks to handwritten digit recognition [18, 35]. Vi-

ola and Jones [36] used boosted object detectors for face

detection, leading to widespread adoption of such models.

The introduction of HOG [4] and integral channel features

[5] gave rise to effective methods for pedestrian detection.

DPMs [8] helped extend dense detectors to more general

object categories and had top results on PASCAL [7] for

many years. While the sliding-window approach was the

leading detection paradigm in classic computer vision, with

the resurgence of deep learning [17], two-stage detectors,

described next, quickly came to dominate object detection.

Two-stage Detectors: The dominant paradigm in modern

object detection is based on a two-stage approach. As pio-

neered in the Selective Search work [34], the first stage gen-

erates a sparse set of candidate proposals that should con-

tain all objects while filtering out the majority of negative

locations, and the second stage classifies the proposals into

foreground classes / background. R-CNN [11] upgraded the

second-stage classifier to a convolutional network yielding

large gains in accuracy and ushering in the modern era of

object detection. R-CNN was improved over the years, both

in terms of speed [14, 10] and by using learned object pro-

posals [6, 23, 27]. Region Proposal Networks (RPN) inte-

grated proposal generation with the second-stage classifier

into a single convolution network, forming the Faster R-

CNN framework [27]. Numerous extensions to this frame-

work have been proposed, e.g. [19, 30, 31, 15, 13].

One-stage Detectors: OverFeat [29] was one of the first

modern one-stage object detector based on deep networks.

More recently SSD [21, 9] and YOLO [25, 26] have re-

newed interest in one-stage methods. These detectors have

been tuned for speed but their accuracy trails that of two-

stage methods. SSD has a 10-20% lower AP, while YOLO

focuses on an even more extreme speed/accuracy trade-off.

See Figure 2. Recent work showed that two-stage detectors

can be made fast simply by reducing input image resolution

and the number of proposals, but one-stage methods trailed

in accuracy even with a larger compute budget [16]. In con-

trast, the aim of this work is to understand if one-stage de-

tectors can match or surpass the accuracy of two-stage de-

tectors while running at similar or faster speeds.

The design of our RetinaNet detector shares many simi-

larities with previous dense detectors, in particular the con-

cept of ‘anchors’ introduced by RPN [27] and use of fea-

tures pyramids as in SSD [21] and FPN [19]. We empha-

size that our simple detector achieves top results not based

on innovations in network design but due to our novel loss.

22981



Class Imbalance: Both classic one-stage object detection

methods, like boosted detectors [36, 5] and DPMs [8], and

more recent methods, like SSD [21], face a large class

imbalance during training. These detectors evaluate 104-

105 candidate locations per image but only a few loca-

tions contain objects. This imbalance causes two problems:

(1) training is inefficient as most locations are easy nega-

tives that contribute no useful learning signal; (2) en masse,

the easy negatives can overwhelm training and lead to de-

generate models. A common solution is to perform some

form of hard negative mining [32, 36, 8, 30, 21] that sam-

ples hard examples during training or more complex sam-

pling/reweighing schemes [2]. In contrast, we show that our

proposed focal loss naturally handles the class imbalance

faced by a one-stage detector and allows us to efficiently

train on all examples without sampling and without easy

negatives overwhelming the loss and computed gradients.

Robust Estimation: There has been much interest in de-

signing robust loss functions (e.g., Huber loss [12]) that re-

duce the contribution of outliers by down-weighting the loss

of examples with large errors (hard examples). In contrast,

rather than addressing outliers, our focal loss is designed

to address class imbalance by down-weighting inliers (easy

examples) such that their contribution to the total loss is

small even if their number is large. In other words, the focal

loss performs the opposite role of a robust loss: it focuses

training on a sparse set of hard examples.

3. Focal Loss

The Focal Loss is designed to address the one-stage ob-

ject detection scenario in which there is an extreme im-

balance between foreground and background classes during

training (e.g., 1:1000). We introduce the focal loss starting

from the cross entropy (CE) loss for binary classification1:

CE(p, y) =

{

− log(p) if y = 1

− log(1− p) otherwise.
(1)

In the above y ∈ {±1} specifies the ground-truth class and

p ∈ [0, 1] is the model’s estimated probability for the class

with label y = 1. For notational convenience, we define pt:

pt =

{

p if y = 1

1− p otherwise,
(2)

and rewrite CE(p, y) = CE(pt) = − log(pt).
The CE loss can be seen as the blue (top) curve in Fig-

ure 1. One notable property of this loss, which can be easily

seen in its plot, is that even examples that are easily clas-

sified (pt ≫ .5) incur a loss with non-trivial magnitude.

When summed over a large number of easy examples, these

small loss values can overwhelm the rare class.

1Extending the focal loss to the multi-class case is straightforward and

works well; for simplicity we focus on the binary loss in this work.

3.1. Balanced Cross Entropy

A common method for addressing class imbalance is to

introduce a weighting factor α ∈ [0, 1] for class 1 and 1−α
for class −1. In practice α may be set by inverse class fre-

quency or treated as a hyperparameter to set by cross valida-

tion. For notational convenience, we define αt analogously

to how we defined pt. We write the α-balanced CE loss as:

CE(pt) = −αt log(pt). (3)

This loss is a simple extension to CE that we consider as an

experimental baseline for our proposed focal loss.

3.2. Focal Loss Definition

As our experiments will show, the large class imbalance

encountered during training of dense detectors overwhelms

the cross entropy loss. Easily classified negatives comprise

the majority of the loss and dominate the gradient. While

α balances the importance of positive/negative examples, it

does not differentiate between easy/hard examples. Instead,

we propose to reshape the loss function to down-weight

easy examples and thus focus training on hard negatives.

More formally, we propose to add a modulating factor

(1 − pt)
γ to the cross entropy loss, with tunable focusing

parameter γ ≥ 0. We define the focal loss as:

FL(pt) = −(1− pt)
γ log(pt). (4)

The focal loss is visualized for several values of γ ∈
[0, 5] in Figure 1. We note two properties of the focal loss.

(1) When an example is misclassified and pt is small, the

modulating factor is near 1 and the loss is unaffected. As

pt → 1, the factor goes to 0 and the loss for well-classified

examples is down-weighted. (2) The focusing parameter γ
smoothly adjusts the rate at which easy examples are down-

weighted. When γ = 0, FL is equivalent to CE, and as γ is

increased the effect of the modulating factor is likewise in-

creased (we found γ = 2 to work best in our experiments).

Intuitively, the modulating factor reduces the loss contri-

bution from easy examples and extends the range in which

an example receives low loss. For instance, with γ = 2, an

example classified with pt = 0.9 would have 100× lower

loss compared with CE and with pt ≈ 0.968 it would have

1000× lower loss. This in turn increases the importance

of correcting misclassified examples (whose loss is scaled

down by at most 4× for pt ≤ .5 and γ = 2).

In practice we use an α-balanced variant of the focal loss:

FL(pt) = −αt(1− pt)
γ log(pt). (5)

We adopt this form in our experiments as it yields slightly

improved accuracy over the non-α-balanced form. Finally,

we note that the implementation of the loss layer combines

the sigmoid operation for computing p with the loss com-

putation, resulting in greater numerical stability.

32982



While in our main experimental results we use the focal

loss definition above, its precise form is not crucial. In the

online appendix we consider other instantiations of the focal

loss and demonstrate that these can be equally effective.

3.3. Class Imbalance and Model Initialization

Binary classification models are by default initialized to

have equal probability of outputting either y = −1 or 1.

Under such an initialization, in the presence of class imbal-

ance, the loss due to the frequent class can dominate total

loss and cause instability in early training. To counter this,

we introduce the concept of a ‘prior’ for the value of p es-

timated by the model for the rare class (foreground) at the

start of training. We denote the prior by π and set it so that

the model’s estimated p for examples of the rare class is low,

e.g. 0.01. We note that this is a change in model initializa-

tion (see §4.1) and not of the loss function. We found this

to improve training stability for both the cross entropy and

focal loss in the case of heavy class imbalance.

3.4. Class Imbalance and Two­stage Detectors

Two-stage detectors are often trained with the cross en-

tropy loss without use of α-balancing or our proposed loss.

Instead, they address class imbalance through two mech-

anisms: (1) a two-stage cascade and (2) biased minibatch

sampling. The first cascade stage is an object proposal

mechanism [34, 23, 27] that reduces the nearly infinite set

of possible object locations down to one or two thousand.

Importantly, the selected proposals are not random, but are

likely to correspond to true object locations, which removes

the vast majority of easy negatives. When training the sec-

ond stage, biased sampling is typically used to construct

minibatches that contain, for instance, a 1:3 ratio of posi-

tive to negative examples. This ratio is like an implicit α-

balancing factor that is implemented via sampling. Our pro-

posed focal loss is designed to address these mechanisms in

a one-stage detection system directly via the loss function.

4. RetinaNet Detector

RetinaNet is a single, unified network composed of a

backbone network and two task-specific subnetworks. The

backbone is responsible for computing a convolutional fea-

ture map over an entire input image and is an off-the-self

convolutional network. The first subnet performs convo-

lutional object classification on the backbone’s output; the

second subnet performs convolutional bounding box regres-

sion. The two subnetworks feature a simple design that we

propose specifically for one-stage, dense detection, see Fig-

ure 3. While there are many possible choices for the details

of these components, most design parameters are not partic-

ularly sensitive to exact values as shown in the experiments.

We describe each component of RetinaNet next.

Feature Pyramid Network Backbone: We adopt the Fea-

ture Pyramid Network (FPN) from [19] as the backbone

network for RetinaNet. In brief, FPN augments a stan-

dard convolutional network with a top-down pathway and

lateral connections so the network efficiently constructs a

rich, multi-scale feature pyramid from a single resolution

input image, see Figure 3(a)-(b). Each level of the pyramid

can be used for detecting objects at a different scale. FPN

improves multi-scale predictions from fully convolutional

networks (FCN) [22], as shown by its gains for RPN [27]

and DeepMask-style proposals [23], as well at two-stage

detectors such as Fast R-CNN [10] or Mask R-CNN [13].

Following [19], we build FPN on top of the ResNet ar-

chitecture [15]. We construct a pyramid with levels P3

through P7, where l indicates pyramid level (Pl has reso-

lution 2l lower than the input). As in [19] all pyramid levels

have C = 256 channels. Details of the pyramid generally

follow [19] with a few modest differences.2 While many

design choices are not crucial, we emphasize the use of the

FPN backbone is; preliminary experiments using features

from only the final ResNet layer yielded low AP.

Anchors: We use translation-invariant anchor boxes simi-

lar to those in the RPN variant in [19]. The anchors have

areas of 322 to 5122 on pyramid levels P3 to P7, respec-

tively. As in [19], at each pyramid level we use anchors at

three aspect ratios {1:2, 1:1, 2:1}. For denser scale cover-

age than in [19], at each level we add anchors of sizes {20,

21/3, 22/3} of the original set of 3 aspect ratio anchors. This

improve AP in our setting. In total there are A = 9 anchors

per level and across levels they cover the scale range 32 -

813 pixels with respect to the network’s input image.

Each anchor is assigned a length K one-hot vector of

classification targets, where K is the number of object

classes, and a 4-vector of box regression targets. We use

the assignment rule from RPN [27] but modified for multi-

class detection and with adjusted thresholds. Specifically,

anchors are assigned to ground-truth object boxes using an

intersection-over-union (IoU) threshold of 0.5; and to back-

ground if their IoU is in [0, 0.4). As each anchor is assigned

to at most one object box, we set the corresponding entry

in its length K label vector to 1 and all other entries to 0.

If an anchor is unassigned, which may happen with overlap

in [0.4, 0.5), it is ignored during training. Box regression

targets are computed as the offset between each anchor and

its assigned object box, or omitted if there is no assignment.

2RetinaNet uses feature pyramid levels P3 to P7, where P3 to P5 are

computed from the output of the corresponding ResNet residual stage (C3

through C5) using top-down and lateral connections just as in [19], P6 is

obtained via a 3×3 stride-2 conv on C5, and P7 is computed by apply-

ing ReLU followed by a 3×3 stride-2 conv on P6. This differs slightly

from [19]: (1) we don’t use the high-resolution pyramid level P2 for com-

putational reasons, (2) P6 is computed by strided convolution instead of

downsampling, and (3) we include P7 to improve large object detection.

These minor modifications improve speed while maintaining accuracy.

42983



class+box
 subnets class

 subnet

box
 subnet

W×H
×256

W×H
×256

W×H
×4A

W×H
×256

W×H
×256

W×H
×KA×4

×4

+

+

class+box
 subnets

class+box
 subnets

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [19] backbone on top of a feedforward

ResNet architecture [15] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two

subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network

design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our

one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [19] while running at faster speeds.

Classification Subnet: The classification subnet predicts

the probability of object presence at each spatial position

for each of the A anchors and K object classes. This subnet

is a small FCN attached to each FPN level; parameters of

this subnet are shared across all pyramid levels. Its design

is simple. Taking an input feature map with C channels

from a given pyramid level, the subnet applies four 3×3

conv layers, each with C filters and each followed by ReLU

activations, followed by a 3×3 conv layer with KA filters.

Finally sigmoid activations are attached to output the KA
binary predictions per spatial location, see Figure 3 (c). We

use C = 256 and A = 9 in most experiments.

In contrast to RPN [27], our object classification subnet

is deeper, uses only 3×3 convs, and does not share param-

eters with the box regression subnet (described next). We

found these higher-level design decisions to be more im-

portant than specific values of hyperparameters.

Box Regression Subnet: In parallel with the object classi-

fication subnet, we attach another small FCN to each pyra-

mid level for the purpose of regressing the offset from each

anchor box to a nearby ground-truth object, if one exists.

The design of the box regression subnet is identical to the

classification subnet except that it terminates in 4A linear

outputs per spatial location, see Figure 3 (d). For each

of the A anchors per spatial location, these 4 outputs pre-

dict the relative offset between the anchor and the ground-

truth box (we use the standard box parameterization from R-

CNN [11]). We note that unlike most recent work, we use a

class-agnostic bounding box regressor which uses fewer pa-

rameters and we found to be equally effective. The object

classification subnet and the box regression subnet, though

sharing a common structure, use separate parameters.

4.1. Inference and Training

Inference: RetinaNet forms a single FCN comprised of a

ResNet-FPN backbone, a classification subnet, and a box

regression subnet, see Figure 3. As such, inference involves

simply forwarding an image through the network. To im-

prove speed, we only decode box predictions from at most

1k top-scoring predictions per FPN level, after threshold-

ing detector confidence at 0.05. The top predictions from

all levels are merged and non-maximum suppression with a

threshold of 0.5 is applied to yield the final detections.

Focal Loss: We use the focal loss introduced in this work

as the loss on the output of the classification subnet. As we

will show in §5, we find that γ = 2 works well in practice

and the RetinaNet is relatively robust to γ ∈ [0.5, 5]. We

emphasize that when training RetinaNet, the focal loss is

applied to all ∼100k anchors in each sampled image. This

stands in contrast to common practice of using heuristic

sampling (RPN) or hard example mining (OHEM, SSD) to

select a small set of anchors (e.g., 256) for each minibatch.

The total focal loss of an image is computed as the sum

of the focal loss over all ∼100k anchors, normalized by the

number of anchors assigned to a ground-truth box. We per-

form the normalization by the number of assigned anchors,

not total anchors, since the vast majority of anchors are easy

negatives and receive negligible loss values under the focal

loss. Finally we note that α, the weight assigned to the rare

class, also has a stable range, but it interacts with γ mak-

ing it necessary to select the two together (see Tables 1a

and 1b). In general α should be decreased slightly as γ is

increased (for γ = 2, α = 0.25 works best).

Initialization: We experiment with ResNet-50-FPN and

ResNet-101-FPN backbones [19]. The base ResNet-50 and

ResNet-101 models are pre-trained on ImageNet1k; we use

the models released by [15]. New layers added for FPN are

initialized as in [19]. All new conv layers except the final

one in the RetinaNet subnets are initialized with bias b = 0
and a Gaussian weight fill with σ = 0.01. For the final conv

layer of the classification subnet, we set the bias initializa-

tion to b = − log((1 − π)/π), where π specifies that at

52984



α AP AP50 AP75

.10 0.0 0.0 0.0

.25 10.8 16.0 11.7

.50 30.2 46.7 32.8

.75 31.1 49.4 33.0

.90 30.8 49.7 32.3

.99 28.7 47.4 29.9

.999 25.1 41.7 26.1

(a) Varying α for CE loss (γ = 0)

γ α AP AP50 AP75

0 .75 31.1 49.4 33.0

0.1 .75 31.4 49.9 33.1

0.2 .75 31.9 50.7 33.4

0.5 .50 32.9 51.7 35.2

1.0 .25 33.7 52.0 36.2

2.0 .25 34.0 52.5 36.5

5.0 .25 32.2 49.6 34.8

(b) Varying γ for FL (w. optimal α)

#sc #ar AP AP50 AP75

1 1 30.3 49.0 31.8

2 1 31.9 50.0 34.0

3 1 31.8 49.4 33.7

1 3 32.4 52.3 33.9

2 3 34.2 53.1 36.5

3 3 34.0 52.5 36.5

4 3 33.8 52.1 36.2

(c) Varying anchor scales and aspects

method
batch nms

AP AP50 AP75size thr

OHEM 128 .7 31.1 47.2 33.2

OHEM 256 .7 31.8 48.8 33.9

OHEM 512 .7 30.6 47.0 32.6

OHEM 128 .5 32.8 50.3 35.1

OHEM 256 .5 31.0 47.4 33.0

OHEM 512 .5 27.6 42.0 29.2

OHEM 1:3 128 .5 31.1 47.2 33.2

OHEM 1:3 256 .5 28.3 42.4 30.3

OHEM 1:3 512 .5 24.0 35.5 25.8

FL n/a n/a 36.0 54.9 38.7

(d) FL vs. OHEM baselines (with ResNet-101-FPN)

depth scale AP AP50 AP75 APS APM APL time

50 400 30.5 47.8 32.7 11.2 33.8 46.1 64

50 500 32.5 50.9 34.8 13.9 35.8 46.7 72

50 600 34.3 53.2 36.9 16.2 37.4 47.4 98

50 700 35.1 54.2 37.7 18.0 39.3 46.4 121

50 800 35.7 55.0 38.5 18.9 38.9 46.3 153

101 400 31.9 49.5 34.1 11.6 35.8 48.5 81

101 500 34.4 53.1 36.8 14.7 38.5 49.1 90

101 600 36.0 55.2 38.7 17.4 39.6 49.7 122

101 700 37.1 56.6 39.8 19.1 40.6 49.4 154

101 800 37.8 57.5 40.8 20.2 41.1 49.2 198

(e) Accuracy/speed trade-off RetinaNet (on test-dev)

Table 1. Ablation experiments for RetinaNet and Focal Loss (FL). All models are trained on trainval35k and tested on minival

unless noted. If not specified, default values are: γ = 2; anchors for 3 scales and 3 aspect ratios; ResNet-50-FPN backbone; and a 600

pixel train and test image scale. (a) RetinaNet with α-balanced CE achieves at most 31.1 AP. (b) In contrast, using FL with the same exact

network gives a 2.9 AP gain and is fairly robust to exact γ/α settings. (c) Using 2-3 scale and 3 aspect ratio anchors yields good results

after which point performance saturates. (d) FL outperforms the best variants of online hard example mining (OHEM) [30, 21] by over 3

points AP. (e) Accuracy/Speed trade-off of RetinaNet on test-dev for various network depths and image scales (see also Figure 2).

the start of training every anchor should be labeled as fore-

ground with confidence of ∼π. We use π = .01 in all ex-

periments, although results are robust to the exact value. As

explained in §3.4, this initialization prevents the large num-

ber of background anchors from generating a large, desta-

bilizing loss value in the first iteration of training.

Optimization: RetinaNet is trained with stochastic gradi-

ent descent (SGD). We use synchronized SGD over 8 GPUs

with a total of 16 images per minibatch (2 images per GPU).

Unless otherwise specified, all models are trained for 90k it-

erations with an initial learning rate of 0.01, which is then

divided by 10 at 60k and again at 80k iterations. We use

horizontal image flipping as the only form of data augmen-

tation unless otherwise noted. Weight decay of 0.0001 and

momentum of 0.9 are used. The training loss is the sum

the focal loss and the standard smooth L1 loss used for box

regression [10]. Training time ranges between 10 and 35

hours for the models in Table 1e.

5. Experiments

We present experimental results on the bounding box

detection track of the challenging COCO benchmark [20].

For training, we follow common practice [1, 19] and use

the COCO trainval35k split (union of 80k images from

train and a random 35k subset of images from the 40k im-

age val split). We report lesion and sensitivity studies by

evaluating on the minival split (the remaining 5k images

from val). For our main results, we report COCO AP on

the test-dev split, which has no public labels and requires

use of the evaluation server.

5.1. Training Dense Detection

We run numerous experiments to analyze the behavior

of the loss function for dense detection along with various

optimization strategies. For all experiments we use depth

50 or 101 ResNets [15] with a Feature Pyramid Network

(FPN) [19] constructed on top. For all ablation studies we

use an image scale of 600 pixels for training and testing.

Network Initialization: Our first attempt to train Reti-

naNet uses standard cross entropy (CE) loss without any

modifications to the initialization or learning strategy. This

fails quickly, with the network diverging during training.

However, simply initializing the last layer of our model such

that the prior probability of detecting an object is π = .01
(see §4.1) enables effective learning. Training RetinaNet

with ResNet-50 and this initialization already yields a re-

spectable AP of 30.2 on COCO. Results are insensitive to

the exact value of π so we use π = .01 for all experiments.

62985



0 .2 .4 .6 .8 1

fraction of foreground examples

0

0.2

0.4

0.6

0.8

1
c
u
m

u
la

ti
v
e
 n

o
rm

a
liz

e
d
 l
o
s
s

 = 0

 = 0.5

 = 1

 = 2

0 .2 .4 .6 .8 1

fraction of background examples

0

0.2

0.4

0.6

0.8

1

c
u
m

u
la

ti
v
e
 n

o
rm

a
liz

e
d
 l
o
s
s

 = 0

 = 0.5

 = 1

 = 2

Figure 4. Cumulative distribution functions of the normalized loss for positive and negative samples for different values of γ for a converged

model. The effect of changing γ on the distribution of the loss for positive examples is minor. For negatives, however, increasing γ heavily

concentrates the loss on hard examples, focusing nearly all attention away from easy negatives.

Balanced Cross Entropy: Our next attempt to improve

learning involved using the α-balanced CE loss described

in §3.1. Results for various α are shown in Table 1a. Set-

ting α = .75 gives a gain of 0.9 points AP.

Focal Loss: Results using our proposed focal loss are

shown in Table 1b. The focal loss introduces one new hy-

perparameter, the focusing parameter γ, that controls the

strength of the modulating term. When γ = 0, our loss is

equivalent to the CE loss. As γ increases, the shape of the

loss changes so that “easy” examples with low loss get fur-

ther discounted, see Figure 1. FL shows large gains over

CE as γ is increased. With γ = 2, FL yields a 2.9 AP im-

provement over the α-balanced CE loss.

For the experiments in Table 1b, for a fair comparison

we find the best α for each γ. We observe that lower α’s

are selected for higher γ’s (as easy negatives are down-

weighted, less emphasis needs to be placed on the posi-

tives). Overall, however, the benefit of changing γ is much

larger, and indeed the best α’s ranged in just [.25,.75] (we

tested α ∈ [.01, .999]). We use γ = 2.0 with α = .25 for all

experiments but α = .5 works nearly as well (.4 AP lower).

Analysis of the Focal Loss: To understand the focal loss

better, we analyze the empirical distribution of the loss of a

converged model. For this, we take take our default ResNet-

101 600-pixel model trained with γ = 2 (which has 36.0

AP). We apply this model to a large number of random im-

ages and sample the predicted probability for ∼107 negative

windows and ∼105 positive windows. Next, separately for

positives and negatives, we compute FL for these samples,

and normalize the loss such that it sums to one. Given the

normalized loss, we can sort the loss from lowest to highest

and plot its cumulative distribution function (CDF) for both

positive and negative samples and for different settings for

γ (even though model was trained with γ = 2).

Cumulative distribution functions for positive and nega-

tive samples are shown in Figure 4. If we observe the pos-

itive samples, we see that the CDF looks fairly similar for

different values of γ. For example, approximately 20% of

the hardest positive samples account for roughly half of the

positive loss, as γ increases more of the loss gets concen-

trated in the top 20% of examples, but the effect is minor.

The effect of γ on negative samples is dramatically dif-

ferent. For γ = 0, the positive and negative CDFs are quite

similar. However, as γ increases, substantially more weight

becomes concentrated on the hard negative examples. In

fact, with γ = 2 (our default setting), the vast majority of

the loss comes from a small fraction of samples. As can be

seen, FL can effectively discount the effect of easy nega-

tives, focusing all attention on the hard negative examples.

Online Hard Example Mining (OHEM): [30] proposed

to improve training of two-stage detectors by construct-

ing minibatches using high-loss examples. Specifically, in

OHEM each example is scored by its loss, non-maximum

suppression (nms) is then applied, and a minibatch is con-

structed with the highest-loss examples. The nms threshold

and batch size are tunable parameters. Like the focal loss,

OHEM puts more emphasis on misclassified examples, but

unlike FL, OHEM completely discards easy examples. We

also implement a variant of OHEM used in SSD [21]: after

applying nms to all examples, the minibatch is constructed

to enforce a 1:3 ratio between positives and negatives to

help ensure each minibatch has enough positives.

We test both OHEM variants in our setting of one-stage

detection which has large class imbalance. Results for the

original OHEM strategy and the ‘OHEM 1:3’ strategy for

selected batch sizes and nms thresholds are shown in Ta-

ble 1d. These results use ResNet-101, our baseline trained

with FL achieves 36.0 AP for this setting. In contrast, the

best setting for OHEM (no 1:3 ratio, batch size 128, nms of

.5) achieves 32.8 AP. This is a gap of 3.2 AP, showing FL

is more effective than OHEM for training dense detectors.

We note that we tried other parameter setting and variants

for OHEM but did not achieve better results.

Hinge Loss: Finally, in early experiments, we attempted

to train with the hinge loss [12] on pt, which sets loss to 0

above a certain value of pt. However, this was unstable and

we did not manage to obtain meaningful results. Results

exploring alternate loss functions are in the online appendix.

72986



backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ [15] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [19] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [16] Inception-ResNet-v2 [33] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [31] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 [26] DarkNet-19 [26] 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [21, 9] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [9] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet (ours) ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

Table 2. Object detection single-model results (bounding box AP), vs. state-of-the-art on COCO test-dev. We show results for our

RetinaNet-101-800 model, trained with scale jitter and for 1.5× longer than the same model from Table 1e. Our model achieves top results,

outperforming both one-stage and two-stage models. For a detailed breakdown of speed versus accuracy see Table 1e and Figure 2.

5.2. Model Architecture Design

Anchor Density: One of the most important design fac-

tors in a one-stage detection system is how densely it covers

the space of possible image boxes. Two-stage detectors can

classify boxes at any position, scale, and aspect ratio using

a region pooling operation [10]. In contrast, as one-stage

detectors use a fixed sampling grid, a popular approach for

achieving high coverage of boxes in these approaches is to

use multiple ‘anchors’ [27] at each spatial position to cover

boxes of various scales and aspect ratios.

We sweep over the number of scale and aspect ratio an-

chors used at each spatial position and each pyramid level in

FPN. We consider cases from a single square anchor at each

location to 12 anchors per location spanning 4 sub-octave

scales (2k/4, for k ≤ 3) and 3 aspect ratios [0.5, 1, 2]. Re-

sults using ResNet-50 are shown in Table 1c. A surprisingly

good AP (30.3) is achieved using just one square anchor.

However, the AP can be improved by nearly 4 points (to

34.0) when using 3 scales and 3 aspect ratios per location.

We used this setting for all other experiments in this work.

Finally, we note that increasing beyond 6-9 anchors did

not shown further gains. Thus while two-stage systems can

classify arbitrary boxes in an image, the saturation of per-

formance w.r.t. density implies the higher potential density

of two-stage systems may not offer an advantage.

Speed versus Accuracy: Larger backbone networks yield

higher accuracy, but also slower inference speeds. Likewise

for input image scale (defined by the shorter image side).

We show the impact of these two factors in Table 1e. In

Figure 2 we plot the speed/accuracy trade-off curve for Reti-

naNet and compare it to recent methods using public num-

bers on COCO test-dev. The plot reveals that RetinaNet,

enabled by our focal loss, forms an upper envelope over

all existing methods, discounting the low-accuracy regime.

Remarkably, RetinaNet with ResNet-101-FPN and a 600

pixel image scale (which we denote by RetinaNet-101-600

for simplicity) matches the accuracy of the recently pub-

lished ResNet-101-FPN Faster R-CNN [19], while running

in 122 ms per image compared to 172 ms (both measured on

an Nvidia M40 GPU). Using larger image sizes allows Reti-

naNet to surpass the accuracy of all two-stage approaches,

while still being faster. For faster runtimes, there is only one

operating point (500 pixel input) at which using ResNet-50-

FPN improves over ResNet-101-FPN. Addressing the high

frame rate regime will likely require special network design,

as in [26], rather than use of an off-the-shelf model and is

beyond the scope of this work.

5.3. Comparison to State of the Art

We evaluate RetinaNet on the bounding box detec-

tion task of the challenging COCO dataset and compare

test-dev results to recent state-of-the-art methods includ-

ing both one-stage and two-stage models. Results are pre-

sented in Table 2 for our RetinaNet-101-800 model trained

using scale jitter and for 1.5× longer than the models in

Table 1e (giving a 1.3 AP gain). Compared to existing one-

stage methods, our approach achieves a healthy 5.9 point

AP gap (39.1 vs. 33.2) with the closest competitor, DSSD

[9], while also being faster, see Figure 2. Compared to re-

cent two-stage methods, RetinaNet achieves a 2.3 point gap

above the top-performing Faster R-CNN model based on

Inception-ResNet-v2-TDM [31].

6. Conclusion

In this work, we identify class imbalance as the primary

obstacle preventing one-stage object detectors from sur-

passing top-performing, two-stage methods, such as Faster

R-CNN variants. To address this, we propose the focal loss

which applies a modulating term to the cross entropy loss in

order to focus learning on hard examples and down-weight

the numerous easy negatives. Our approach is simple and

highly effective. We demonstrate its efficacy by designing a

fully convolutional one-stage detector and report extensive

experimental analysis showing that it achieves state-of-the-

art accuracy and run time on the challenging COCO dataset.

82987



References

[1] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-

outside net: Detecting objects in context with skip pooling

and recurrent neural networks. In CVPR, 2016. 6

[2] S. R. Bulo, G. Neuhold, and P. Kontschieder. Loss max-

pooling for semantic image segmentation. In CVPR, 2017.

3

[3] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via

region-based fully convolutional networks. In NIPS, 2016. 1

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2

[5] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel

features. 2009. 2, 3

[6] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable

object detection using deep neural networks. In CVPR, 2014.

2

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

Challenge. IJCV, 2010. 2

[8] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cas-

cade object detection with deformable part models. In CVPR,

2010. 2, 3

[9] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. DSSD:

Deconvolutional single shot detector. arXiv:1701.06659,

2016. 1, 2, 8

[10] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 4, 6, 8

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1, 2, 5

[12] T. Hastie, R. Tibshirani, and J. Friedman. The elements of

statistical learning. Springer series in statistics Springer,

Berlin, 2008. 3, 7

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-

CNN. In ICCV, 2017. 1, 2, 4

[14] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV. 2014. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 4, 5, 6, 8

[16] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and

K. Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. 2017. 2, 8

[17] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 2

[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural compu-

tation, 1989. 2

[19] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In CVPR, 2017. 1, 2, 4, 5, 6, 8

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014. 1, 6

[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed.

SSD: Single shot multibox detector. In ECCV, 2016. 1, 2, 3,

6, 7, 8

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 4

[23] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to seg-

ment object candidates. In NIPS, 2015. 2, 4

[24] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-

ing to refine object segments. In ECCV, 2016. 2

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2016. 1, 2

[26] J. Redmon and A. Farhadi. YOLO9000: Better, faster,

stronger. In CVPR, 2017. 1, 2, 8

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015. 1, 2, 4, 5, 8

[28] H. Rowley, S. Baluja, and T. Kanade. Human face detec-

tion in visual scenes. Technical Report CMU-CS-95-158R,

Carnegie Mellon University, 1995. 2

[29] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization

and detection using convolutional networks. In ICLR, 2014.

2

[30] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

CVPR, 2016. 2, 3, 6, 7

[31] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Be-

yond skip connections: Top-down modulation for object de-

tection. arXiv:1612.06851, 2016. 2, 8

[32] K.-K. Sung and T. Poggio. Learning and Example Selection

for Object and Pattern Detection. In MIT A.I. Memo No.

1521, 1994. 2, 3

[33] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. arXiv:1602.07261, 2016. 8

[34] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

2013. 2, 4

[35] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach

for the localisation of objects in images. IEE Proc. on Vision,

Image, and Signal Processing, 1994. 2

[36] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001. 2, 3

[37] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, 2014. 2

92988


