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Abstract

Given an image of a street scene in a city, this pa-

per develops a new method that can quickly and precisely

pinpoint at which location (as well as viewing direction)

the image was taken, against a pre-stored large-scale 3D

point-cloud map of the city. We adopt the recently devel-

oped 2D-3D direct feature matching framework for this task

[23,31,32,42–44]. This is a challenging task especially for

large-scale problems. As the map size grows bigger, many

3D points in the wider geographical area can be visually

very similar–or even identical–causing severe ambiguities

in 2D-3D feature matching. The key is to quickly and unam-

biguously find the correct matches between a query image

and the large 3D map. Existing methods solve this problem

mainly via comparing individual features’ visual similari-

ties in a local and per feature manner, thus only local solu-

tions can be found, inadequate for large-scale applications.

In this paper, we introduce a global method which har-

nesses global contextual information exhibited both within

the query image and among all the 3D points in the map.

This is achieved by a novel global ranking algorithm, ap-

plied to a Markov network built upon the 3D map, which

takes account of not only visual similarities between indi-

vidual 2D-3D matches, but also their global compatibili-

ties (as measured by co-visibility) among all matching pairs

found in the scene. Tests on standard benchmark datasets

show that our method achieved both higher precision and

comparable recall, compared with the state-of-the-art.

1. Introduction

Getting accurate estimation of 6-DoF camera pose from

an image is essential for many computer vision applications

such as robot navigation [15, 37], augmented reality [35,

55], and image-based 3D reconstruction [4,18]. While more

and more consumer-grade cameras are equipped with in-

built GPS sensors which can provide some rough location

estimation, the accuracy is rather coarse (at tens of meters

[12, 57]) and is inadequate for many critical applications.

This paper proposes a new method for image-based cam-

era localization (or IBL in short), against a pre-computed

3D point-cloud map. Our method follows the recently pro-

posed framework of direct 2D-3D matching [23,31,32,42–

44]. Under this framework, camera pose is computed by

directly matching 2D image features (e.g. SIFT [34]) from

the query image to 3D points in the map, then solve a stan-

dard camera absolute pose problem via PnP (perspective-

n-points). If the 2D-3D matches found are contaminated

by some small portion of outliers (i.e. wrong matches),

RANSAC is conventionally applied to clean up the matches.

However, this “PnP+RANSAC” scheme only works for

small or moderately large problems. When the 3D map is

very large, for example, covering a wide geographical area

of an entire city or even a country, there may have tens of

thousands or millions of 3D map points, which poses two

major challenges to the problem: (1) how to quickly search

(match) within a massive database of millions of 3D points;

and (2) how to accurately find correct matches without suf-

fering from ambiguity. The latter is more critical because,

as the 3D map grows larger, more and more 3D features

(e.g. SIFT) can become visually very similar or even iden-

tical due to repetitive structures. As such, one is facing an

extremely difficult task of “finding a particular needle in

a huge haystack containing many other similarly-looking

needles”. Applying RANSAC to this situation is doomed to

fail, because the inlier ratio in the putative matches can be

as low as e.g. ≤ 0.01 [51, 52].

To solve this scalability issue, existing direct 2D-3D

methods often adopt advanced retrieval techniques, such

as “vocabulary tree” and “ratio test” to remove ambiguous

matches [40, 42–44, 47]. However, they do this largely in

a local, sequential fashion on individual per feature basis.

In their methods, the match-or-not decision is only made
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locally based on comparing individual feature match’s vi-

sual similarity. When the 3D map is very large, it may have

many repeated structures, spurious or ambiguous matches

are almost inevitable. As a result, the matches found by a

local method may be overwhelmed by outliers, leading to

wrong localization.

In this paper, we introduce a principled new method

which finds optimal 2D-3D matches in a global manner.

Contrast to existing methods which rely on local (per fea-

ture basis) visual similarity comparison, we advocate a

global scheme which exploits global contextual information

exhibited not only within 2D features from the query image,

but also among all matched 3D points in the map. More

specifically, our new method no longer treats each individ-

ual 2D-3D match in isolation, but takes account of the com-

patibilities (or coherencies) among all 2D-3D matches. To

measure such compatibility, we do not consider 3D points

in the map as unordered “clouds of points”. Instead, ev-

ery 3D point joins with other neighboring 3D points via

co-visibility relationship. A precise definition of the co-

visibility relation and how to use it for global matching will

be described in detail later in the paper.

Tested on standard benchmark datasets for 2D-3D IBL,

our new method shows superior performance, outperform-

ing state-of-the-art methods in many aspects. Compared

with [43,44], it halves the median localization error (higher

precision), while maintaining a comparable level of recall.

More importantly, our method is a principled global ap-

proach, thus allows for versatile extensions.

2. Related Work

In this section, we give a brief review of previous papers

closely related to our new method. We focus on the task

of localizing a single image against a large-scale 3D map,

hence omitting a large body of works on video-based cam-

era localization such as that for visual-SLAM (e.g., FAB-

map [14]). For space reason, we also leave out those (ma-

chine) learning-based methods (e.g. regression forest [49],

deep PoseNet [26, 27]). Interested readers are referred to

these literatures for more details.

Image-retrieval based methods Instead of building

large-scale 3D map using Structure-from-Motion (SfM)

methods [4,18,48], the image-retrieval based methods (e.g.,

[6, 8, 11, 19, 25, 28]) try to identify the similar databased

images depicting the same landmarks as the query image.

Often, the retrieved database images are ranked subject to

some similarity metrics (e.g., L1 norm distances between

Bag-of-Words vectors [19], L2 norm distances between

compact representations/vectors [6, 7]), and the position of

the best database image is deemed as that of the query im-

age or the top N images are fused to get the position of the

query image [46, 47, 50].

Direct 2D-3D matching. Irschara et al. [23] first pro-

posed the 2D-3D matching method for camera localization.

To overcome limited viewpoints in the database images,

they artificially synthesized novel view image to augment

the database. Alcantarilla et al. [5] learned a similarity met-

ric between images based on poses to predict which 3D

points are visible at the current camera pose. By assum-

ing known gravity direction, Svarm et al. [51, 52] and Zeisl

et al. [58] developed methods to handle outliers. Sattler

et al. [40] performed matching via a fine-grained vocabu-

lary search. Feng et al. [17] proposed to use binary feature

descriptors to speed up the search. All these methods are

local methods in the sense that they seek to find one-to-one

feature matches based on local similarity comparison; they

seldom exploit global information, hence can only find a lo-

cal, hence sub-optimal solution. To distinguish true matches

from spurious matches (i.e. outliers), they adopted Lowe’s

ratio-test [34], yet the results are not satisfactory for large-

scale maps ( [16]).

Co-visibility. The idea of using co-visibility (co-

occurrence) for IBL is not brand new. It has been adopted

by several previous works (e.g. [13, 31, 32, 45]), though

in a local heuristic manner (for example, to improve

local search efficiency via query expansion, to prioritize

candidate matches, or to filter out false 3D points via

geometric validation [40, 43, 44]). Since their processes are

often performed at individual match level, they often need a

good initialization [13, 31, 32]. In comparison, our method

performs global ranking of 2D-3D matches based on global

information, without the need to re-compute priorities of

3D points. Moreover, we do not reject promising matches

pre-maturely.

3. An Overview of the Proposed Method

Contrast to previous works, in this paper we propose a

global method which exploits global contextual informa-

tion to resolve the matching ambiguity. Specifically, we

harness two types of global contextual information. For one

thing, instead of focusing on matching each individual 2D

feature, we treat the entire set of features in the query image

jointly. For the second, we no longer consider each possible

2D-3D match in isolation, but consider all tentative 2D-3D

matches together. We obtain set-to-set matches instead of

finding one-to-one matches in the first place and defer the

disambiguation task until a later stage of the computation.

Figure-1 gives an overall pipeline of our method. Figure-2

illustrates the conceptual difference between traditional lo-

cal methods and our new global method.

To define the global contextual information among 3D

points, we use co-visibility relationship. The central mech-

anism of our method is a probabilistic inference procedure

applied to a Markov graph, built upon the 3D map points as
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Figure 1. We solve a large-scale image-based localization problem by leveraging global contextual information manifested as co-visibility

relationship between pairs of 3D map points. (a) Image features extracted from the query image; (b) Assign 2D features to visual words

to obtain candidate 3D matches; (c) The matches are ranked based on global contextual information; (d) One-to-one 2D-3D matches are

disambiguated; (e) PnP+RANSAC is used for 6-DoF camera pose recovery against the 3D map (f).

Figure 2. Left: traditional local method, in which the decision is

made locally and sequentially; Right: the proposed global match

scheme, where we seek optimal set-to-set match. Blue nodes: 2D

features in the query image. Green node: 3D points in the 3D map.

Blue links indicate co-visibility relationship among 3D points.

graph-nodes, connected by graph-edges representing inter-

point co-visibility relationships. The inference is done glob-

ally, taking account of all 2D query features, all 3D map

points, as well as the co-visibility encoded as graph-edges.

To solve the inference task on a Markov graph, we resort

to the Random Walk with Restart (RWR) algorithm [53].

Google’s PageRank [9] algorithm is in fact a well-known

variant of RWR algorithm [53]. The probability distribu-

tion of graph nodes in a Markov graph evolves in a stochas-

tic manner via random walk. When it converges, the stable

state of a node measures the “relatedness” (i.e. “matchabil-

ity”) between the node and the set of query features. Re-

call that one of the key innovations of this paper is to seek

global optimal (set-to-set) matches, rather than local one-

to-one matches.

4. The Proposed Method

We go directly to explain key steps of our new method.

4.1. Step1: Build a MapGraph with pairwise co
visibility edges

Traditionally, a 3D map is often encoded as a set of un-

ordered point clouds [42–44]. In this work, we aim to bring

order to the clouds, by connecting (organizing) all 3D points

in the map in a well-structured map-graph, and denote it

as G(V,E), with V indicating the set of graph-nodes, each

corresponds to a 3D point (as well as its associated descrip-

tors (visual words)); and E the set of graph edges. A pair

of 3D points are connected with a graph edge if and only

if they can be seen simultaneously from the same viewing

point. Like many other works, we assume our 3D map was

pre-computed via Structure-from-Motion [4, 18, 48] tech-

nique using a large set of database images. Therefore, the

co-visibility relationship among 3D points can be obtained

using the database images.

We require G(V,E) to be weighted and bi-directed. Thus,

for every pair of co-visible 3D points in the graph (i and

j), there are two edges (eij and eji) connecting them, with

non-negatively-valued weights of cij and cji. The weights

measure how strong the co-visibility relationships between

the two points are, as per the following sense: If point-j is

seen by an image set, the value of cij measures how likely

the point-i can also be seen from the same image set. cji
can be defined conversely, and cji 6= cij in general.

Formally, suppose there are N nodes and M edges in the

graph. We devise the following procedure to compute cij ,

using database images used in the map-construction stage.

For the i-th 3D point, denote the set of database images that

contain this point as Ai. If two distinct 3D points i and

j are co-visible, they will cast “support” or “endorsement”

to each other, and the strength of the “endorsement” from

point-j to point-i (i.e. cij) is defined as:

cij =
|Ai ∩Aj |
|Aj |

, (1)

where |Aj | is the cardinality of set Aj , and Ai ∩Aj denotes

the set-intersection operator. This equation can be under-

stood as follows. Since point-j is known to be visible, the

probability that point-i and point-j are co-visible is propor-

tional to the total number of database images that contain

both points, normalized by the total number of images that

contain point-j. Conceptually this is similar to the idea of

tf-idf (term-frequency/inverse document frequency) as com-

monly used in information retrieval [2].

Collecting all cijs into a square matrix C = [cij ] of size

N × N , and normalizing each column to have unit norm,
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we are able to represent the entire graph G by its C matrix.

The reason of normalization is to make C a left stochastic

matrix [1], and every cij can be interpreted as a probability.

We call C the state (probability) transition matrix, for

reasons that will be clear in the rest of the paper. Note also

C is often a sparse matrix especially for a large graph. Note

that C is based on database images and the 3D map only,

hence it is query-independent and can be pre-computed off-

line.

The top part of the graph in Figure-3 illustrates a toy-

sized map-graph with 15 nodes (i.e. nodes colored in green)

and some bi-directed co-visibility edges (i.e. links colored

in blue).

4.2. Step2: Compute query vector q

Given a query image, we first detect a set of 2D fea-

ture points, along with their view-invariant descriptors (e.g.

SIFT [34] ). Next, for every 2D feature we find a set of ten-

tative matches from the 3D graph nodes, by comparing their

descriptor similarity via an efficient vocabulary-tree search

mechanism [36]. Instead of seeking a one-to-one 2D-3D

matches, here we only look for one-to-many matches; the

reason is to avoid local matches (which may be pre-mature)

by deferring the one-to-one disambiguation process until a

later stage.

Vocabulary-tree search. We assign all the 3D points to

a pre-trained Bag-of-Words vocabulary-tree using Voronoi

vector quantization [38]. We use the same integer-mean

assignment method suggested by [42–44] to obtain 2D-3D

matches. Note that one 3D point may be assigned to multi-

ple visual words, and conversely one visual word may cor-

respond to multiple 3D points (ref. [43, 44]). However, for

each 2D feature from the query image, we only assign one

visual word to it for efficiency.

Query vector. We use the Hamming embedding distance

H(f, i) to measure the similarity between a 2D query fea-

ture f and a 3D map point i. For brevity we refer the

reader to [24] for a precise definition of Hamming embed-

ding distance. Next, inspired by [8, 24, 41, 47], we de-

fine the similarity between 2D feature-f and 3D point-i as

wfi = exp(−H2(f, i))/σ2, ∀i ∈ [1..N ], where σ is typi-

cally set to 1/4 of the dimension of the descriptor accord-

ing to [8]. Note that the similarity is computed at per visual

word basis.

By summing up all the similarities from the entire set of

query features at every 3D point, and stacking the results

into a single vector, we obtain a vector q ∈ R
N whose i-th

element is:

qi =
∑

f∈O(i)

√
wfi

Ni

· log
(

N

Nf

)

, (2)

Figure 3. An illustration of a toy-sized map-graph G(V,E). Green

nodes are the 3D point clouds in the map. Blue edges are co-

visibility links. The blue nodes on the bottom represent 2D query

features which assign initial probabilities to the 3D points based

on the query-vector q computed by Eq.2.

where O(i) is the set of 2D query features which are (ten-

tatively) matched to point-i; Ni is the size ofO(i), N is the

total number of 3D points in the map, and Nf is the num-

ber of 3D points which are tentatively matched to feature-f .

Once q is obtained, we normalize it to have unit norm, i.e.,

qi ←
(

qi/
∑N

i=1 qi

)

, ∀i ∈ [1..N ]. We call such a (nor-

malized) q the query vector. Intuitively, the i-th entry of

a query vector (i.e., qi), measures the probability of point-

i belongs to the optimal sub-set of 3D points that can be

matched to the set of 2D query features – based on their

visual word similarity only.

A remark. Existing methods for direct 2D-3D matching

are primarily built upon the comparison of local 2D-3D fea-

ture similarity (e.g., perform 2D-3D ratio-test at per visual

word basis [42–44] ); they fail to capture global information

among all the matches.

4.3. Step3: Random walk on mapgraph

Given a map-graph G(V,E) along with a state transition

matrix C (Sec. 4.1). we formulate it as a Markov Network

(aka. Markov Random Field). Suppose we are present with

a query image, we first compute its query vector q with

respect to the graph G (Sec. 4.2).

Our idea to seek a global match between 2D query image

and 3D map is to run a Random Walk algorithm on this

graph, conditioned on the input query vector q. When the

random walks converge, we then deem that the steady-state

probability obtained at each 3D node on the graph actually

measures how well it is matched (or matchable) to the query

image. The higher a node’s steady-state probability is, the

more probable that it belongs to the correct 3D point set.

In essence, a random walk algorithm simulates a

randomly-moving walker traversing through the graph. At

every time tick, the walker moves to a randomly chosen

neighboring node based on the probability stored in matrix

C. Probability pv(t) is defined as the probability of finding
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the random walker at node v at time t. Therefore, when t
goes to infinity, pv(∞) gives the probability that the random

walker eventually ends at node v.

In the 2D-3D matching context, our idea is to capture

both local feature appearance similarity information and

global points co-visibility information. For this purpose we

require the random walk to respect both visual-word sim-

ilarity (prescribed by the query vector q) and global co-

visibility structure (provided by the transition matrix C).

We design the following Random Walk with Restart (RWR)

iterative procedure, where the random walker has a ten-

dency (though at a small probability) to return to the set

of starting nodes prescribed by the query-vector q.

Random Walk with Restart:

p(t+ 1) = αCp(t) + (1− α)q. (3)

Here p(t) ∈ R
N is the graph’s state probability vector at

time t. α is a trade-off parameter, often chosen empirically

between 0.8–0.9. The second term in the right hand of the

iteration equation is known as the restarting term, which

gives the random walker a small probability of returning to

the states prescribed by the query vector. For readers who

are familiar with MRF, we can say that: the first term of

the right-hand side of the equation is basically the “prior”

or “smoothness” term which describes how the network be-

haves if no external query signal is presented. The second

term is the “data term” which encourages the result to re-

spect the input query signal.

To start the iteration, we initially concentrate all the

probability mass uniformly over all 2D query features (e.g.

in Figure-3, the 2D query features are colored in blue),

i.e., all the 2D query features have the same probabilities

to be matched to 3D points. We then connect these query

features to the 3D graph nodes by one-way directed edges

(Vocabulary-tree search), and inject probability mass to the

graph based on the probabilities stored in q, i.e., the original

probabilities of 3D points are initialized by q. Once the iter-

ation converges, we sort this steady-state probability vector

p(∞) in descending order, which gives the final “matcha-

bility” of every 3D point to the set of 2D query features.

Remarks. As proved in [22], convergence of the above it-

eration is guaranteed when C is aperiodic and irreducible.

In our particular map-graph, both conditions are satisfied,

because aperiodicity is true since the state transition proba-

bilities in Eq.(1) are different for distinct pair of 3D points,

and the irreducibility is true since our graph is (two-way) bi-

directed connected. There are no so-called dangling nodes

as all 3D map points were computed from SfM triangulation

from two or more views, therefore they cannot exist alone

without co-visible neighbors. Also, the above iteration is in-

timately related to Google’s PageRank [20]. This is not sur-

prising, because the task that we are solving in this paper

is a typical information retrieval (IR) task, and PageRank

is a well-known IR tool efficient in solving large-scale IR

problems. However, despite this, to the best of our knowl-

edge, random-walk has not been applied to Camera Local-

ization. Moreover, there are important differences between

our method and PageRank, which make our method par-

ticularly relevances for IBL: (1) We use bi-directed graph

with two-way weights to capture co-visibility neighborhood

relations, in contrast to Google’s undirected “Web graph”

with binary (1/0) hyperlink neighbors. (2) We do not use

Google’s uniform teleportation vector, and replace it with a

query vector. In spirit ours is akin to a personalized version

of PageRank [21]. (3) Our state transition matrix and sim-

ilarity query vector have taken into account of the special

structure of the direct 2D-3D method.

4.4. Step4: Camera pose computation

Recover one-to-one correspondences. The steps so far

have only achieved set-to-set global matching. To facilitate

camera pose computation, ultimately we still need one-to-

one matches. Since after our previous random walk algo-

rithm, positive 3D points will likely be ranked highly, mak-

ing it amenable to a simple ratio-test [34] to resolve the

one-to-many ambiguity. Other more sophisticated match-

ing methods (such as Hungarian assignment [29]) are also

applicable. We do not insist to find perfect putative one-

to-one matches at this point, because the matches will be

fed into the subsequent PnP-RANSAC for further outlier

removal. We simply use the ratio-test to retrieve one-to-one

matches. The ratio-test is performed by comparing the de-

scriptor distances between the 3D points (one-by-one in the

ranking list after random walk iterations) and 2D feature

points when they are at the same visual words in the vocab-

ulary tree. The one-to-one match is accepted when it passes

the ratio test.

RANSAC camera pose. The obtained one-to-one corre-

spondences are fed directly to a RANSAC absolute pose

routine. We use the P4P approach [10, 33] to solve the un-

known focal length, camera position and orientation.

5. Experiments

Benchmark datasets. We conducted extensive exper-

iments to validate the efficacy of the proposed global

method. We evaluate its performance against four standard

publicly available benchmark datasets for city-scale local-

ization ( [12,43]): (1) Dubrovnik, (2) Rome, (3) Vienna and

(4) San Francisco (SF-0), where the first 3 have about mil-

lions of 3D map points, but the last one is much bigger in

size (e.g., by 1 or 2 orders of magnitude larger in terms of

total number of 3D points or database images). Information

about the 4 datasets is summarized in Table-1.
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Table 1. Statistics of the benchmark datasets: the numbers of

database images, 3D points and query images.

Dataset #(images) #(points) #(query images)

Dubrovnik [32] 6,044 1,975,263 800

Rome [32] 15,179 4,067,119 1,000

Vienna [23] 1,324 1,123,028 266

SF-0 [12] 610,773 30,342,328 803

Experiment setting. To evaluate the algorithm perfor-

mance, we mainly use (a) recall-rate (i.e. how many images

have been successfully localized), (b) precision (i.e. cam-

era localization errors), (c) accuracy (i.e. what is the inlier

ratio in the final matched 2D-3D feature pairs after apply-

ing RANSAC), as well as (d) scalability (i.e. by testing on

the largest dataset of SF-0 containing over 30 Millions map

points). All our experiments were conducted on a single

CPU thread based on a regular laptop with Intel i7-6700K

CPU at 4GHz. Note for localization precision comparison,

we only report results on Dubrovnik dataset, because it is

the only dataset among the four which has metric ground-

truth information to 6 DoF camera locations. For SF-0 we

only found rough estimations of camera positions given out

by the GPS-tag of each query image. In implementing the

visual-vocabulary-tree search, we use a pre-trained vocabu-

lary of 100K visual words [42], generated with approximate

k-means clustering [39] of SIFT descriptors, and choose a

tree branching factor at 10. We perform the 3D-2D ratio-

test at level 3 to recover the one-to-one correspondences,

the ratio-test threshold used to reject outlier matches is set

to 0.6, which is the same as used by Active Search [43,44].

We used P4P [10, 33] and RANSAC. In RANSAC, the re-

projection error for rejecting outliers was set to 4 pixels, and

the belief level at 0.99 and the expected inlier-threshold at

0.4. We used a damping parameter of α = 0.85 and stop the

algorithm after 10 iterations (enough for converging, i.e.,

the permutation of 3D points are fixed after the iterations).

5.1. Is global search really effective?

In our first set of experiments, we want to verify (and

to evaluate) whether or not the use of global contextual

information (as defined by the Markov graph using pair-

wise 3D point co-visibilities) is effective. For this purpose,

we compare our method with the Active Search method

[43, 44]– which is considered as the state-of-the-art local

search methods. In other words, it is expected that re-

sults obtained by Active-Search represent what the best-

performing local methods should achieve. We conducted

experiments on the metric version of Dubrovnik dataset

with sub-maps with reduced sizes of up to 40, 000 map

points. The sub-map for each query image is generated by

including the 3D points observed by its nearby database im-

ages, using image-retrieval techniques [46] or GPS data of

the query/database image if available [3, 12].
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Figure 4. (a). Compare the two histograms of inlier ratios for the

800 query images of Dubrovnik. Red: histogram by our method;

Light-blue: histogram by Active-Search. The average inlier-ratio

obtained is 81.1%, and 57.1%, by our method and by Active-

Search, respectively. (b). The absolute improvement in terms of

inlier numbers (=#(inliers found by our method)-#(inliers found

by Active-Search)) over all query images from Dubrovnik. A

positive-valued ‘difference’ means more inliers are detected by our

method. Our method consistently outperforms the local Active-

Search method for almost all 800 queries.

We use the final inliers set reported by PnP+RANSAC

as the found inlier matches. We keep all parameters for

the RANSAC process the same for both our method and

Active Search for the sake of fair comparison. After running

both algorithms, we compare the histograms (distributions)

of the obtained inlier ratios. The higher the inlier ratio is,

the better the method. Figure-4 (a) gives the distributions of

inlier ratios for the two methods. From this, one can clearly

see that our global method statistically outperforms Active-

Search. To evaluate whether the improvement is consistent

across all query images, we plot the differences between

the numbers of correctly-detected inliers (out of the top 100

ranked candidate matches), one was obtained by our method

and one by the Active-Search method. Figure-4 (b) shows

this result. Again, except for a few exceptions, our global

method outperforms the Active Search method consistently

for almost all 800 query images.

0 0.2 0.4 0.6 0.8 1

 threshold

100

200

300

400

500

600

700

800

n
u

m
b

e
r
 o

f 
lo

c
a

li
z
e

d
 f

r
a

m
e

s

our method

act. se.

Figure 5. Recall curve: i.e., the number of localized images as a

function of inlier ratio threshold. The higher, the better. (see text

for more details).

Recall Curve. To evaluate the recall performance (i.e. num-

bers of query images that can be successfully localized un-
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Table 2. Numbers of localized images v/s inlier ratio thresholds.

Method
Inlier thresholds

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Active Search [43, 44] 709 673 607 528 420 287 162

Our method 791 774 757 730 690 607 516

der different inlier-ratio-thresholds), we vary the inlier-ratio

thresholds between [0–1]. We then plot the obtained two

recall curves (one by our global method, one by the local

Active Search method). As shown in Figure-5, our method

has consistently localized more images at all threshold lev-

els. A detailed numerical comparison for the two methods

under different inlier-ratio thresholds is given in Table-2:
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Figure 6. Localization Precision on the Dubrovnik dataset. Left:

translation error histogram; Right: rotation error histogram. Re-

sults by our method in red, and by Active-Search in blue.

Localization Precision. We also compare the 6-DoF cam-

era pose precisions obtained by the two methods. Rotation

error is measured by ǫ = arccos((trace(RT
gtRes)− 1)/2),

where Rgt is the ground-truth rotation, and Res the esti-

mated one. Translation error is measured by the absolute

distance between the estimate and the ground-truth camera

center. Figure-6 gives the histogram over the position er-

rors and rotation errors. Our method outperforms the Active

Search method at almost all position/rotation levels, local-

izing more frames while maintaining the accuracy.

Table 3. Localization errors on metric Dubrovnik.

Method
quartile errors (m) num. of images

1st median 3rd <18.3m >400m #(reg.)

our method 0.24 0.70 2.67 743 7 794

act. se. [43, 44] 0.40 1.40 5.30 704 9 795

all desc. [42] 0.40 1.40 5.90 685 16 783

int. mean [42] 0.50 1.30 5.10 675 13 782

P2F [32] 7.50 9.30 13.40 655 - 753

vis. prob. [13] 0.88 3.10 11.83 - - 788

5.2. Comparisons with other StateoftheArt

In this section, we compare our method with several

other state-of-the-art local methods. Following [31, 32, 43,

44], we deem an image is localized if the best-pose found

by RANSAC contains ≥ 12 inlier matches. We first com-

pare the localization precision and the results are presented

in Table-3 and Figure-7. Our method achieves the best lo-

calization accuracy at all three quartile levels of location

errors, which almost halves the localization errors obtained

our
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Figure 7. Compared with five other existing methods, our method

achieves the best localization precision while maintaining a high

recall on the metric Dubrovnik dataset. The lower the error bar is,

the better the method.

error < 18.3m

18.3m<error 

< 400m

error > 400m

Figure 8. Sample results on metric Dubrovnik data. The detected

inlier points are shown as circles in green, and outlier features in

red, against different localization errors. SIFT feature points are

depicted as black dots. For images with error < 18.3m, the inliers

are evenly distributed over the image. For images with 18.3m <

error < 400m, the inlier features tend to concentrate on a small

region of the image.

by other methods. It localizes 743 (out of 800) query im-

ages under a localization error of < 18.3m. The average

query time is 1.73s.

Examples of detected inlier and outlier features for some

sample query images are shown in Figure-8. A point-cloud

view of the estimated camera locations is given in Figure-9.

Our method outperforms a very recent pose-voting method

[58] in terms of location precision (pure voting with median

error at 1.69m), despite [58] used IMU information (for ver-

tical direction determination). We did not compare method

in [51] (which also exploited known vertical direction in-

formation) because their results were obtained on synthetic

data only.

We also experimented on the Rome and Vienna datasets.

They each has about 4-millions and 1-millions 3D map

points, respectively. Our method has localized 990 (out

of 1000) and 213 (out of 266) query images for these two

datasets, respectively. The average query time by our un-

optimized code was 2.35s and 1.67s, which while slower
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Figure 9. Estimated 6-DoF camera poses with respect to the

3D point clouds on the metric Dubrovnik dataset. The 3D

points are denoted by black dots. Estimated and ground-truth

camera poses are colored in red and blue, respectively. The

number besides the camera model is the index of query im-

age. (Best viewed on screen with zoom-in.) An online

demo is available at https://www.youtube.com/watch?

v=hBwdMcZhbfo&list=UUXw_IGWxWrOuhYhJ-BbmNnw

than Active-Search, are adequate for interactive applica-

tions ( [11, 23, 31, 32, 42–44]). If a 3D map is very large,

it is nearly inevitable to find repetitive structures. In order

to evaluate our method’s resilience to repetitive structure,

we adopted (and modified) method of [54] for repeated fea-

ture removal. It requires points share similar visual word

from lower-level of the vocabulary tree. Details and results

for this test is given in supplementary material.

5.3. Test on a very large scale dataset (SF0)

Now we attempt to test our method on the San Fran-

cisco (SF-0) dataset [12], which is the largest one among

the four, containing about 30-millions map points. Besides

its huge size, there are also other challenges associated with

this dataset: e.g., the provided images have very different

characteristics ( i.e. some were taken by cell-phone; some

were cropped sub-images of Google street-view with un-

specified camera model). Moreover, its total memory foot-

print for 3D points/descriptors is 28.5GB, exceeding our

PC’s memory size (24GB RAM). To be able to process the

data, we used the raw GPS data provided for the query im-

age to limit the search within a geographic region of about

600-meters in diameter, and we aim to refine GPS’s coarse

location estimation to very high precisions ( e.g., in meter

or sub-meter/sub-degree) ). Note that previous work on SF-

0 also used GPS prior [12]. As before, if the number of

inliers after RANSAC exceeds 12 points, we deem the lo-

calization is successful. Our method successfully localize

652 images (out of totally 803 query images), and the av-

erage time spent per image is 0.30s. We also ran Active

Search [43, 44] on the same dataset under the same sim-

plification using GPS. However it failed in most cases and

was only able to localize 31 images. We suspect that the

reason is due to the existence of large number of similar

or repetitive visual descriptors in this very large-scale map

(also confirmed by [31]), and Active-Search only makes lo-

cal 2D-3D match decision based on visual word similar-

ity. To the best of our knowledge, only two other methods

have handled SF-0 data efficiently, but they used different

local search heuristics, and none exploited global coheren-

cies of the query set and the 3D point clouds. This test

demonstrates that our method is able to handle problems of

such bigger sizes, yet still under the same “random walk on

Markov network” framework. In future we plan to tackle

larger, e.g., billion-point problems.

6. Conclusion

Scalability and Ambiguity are two major challenges for

camera localization if a direct 2D-3D matching approach

is employed. In this paper, We have proposed a prin-

cipled global method to address both issues in the same

framework. Our key idea is, contrary to existing methods

which mostly rely on local similarity search, we formu-

late the problem as a global inference task performed on

a Markov graph of the 3D map. The special structure of

the graph, in particular through its edges which encode the

co-visibility relationships among all 3D points, allows the

inference procedure to take account of not only individual

feature match’s visual similarity, but also the global compat-

ibilities as measured by the pair-wise co-visibility. Inspired

by Google’s PageRank, we solved the inference task via a

random walk algorithm. To the best of our knowledge, this

paper represents a novel and original contribution to the lit-

erature of image-based camera localization. Since the pro-

posed method advocates a global, holistic view to looking at

the problem, we hope it will inspire other new ideas which

may lead to more powerful solutions. For instance, cur-

rently we are investigating the potential usefulness of other

MRF inference techniques (such as Efficient-LBP [56] or

graph-cut with co-occurrence [30]) for solving even larger

camera localization instances.
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