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Abstract

Recently, convolutional neural networks (CNNs) have

achieved great success in fields such as computer vision,

natural language processing, and artificial intelligence.

Many of these applications utilize parallel processing in

GPUs to achieve higher performance. However, it remains

a daunting task to optimize for GPUs, and most researchers

have to rely on vendor-provided libraries for such purposes.

In this paper, we discuss an operator that can be used

to succinctly express computational kernels in CNNs and

various scientific and vision applications. This opera-

tor, called Unrolled-Memory-Inner-Product (UMI), is a

computationally-efficient operator with smaller code token

requirement. Since a naı̈ve UMI implementation would in-

crease memory requirement through input data unrolling,

we propose a method to achieve optimal memory fetch per-

formance in modern GPUs. We demonstrate this operator

by converting several popular applications into the UMI

representation, and achieve 1.3x-26.4x speedup against

frameworks such as OpenCV and Caffe.

1. Introduction

The recent resurgence of convolution neural networks

(CNNs) in vision applications are enabled in large part by

the rapid advances of graphics processing units (GPUs), and

researchers have been utilizing deeper networks with more

training data than ever before [14, 27]. However, owing

to the complexities in computational scheduling, it remains

difficult to program these GPUs at full efficiency despite

progress in programming tools. Because of this, proces-

sor vendors have created higher-level primitives for deep

learning, such as NVIDIA’s cuDNN [4], that can achieve

extremely high computational efficiencies on GPUs. How-

ever, details of the implementation are inaccessible to the

research and open-source community, making it difficult to

adapt these techniques to newer algorithms. GPUs also can

be sub-optimal in terms of power efficiency because, for

example, the math precision requirements for DNNs tend

to be less than what is needed for scientific computations.

In order to pursue a higher computation-to-power ra-

tio, several application-specific integrated circuits (ASICs)

have been created, and some can even operate with entropy-

compressed data directly [8]. These ASICs tend to be

equipped with fairly large and expensive on-chip memory,

and it can be difficult to adapt these ASICs to newer al-

gorithms, such as batch normalization [12] and deconvo-

lution layer [22]. We can gain additional flexibilities with

field programmable gate arrays (FPGAs), but they tend to

be slower and less area-efficient. Programming on these

FPGAs can also be difficult and hardware-specific, making

it difficult to transfer between different platforms.

Recently, researchers have proposed domain-specific

languages or abstract models of computation, such that pro-

grammers can focus on algorithm designs, and leave the

specific optimizations to the tools. To achieve maximal per-

formance, someone uses complex algorithms to search for

the best parameters and scheduling [25], which can be very

time-consuming and again, platform and algorithm depen-

dent.

In this paper, we propose a new primitive which focuses

on kernels frequently appear in computer vision and sci-

entific computations. This primitive, the unrolled memory

inner-product (UMI) operator, is implemented with C++11

and CUDA, and can be easily integrate into existing al-

gorithms to achieve higher performance than hand-tuned

open-source code. Specifically, our contributions are

• An UMI operator that can be used as computational

kernels for various vision-related applications,

• an abstraction model that results in smaller code tokens

compared to naı̈ve CPU implementations, and

• a methodology to implement UMI to achieve conflict-

free and optimal memory access pattern in modern par-

allel processors.

The rest of the paper is organized as follows. We start by

describing memory unrolling, or lowering, techniques for
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Figure 1. Taxonomy of convolution techniques. The implementation difficulty increases from (b) to (d). The proposed operator is simple

to implement as if in (b), but its memory efficiency is equivalent to (d).

CNN, and generalize the techniques to the proposed UMI

operator. We then describe how to implement this opera-

tor on NVIDIA GPUs, utilize it on several relevant appli-

cations, and compare the efficiency of our operator against

state-of-the-art implementations.

2. Related Work

High-Performance CNN Implementations. Figure 1

shows the taxonomy of convolution techniques, which is

the core kernel operation in CNNs. Many CNN implemen-

tations on GPUs inherit techniques directly from linear al-

gebra libraries [15, 20], which tend to be highly-optimized

routines that rely on non-disclosed knowledge about GPU

designs. Algorithms reducing to these primitives can utilize

these libraries to achieve fairly good performance. For ex-

ample, Caffe [13] and early versions of cuDNN [4] unroll

the input feature maps into matrices, and compute convo-

lution through matrix multiplications similar to Figure 1(a).

Vasilache et al. [30] converts the problem to frequency do-

main, but this approach is more suitable for larger kernel

sizes.

Unrolling the input data can be expensive, so it is prefer-

able to unroll as late as possible on, say, the cache or on-chip

memory. For example in DianNao [2], a (16 × 16)-by-(16)

matrix-vector processor is used for both CNN and FC layers

as in Figure 1(c); Lavin et al. [16] implement an optimized

version of convolution directly on the GPUs; Chen et al. [3]

create a systolic array architecture to tackle this problem as

in Figure 1(d).

Abstract Computational Models. Several domain-

specific languages have been designed to overcome the

difficulties in developing for various GPUs or ASICs

platforms. Programs are represented in abstract models

and compiled to kernels specifically optimized for target

platforms. For example, Pochoir and PolyMage [28, 19]

support stencil and resample operations such as Harris Cor-

ner [10] and PDE solving. Halide [25] defines images as

N-dimension functions, and describes the image pipelines

as functional compositions. It also includes an auto-tuning

framework by searching through all parameters within

the image pipeline; In their recent work [18], the tuning

time is decreased by limiting the parameter search space.

Darkroom [11], a subset of Halide, retains the stencil

operations and uses linear programming to determine the

number of buffers during hardware architecture generation.

Our research is also related to MapReduce [6, 5], where a

map function maps the input to (key,value) pairs, and

then matched data are collected and joined by a reduce

function. In this context, programmers only need to define

some critical strategy functions and do not need to worry

about implementation details. Convolution Engine [24] is a

hardware map-reduce engine with restrictions; it only al-

lows mapping and reduction within a local window with

simple pre-defined operators on basic types, such as addi-

tion, multiplication and logic.

3. The UMI Operator

Given an input image A and a kernel B, a convolution

between them produces a new image C, where
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An early CNN implementation technique involves con-

verting convolutions into matrix multiplications (Figure

1(a)). This method is still being used in the open-source im-

plementation of Caffe. This process requires unrolling the

input image A and vectorizing the kernel B, which allows

one to convert convolutions into GEMVs (GEneral Matrix-

Vector multiplication), as shown in Eq. (2),
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For simplicity, we will denote the unrolled input of A in

Eq. (2) as U1(A), which we shall formally define later.

3.1. Generalized InnerProduct

Pushing the process to extreme, we could unroll both the

input and the kernel to the same sizes. In Eq. (3), we apply

a different unroll operator to B by repeatedly stacking the

kernels,

U2(B) =






b00 b01 b10 b11
b00 b01 b10 b11

...




 , (3)

and the GEMV in Eq. (2) can be reformulated into Eq.

(4), which defines a UMI operator::

U1(A)⊙ U2(B), (4)

where ⊙ is a generalized inner-product operator be-

tween two vectors, and Eq. (4) is just a convenient no-

tation which means ⊙ is applied to every rows of U1(A)
and U2(B). When ⊙ is defined as the dot-product, Eq.

(4) exactly produces the same results as Eq. (2); when

v1 ⊙ v2 ≡ max(vT
1 v2, 0), Eq. (4) produces a CNN+ReLU

layer; when v1 ⊙ v2 ≡ ||v1 − v2||1, this operator can ex-

press patch-wise differences such as motion estimation or

stereo matching.

We will demonstrate later that with the formal definition

of U(·), many vision or scientific kernels can be expressed

through the UMI operator.
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...

2

5

8

0

3

6

1

4

7 ...

A

2

5

0

3

1

4

53 4

20 1 (0,0)

(0,1)

(1,1)

(1,0)

(0
)

(1
)

(2
)

0

10

1

11

...

B

20 21

0 10

1 11

20

21

0 10

1 11

20

21

(0
)

(1
)

(2
)

(0,0)

(0,1)

(1,1)

(1,0)

10

U1(A) U2(B)

(b) Matrix multiplication: each row in U(B) is a column from B.

Figure 2. Different memory layouts of Eq. (4) when the UMI op-

erator is used to represent different tasks.
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Figure 3. (a) illustrates accessing an element of U(A) with indices

p = (1, 1),a = (2); (b) shows that the footprint of a sub-tensor

in U(·) is also a sub-tensor in the original tensor.

3.2. Tensor Representation of Unrolling U(·)

Figure 2(a) shows the detailed memory layout of Eq.

(2,3), where rows and columns of U1(A) and U2(B) are as-

signed with grid indices like (0, 0), (0, 1), (0, 2), (1, 0) · · · .

Figure 2(b) illustrates another layout when the desired task

is GEMM (GEneral Matrix-Matrix multiplication). Increas-

ing an index component in an unrolled matrix, says U1(A),
corresponds to travelling along a particular axis at a certain

stride in the original matrices A, and such correspondences

are highlighted with colored numbers and arrows in Figure

2. Notice that some components may have zero stride where

the values are just repeated, and their corresponding arrows

are omitted in the original matrices B.

Based on the discussions above, the operator U(·) is ac-

tually a function mapping a tensor to another, and Figure

2 is a visualization of flattening high-dimensional tensors

U1(A) and U2(B) into 2D matrices. The flattening pro-
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cess is based on splitting the tensor indices into two parts,

row indices p and column indices a, and we use the nota-

tion U(A)p,a to refer to one element in the unrolled ten-

sors. Changing the j-th component of the indices kj , which

might belong to either p or a, is equivalent to moving along

a particular axis dj of A with a certain stride and offset

sj , oj :

U(A)p,a = Ax, where xi =
∑

j

δi,dj
(kjsj + oj). (5)

The equation above first calculates an indices x with p,a
and unroll parameters dj , sj , oj , then uses x to locate a spe-

cific element Ax in A.

Figure 3(a) illustrates access of element U1(A)(1,1),(2),
which is equal to accessing A(1,2) = 5 by moving down

once and toward the right twice on A.

3.3. The Programmatic Aspect of UMI

In the previous section we define U(A) as a tensor, but

from the programmatic view U(A) is a function object, or

a functor, constructed by binding the unroll parameters and

underlying tensor A to a function. Accessing the element

U(A)p,a then becomes calling the functor U(A) with argu-

ments p and a to locate the element in A by an inverse look-

up with Eq. (5). As a result, programmers simply code as

if they were operating on the large unrolled tensors U(A),
while the on-the-fly unroll via loop-up mechanism prevents

the overhead of actually storing U(A).
In the detailed implementation, the operator ⊙ is not

necessarily limited to a binary operator, so Eq. (4) can be

rewritten to a more general form:

U3(C), · · · = ⊙(U1(A), U2(B), · · · ), (6)

where the operator ⊙ becomes a callable function with mul-

tiple arguments and returns. We will later illustrate the use-

fulness of such generalization by applying UMI to more

computational kernels in Section 5. Also, since vectorizing

can be considered as a special case of unrolling, we write

the vectorized C of Eq. (2) as U3(C), which make the ab-

straction more concise and simple to implement.

4. Tile-Based Execution Partition

A basic implementation of the UMI operator includes

several nested for loops, and is therefore well suited for par-

allel processing. Before presenting the algorithm, we would

like to point out the necessity to represent ⊙ as a strategy

class, as shown through an example in Listing 1,

Listing 1. The ⊙ definition for CNN+ReLU layer
class ReLUStratgy {

float act;

void PreLoop() {act = 0;}

void Loop(float a, float b) {act += a*b;}

float PostLoop() {return max(act,0);}

};

Here, PreLoop initializes the activation value act to

zero, and then Loop is called over the range of rows to ac-

cumulate the pairwise products to act. Finally PostLoop

returns the activation value max(act,0) as the output.

Procedure 1 shows the pseudo code of a basic UMI oper-

ator.

Procedure 1 The basic UMI algorithm

Input: Unrolled memory U1(A), U2(B), U3(C)
Input: 4D parallelism size wp = (w1, w2, w3, w4)
Input: 4D accumulation size wa = (w4, w5, w6, w7)
Input: Inner-product strategy UmiStrategy

for p in NDRange(wp) do

UmiStrategy umi; {Initialize a class object}
umi.PreLoop();
for a in NDRange(wa) do

umi.Loop(U1(A)p,a, U2(B)p,a);
end for

U3(C) = umi.PostLoop();
end for

In Procedure 1, the for loop indices p,a are exactly the

row and column indices as shown in Figure 3(a), and the

sizes of U1(A) and U2(B) are both wp × wa. The outer

loop of Procedure 1 can be parallelized easily, and the on-

the-fly unroll mechanism described in Section 3.3 can ben-

efit from caches. When different elements in U1(A) or

U2(B) refer to the same elements in the original A or B,

duplicated access can be eliminated by caches and thus the

traffic to the main memory can be greatly reduced.

However, for GPU-friendly implementations, additional

considerations must be taken. GPUs tend to have very long

cache latency, and it is useful to provide a faster scratchpad

memory for threads in the same processing groups. Such

memory, called shared memory in CUDA or local memory

in OpenCL, has a much higher throughput and lower latency

compared to the cache, and we shall next explain how to

take advantage of shared memory with the UMI operator.

4.1. Tiled Parallel Execution

For a UMI operator to support tiled execution, we can

simply divide U1(A) and U2(B) into sub-tensors of size

tp × ta. Figure 3(b) highlights some sub-tensors from Fig-

ure 2 with (tp, ta) = ((2, 2), (1, 2)) and ((2, 2), (2)), re-

spectively. From the figure it can be observed that, for

any arbitrary tensor A and it’s unrolled version U(A), each

sub-tensor U(A)sub of U(A) can be fully defined by a sub-

tensor Asub of A. The i-th side length of tensor Asub is

calculated by this footprint analysis:
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1 +
∑

j

(tj − 1)sjδdj ,i. (7)

Because computations for different rows can be carried

out in parallel, grouping tp rows together is thus equiva-

lent to selecting the thread block size in CUDA, where a

block with tp threads could perform ta Loop() operations

within the elements of Asub. Programmers are responsible

for choosing appropriate (tp, ta) to ensure the size of Asub

is reasonable.

Procedure 2 describes the complete execution of the tiled

UMI model. Instead of loading an elements of U(A) di-

rectly from A, we first load the sub-tensor of Asub into the

shared memory once, and programmatically unroll the ten-

sor to U(A)sub on-the-fly, thereby reducing both memory

bandwidth and consumption to the degree comparable to

unroll-free implementations.

Procedure 2 The Tiled UMI algorithm

Input: Unrolled memory U1(A), U2(B), U3(C)
Input: 4D parallelism/accumulation size wp,wa

Input: 4D parallelism/accumulation tile size tp, ta
Input: Inner-product strategy UmiStrategy

for pb in NDRange(wp/tp)× tp do

for pl in NDRange(tp) do

p = pb + pl

UmiStrategy umi;

umi.PreLoop();
for ab in NDRange(wa/ta)× ta do

{Load Asub and Bsub into shared memory accord-

ing to pb and ab}
for al in NDRange(ta) do

umi.Loop(U1(A)sub
pl,al

, U2(B)sub
pl,al

);
end for

end for

U3(C)p,0 = umi.PostLoop();
end for

end for

Register Tiling. Registers can act as another faster mem-

ory layer between the shared memory and processor cores.

This technique, called register tiling, remains a key tech-

nique for thoroughly harnessing the power of GPUs. For the

readers who are interested in how to implement nearly fully

utilized kernels with register tiling, we recommend them to

read [31, 15, 20].

In UMI, register tiling is equivalent to selecting a larger

sub-tensor size (etp)× ta, where e ∈ N is a compile-time

constant selected by programmers. From the previous dis-

cussion, a larger thread block size must be used in this case,

but with register tiling we use the same thread block size to

simulate a larger one. The benefits of register tiling include

decreasing the amount of loads from shared memory, in-

creasing the effective instruction density, and allowing the

sharing of address calculation across smaller sub-tensors.

In our implementation of GEMM, e = 4 is selected, while

e = 8 is possible in heavily tuned kernels.

4.2. Bank Conflict Avoidance

Most parallel computing systems are designed with

matched number of processors and SRAM banks, and the

performance drops drastically when processors request ele-

ments from the same SRAM at the same time. This prob-

lem, called bank-conflict, is not addressed in many papers

about computation abstraction [25, 18, 19, 28], and is usu-

ally discussed in more specific applications like Eyeriss [3],

which supports different kernel strides for CNN.

Two of the most common solutions are padding[21,

chap. 39] and XOR-hash[17, 7, 9], which have been proven

to be useful for many specific cases. Both techniques cause

small runtime overhead: padding wastes SRAM spaces,

while XOR-hash requires extra instructions during index-

ing. To avoid bank-conflict for the UMI operator, we use

both as well as the re-tiling technique.

Dealing with bank conflict is equivalent to finding di-

vision schemes of sub-tensor U(A)sub in UMI, such that

each group is perfectly shuffled into different banks from

the original Asub. First, columns in U(A)sub is split sponta-

neously since elements with different accumulation indices

ta are executed sequentially; second, since the number of

processors is fixed, the elements in a column are also sched-

uled to be accessed at different time slots.

Figure 4 illustrates our solutions to avoid bank-conflict

for UMI, where (i) shows an example that 4 × 4 = 16
threads perform a 3 × 3 convolution task under an 8-

processor/8-bank configuration. With the native tiling, the

thread block are split into two 2× 4 groups as shown in (ii).

Two possible access patterns are indicated in (ii) with dif-

ferent numbers. In (ii-a), conflicts for both groups are high-

lighted by bold borders, whereas (ii-b) resolves bank con-

flicts by padding 6 elements every 6 elements. To reduce

the padding waste, (ii-c) uses only 2 padding with XOR-

hash, obtained by swapping the first and last four elements

in every other row. (iii) shows two different re-tiled group-

ing manners, and both could create conflict-free scenarios

without any padding requirement in (iii-a).

Proof for Conflict-Free Execution for UMI In this

part, we sketch out the proof of our bank-conflict

avoidance scheme based on the examples in Figure 4.

When a group accesses the elements in Asub, the ad-

dresses without XOR-hash can be written as a set S =
{c+ pi+ qj + rk | i, j, k ∈ Z2}, where |S| = 8 and c is

an arbitrary integer standing for the starting address of the

group. For example, in (ii-b) and (iii-a), those addresses
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Figure 4. (i) illustrages a block of 4× 4 threads is perform a 3× 3
convolution, requesting 6× 6 shared memory. (ii) and (iii) show a

few accessing patterns under different grouping scheme; the left-

most figures show how the 36 elements are padded and distributed

to 8 SRAM banks.

of the groups could be generated by (p, q, r) = (12, 2, 1)
and (12, 6, 1). If S mod 8, the bank numbers where the

elements lie in Asub, are unique, then bank conflict won’t

happen, and such uniqueness can be proven by contradic-

tion.

The tuple (p, q, r) is (1, 2, 8) in (ii-c), and a XOR-hash

function is used to prevent the bank conflict. By placing

the a-th element at address h(a) = aˆ(a&8)>>1, a hash

function XOR-ing the 3rd bit onto the 2nd bit of a, the

set of bank numbers become h(S) mod 8, which should be

unique in order to execute without bank conflict.

To prove the uniqueness, we will establish a contra-

diction on finding two equal elements with (i1, j1, k1) ̸=
(i2, j2, k2) in h(S) mod 8. The proof starts from the num-

ber in (p, q, r) with the least trailing zeros when represented

in binary, which is p = 1 = 12. Eq. (8) says that adding

numbers with more trailing zeros does not flip the lower

bit(s) and thus implies i1 = i2.

bit 0 of h(c+ i+ 2j + 8k) = bit 0 of h(c+ i) (8)

The proof goes on q = 2 = 102 and r = 8 = 10002,

and j1 = j2, k1 = k2 can be proven by inspecting one bit

at a time and by induction, establishing the contradiction as

desired. Also, note that sj = 0 in Eq. (5) always generates

addresses to the same bank, but these become broadcasts

which are free for most parallel processors.

5. Application and Evaluation

5.1. Token Efficiency

Listing 2 and 3 shows a Bilateral Filter implemented

with the UMI operator. In Loop(), the neighbour pixels

and two corresponding spatial weights are packed in the ar-

ray i. Listing 3 specifies the input as an h-by-w image

divided into 16-by-16 blocks, and each thread in a block

performs a k-by-k local window scan. The middle lines

represent the U(·)s, and the range term σr is passed to the

kernel at the last line.

Listing 2. An UMI strategy for bilateral filters.
class BilateralStrategy {

float wsum, wxsum, center;

struct Constant {float norm;};

PreLoop(0,1) {wsum = wxsum = 0; center = i[0];}

Loop(0,3) {

float d = n-i[0];

float w = expf(d*d*c.norm)*i[1]*i[2];

wsum += w; wxsum += w*i[0];

}

PostLoop(1,0) {o[0] = wxsum/wsum;}

};

Listing 3. An UMI execution routine for bilateral filters .
UMI::Execute<Bilateral>(

// size and tile size

{{h,16}, {w,16}}, {{k,k}, {k,k}},

// d_i, o_i, s_i for input

{{0,0,1}, {1,0,1}},

{{0,-k/2,1}, {1,-k/2,1}},

{h, w} // h-by-w image

// d_i, o_i, s_i for spatial weight

{/*Nothing*/},

{{0,0,1}, {/*Nothing*/}},

{k} // vector of length k

// More configurations of U()s ...

Bilateral::Constant{0.1}

);

We collect kernels from open-source projects such as

Caffe, OpenCV, and Parboil[13, 1, 26], and rewrite them

using the UMI operator. Table 1 shows the number of lexi-

cal tokens required to express different algorithms. It can be

observed that programming with UMI increases the number

of literals for defining di, si, and oi. However, the num-

ber of identifiers and operators consumed by UMI is even

less than näive CPU implementations, because program-

mers only need to describe essence of the kernels without

laborously moving the data between memory hierarchies.

Operating on identifiers tends to be more error prone than

defining separate literals, and therefore programming with

UMI can greatly reduce coding efforts.

5.2. Performance Evaluation

Owing to the register pressure caused by the overly ag-

gressive optimization strategy in the compilers, we can only

discuss a subset of the kernels here. Details of the prob-

lem will be described in 5.3. The performance results are

shown in Table 2. First, when compared against separa-

ble filter in OpenCV, UMI is slower for shorter convolution

lengths owing to the pre-computation overhead, but prevails

for longer convolution lengths. It is particularly interesting

because, despite the simplistic nature of this kernel, we are
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Table 1. Kernel token size comparisons. Note we excluded func-

tional signatures. Identifiers include type name, variable name,

and reserved word. Literals include tokens like 1.2f and 0x11f.

Kernel Token type
UMI
(ours)

Näive
CPU

Tuned
GPU

Motion identifier 49 80 194

estimation operator 11 45 106

literal 67 12 38

Bilateral identifier 69 87 122

filter operator 22 49 61

[29] literal 61 7 3

Forward identifier 53 110 204

propagation operator 7 65 117

literal 62 11 14

GEMM identifier 34 34 146

operator 7 20 35

literal 59 4 3

Integral identifier 24 23 50

image operator 6 14 22

literal 42 3 8

Separable identifier 35 50 91

filter operator 5 29 47

literal 37 7 5

Table 2. Speed up ratios of GPU implementions of algorithms. The

baseline is OpenCV, Parboil and Caffe, respectively.

Kernels Note Speed up

Separable k = 3 0.35

filter k = 30 1.42

Motion 6.51

estimation

Forward UMI 3 + 1s 19.9

propagation UMI 9 + 1s 26.4

UMI 3 + 2s 1.80

UMI 9 + 2s 2.83

cuDNN 3 + 1s 100

cuDNN 9 + 1s 109

cuDNN 3 + 2s 27.1

cuDNN 9 + 2s 27.3

able to extract an extra 30% performance gain. Second,

although there remains a large gap between the general-

purposed UMI operator and the heavily-tuned cuDNN, the

UMI operator still surpasses Caffe which is built on top of

the heavily optimized cuBLAS linear algebra library from

NVIDIA. Also, the UMI operator holds an edge against

Caffe for smaller strides and larger kernels, showing a per-

formance pattern in line with cuDNN.

5.3. Limitations

The UMI operator focuses on abstracting and accelerat-

ing regular kernels, therefore it can not be used for data-

dependent kernels such as warping and tree-based algo-

rithm. However, targeting such kernels is less effective,

since they tend to be too memory-bounded to benefit from

the shared memory. For example, NVIDIA’s ray tracing

library Optix[23] shows no more than 10x acceleration

compared to CPU versions, and the warping functions in

OpenCV are not accelerated by shared memory.

Second, although the UMI operator defines an effective

and general method for using shared memory as read cache

for the input tensors, it does not describe how to write the

result to the shared memory.

In terms of execution efficiency, even though our UMI

implementations is faster than most open-source kernels,

we are not able to reach comparable performance against

vendor-provided libraries such as cuDNN. We inspected the

machine code and attributed the gap to excessive common

sub-expression elimination (CSE) by the compilers. For ex-

ample Listing 4 is a GPU kernel performing 1-norm nor-

malization on short vectors. Intuitively this kernel should

use about 10 registers for buf[10], but CSE recognizes

the same pointers mem+i and retains the results between

two loops even though it could be cheaper to calculate them

again. As a result, a compiled version of this code uses

roughly 10 floats and pointers, summed up to 30 regis-

ters in total, and this is the main reason why we couldn’t use

larger register tiles in 4.1.

Listing 4. Compilers can optimize incorrectly for the GPUs.
float buf[10], one_norm;

for (i = 0; i < 10; ++i)

one_norm += abs(buf[i] = mem[i]);

for (i = 0; i < 10; ++i)

mem[i] = buf[i]/one_norm;

The XOR-hash for conflict-free execution also intro-

duces a few bit-level instructions, injecting overheads into

the innermost loop of kernel. However its implementation

is cheap enough [17, 7, 9], and it could possible be merged

to existing load instructions.

6. Conclusions

In this paper, we described the UMI operator and how

they can be implemented efficiently with the processor ar-

rays in GPUs. We applied the operator to several applica-

tions and demonstrated substantial performance gains and

code token reduction in most cases compared to open, state-

of-the-art implementations.

In the near future, we plan to share our implementation

to the open-source community, and explore possibilities for

hardware implementations of the UMI in the form of a mod-

ification to the shared memory fetch unit. We will also

investigate the limitations outlined in the paper, such that

this operator can be used to apply to more algorithms in the

fields of computer vision, pattern recognition, and scientific

computation.
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