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Abstract

Current image captioning methods are usually trained

via maximum likelihood estimation. However, the

log-likelihood score of a caption does not correlate well

with human assessments of quality. Standard syntactic

evaluation metrics, such as BLEU, METEOR and ROUGE,

are also not well correlated. The newer SPICE and CIDEr

metrics are better correlated, but have traditionally been

hard to optimize for. In this paper, we show how to

use a policy gradient (PG) method to directly optimize a

linear combination of SPICE and CIDEr (a combination

we call SPIDEr): the SPICE score ensures our captions

are semantically faithful to the image, while CIDEr score

ensures our captions are syntactically fluent. The PG

method we propose improves on the prior MIXER approach,

by using Monte Carlo rollouts instead of mixing MLE

training with PG. We show empirically that our algorithm

leads to easier optimization and improved results compared

to MIXER. Finally, we show that using our PG method we

can optimize any of the metrics, including the proposed

SPIDEr metric which results in image captions that are

strongly preferred by human raters compared to captions

generated by the same model but trained to optimize MLE

or the COCO metrics.

1. Introduction

Image captioning is the task of describing the visual

content of an image using one or more sentences.

This has many applications, including text-based image

retrieval, accessibility for blind users [25], and human-robot

interaction [6].

Most methods for solving this task require training a

statistical model on a dataset of (image, caption) pairs. The

model is usually trained to maximize the log likelihood of

∗Work done while interning at Google Research.

the training set. After training, these models are usually

evaluated by computing a variety of different metrics on

a test set, such as COCO [12]. Standard metrics from

the machine translation community include BLEU [14],

METEOR [3], and ROUGE [11]. More recently, the

CIDEr metric [20] was proposed, specifically for the image

captioning task. We shall call the combination of these four

metrics “BCMR”, for short. Unfortunately, none of these

metrics correlate strongly with human measures of caption

quality. In fact, humans score lower on these metrics than

the methods that won the COCO 2015 challenge, despite

the fact that humans are still much better at this task.

These results motivated Anderson et al. [1] to propose

the SPICE metric. Rather than directly comparing a

generated sentence to a set of reference sentences in terms

of syntactic agreement, SPICE first parses each of the

reference sentences, and then uses them to derive an abstract

scene graph representation. The generated sentence is then

also parsed, and compared to the graph; this allows for

a comparison of the semantic similarity, without paying

attention to syntactic factors (modulo the requirement

that the generated sentence be parseable). [1] showed

that SPICE is the only existing metric that has a strong

correlation with human ratings, and ranks human captions

above algorithms submitted to the COCO benchmark.

Given this result, it is natural to want to directly

optimize SPICE. However, this is tricky, since it is not

a differentiable objective. In this paper, we show that it

is possible to use policy gradient (PG) methods [17] to

optimize such objectives. The idea of using PG to optimize

non differentiable objectives for image captioning was first

proposed in the MIXER paper [15]. However, they only

used it to optimize BLEU-4, which is not correlated with

human quality. Furthermore, when we tried to use their

method to optimize other metrics, such as CIDEr or SPICE,

we got poor results, since their method (which involves

an intricate incremental schedule which mixes from MLE

training to full PG training) is not very robust and require
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careful tunning.

In this paper, we propose an improvement to MIXER,

that uses Monte Carlo rollouts to get a better estimate of the

value function, and avoids the need to “mix in” the MLE

objective. We show that this leads to faster convergence,

and is significantly more robust to choice of learning rates

and other hyper-parameters. We then show that we can use

our new PG method to optimize the BCMR metrics, thus

achieving state of the art results on the COCO leaderboard,

despite using a very simple baseline model.

However, being on top of the COCO leaderboard is not

our ultimate goal, since we know that the COCO metrics

(based on BCMR) are only weakly correlated with human

judgement [1]. So we decided to optimize SPICE with our

algorithm. Unfortunately, optimizing SPICE produced long

repetitive sentences which are not good results, based either

on BMCR COCO metrics, or as judged by humans.

The reason optimizing SPICE gives poor captions is that

SPICE ignores syntactic quality (see examples in Table 2)

More generally, we argue that a good image captioning

metric should satisfy two criteria: (1) captions that are

considered good by humans should achieve high scores; and

(2) captions that achieve high scores should be considered

good by humans. SPICE satisfies criterion 1, but not

criterion 2. We therefore propose a new metric, which is

a linear combination of SPICE and CIDEr; we call this

new metric SPIDEr. This metric automatically satisfies

criterion 1, since both SPICE and CIDEr do. Also, when

we optimize for SPIDEr, we show that the captions are

judged by humans to be significantly better than the ones

generated by training the same model using any of the other

metrics. This shows that SPIDEr satisfies criterion 2 to a

much greater degree than existing metrics.

In summary, we make the following contributions in this

paper: (1) we identify criteria for a good image captioning

metric, and proposed a new metric, SPIDEr, which meets

both criteria; (2) we propose a new policy gradient method

that can optimize arbitrary captioning metrics, and which is

much faster and more stable than previous PG methods; (3)

we show that using our new PG method to optimize existing

BCMR metrics leads to state of the art results on COCO; (4)

we show that using our new PG method to optimize our new

SPIDEr metric results in much better human scores than

optimizing for other metrics.

2. Related work

There is an extensive body of work on image captioning

(see e.g., [5] for a recent review). Below we summarize

some of the most relevant works.

2.1. Models

Most methods make use an encoder-decoder style neural

network, where the encoder is a convolutional neural

network (CNN), and the decoder a recurrent neural network

(RNN). In this work, we use the encoder-decoder proposed

in [22], known as “Show and Tell” (ST).

Numerous extensions to the basic encoder-decoder

framework have been proposed. One line of work (e.g., the

“Show, Attend and Tell” model of [26], and the “Review

Network” model of [27]), leverages attention, which lets

the decoder focus on specific parts of the input image

when generating a word. Another line of work enriches

the image encoding beyond just using a CNN that was

trained for image classification. For example, [24, 28] use

image taggers, [21] use object detectors, and [19] use face

detection and landmark recognition. We stress that these

extensions are orthogonal to the ideas in this paper.

2.2. Metrics and objective functions

Most prior work uses maximum likelihood estimation

(MLE) for training. That is, the model parameters θ are

trained to maximize

L(θ) =
1

N

N
∑

n=1

log p(yn|xn,θ)

=
1

N

N
∑

n=1

Tn
∑

t=1

log p(ynt |y
n
1:t−1,x

n,θ)

where x
n is the n’th image, yn = (yn1 , . . . , y

n
Tn

) is the

ground truth caption of the n’th image and N is the total

number of labelled examples.

One problem with the MLE objective is that at training

time, each prediction is conditioned on the previously

observed words from the ground truth. At test time,

however, the model will be fed with its own predictions,

leading to quickly accumulating errors during inference, so

the model will likely diverge from desired trajectories. This

discrepancy is known as “exposure bias” [4]. One solution

to exposure bias is “scheduled sampling” [4], although this

method has been shown to be statistically inconsistent [9].

An alternative to maximizing likelihood is to try to

maximize some other objective that is more closely related

to the true metric of interest. This can be done using a policy

gradient (PG) method [17] such as REINFORCE [23], by

treating the score of a candidate sentence as analogous to a

reward signal in a reinforcement learning setting. In such a

framework, the RNN decoder acts like a stochastic policy,

where choosing an action corresponds to generating the

next word.

[15] use a modified form of REINFORCE to optimize

the BLEU score for image captioning. We explain this

approach in more detail in Section 2.3, since it is closely

related to our method. [8] used REINFORCE to optimize

sequence level reward such that generated captions are class

discriminative. However, this is a different task than the one

we consider.
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More recently, there have been a variety of other papers

on optimizing sequence level objective functions (see e.g.,

[13, 30, 2, 16]), but mostly in the context of machine

translation.

2.3. MIXER

The most closely related work is the “MIXER” paper

[15]. They also use the REINFORCE method, combined

with a baseline reward estimator. However, they implicitly

assume each intermediate action (word) in a partial

sequence has the same reward as the sequence-level reward,

which is not true in general. To compensate for this, they

introduce a form of training that mixes together the MLE

objective and the REINFORCE objective. Specifically,

they evaluate the first M words using log-likelihood, and

the remaining words using REINFORCE; they gradually

decrease M from the maximum sentence length down to

0.

We have found that MIXER is very sensitive to

the form of the annealing schedule, as well as other

hyper-parameters, such as the learning rate or gradient

scaling of the baseline estimator. We therefore propose a

more robust alternative, in which we replace the constant

reward assumption with an estimate of future rewards

based on Monte Carlo rollouts (a similar idea is used in

[30] for GAN training). In Section 4, we show that this

change significantly improves convergence speed, as well

as training stability. This lets us easily optimize a variety of

different metrics, including our new metric, SPIDEr.

3. Methods

In this section, we explain our approach in more detail.

First we discuss the policy gradient method, which can

be used to robustly optimize any kind of reward function.

Next we discuss which reward function to use. Finally, we

discuss the model itself, which is a standard CNN-RNN.

3.1. Training using policy gradient

At time step t, we pick a discrete action, which

corresponds to choosing a word gt ∈ V , using a stochastic

policy or generator πθ(gt|st,x), where st = g1:t−1 is the

sequence of words chosen so far, x is the image and θ are

the parameters of the model. Note that in our case the state

transition function is deterministic: we simply append the

word chosen at time t to get st+1 = st; gt (u; v is the

concatenation of the strings u and v).

When we reach the end of the sequence (i.e., once

the generator emits the end-of-sentence marker), we get a

reward of R(g1:T |x
n,yn), which is the score for producing

caption g1:T given image x
n and ground truth caption (or

set of captions) yn. This reward can be any function, such

as BCMR or SPICE.

Figure 1: The value of each action is estimated as the

average rewards received by its K rollout sequences (i.e.

K = 3). Solid arrows indicate the sequence of actions being

evaluated. The tokens in green and yellow are respectively

BOS (beginning of sequence) and EOS (end of sequence)

tokens. Sequences in blue are rollout sequences sampled

from partial sequences. Note that rollout sequences do not

always have the same length, as they are separately sampled

from a stochastic policy.

In typical reinforcement learning setting, an agent

receives rewards at each intermediate step while future

rewards are discounted to balance short-term and long-term

gain. In our case, however, the agent receive zero reward

during intermediate steps, observing a reward only at the

end. To mitigate the lack of intermediate reward signal, we

propose to estimate the value of intermediate states (partial

sequence), via Monte-Carlo rollouts. This translate into

significantly more robust credit assignment and efficient

gradient estimation, as we show in Section 4. We define the

value function of a partial sequence as its expected future

reward:

Vθ(g1:t|x
n,yn) = Egt+1:T

[R(g1:t; gt+1:T |x
n,yn)] (1)

where the expectation is w.r.t. gt+1:T ∼ πθ(·|g1:t,x
n).

Our goal is to maximize the average reward starting from

the initial (empty) state s0 defined as:

J(θ) =
1

N

N
∑

n=1

Vθ(s0|x
n,yn) (2)

where N is the number of examples in the training set. We

now discuss how to optimize Eqn. (2). For simplicity, we

will consider a single example n, so we will drop the xn and

y
n notation. To compute the gradient of J(θ), we can use

the policy gradient theorem from [17]. In the special case

of deterministic transition functions, this theorem simplifies

as shown below (see [2]for a proof):

∇θVθ(s0) = Eg1:T





T
∑

t=1

∑

gt∈V

∇θπθ(gt|g1:t−1)Qθ(g1:t−1, gt)





(3)
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where we define the Q function for a state-action pair as

follows:

Qθ(g1:t−1, gt) = Egt+1:T
[R(g1:t−1; gt; gt+1:T )] (4)

We can approximate the gradient of the value function with

M sample paths, gm
1:T ∼ πθ, generated from our policy.

This gives

∇θVθ(s0) ≈
1

M

M
∑

m=1

T
∑

t=1

Egt

[

∇θ log πθ(gt|g
m
1:t−1)

×Qθ(g
m
1:t−1, gt)

]

(5)

where the expectation is w.r.t. gt ∼ πθ(gt|g
m
1:t−1), and

where we have exploited the fact that

∇θπθ(a|s) = πθ(a|s)
∇θπθ(a|s)

πθ(a|s)
= πθ(a|s)∇θ log πθ(a|s)

If we use M = 1, we can additionally replace the Egt with

the value in the sample path, gmt , as in REINFORCE. In our

experiment, we used M = 1 and we subsequently drop the

superscript m in the rest of this paper for notational clarity.

The only remaining question is how to estimate the

function Q(st, gt). For this, we will follow [30] and use

Monte Carlo rollouts. In particular, we first sample K

continuations of the sequence st; gt to get gkt+1:T . Then we

compute the average

Q(g1:t−1, gt) ≈
1

K

K
∑

k=1

R(g1:t−1; gt; g
k
t+1:T ) (6)

We estimate how good a particular word choice gt is by

averaging over all complete sequences sampled according

to the current policy, conditioned on the partial sequence

g1:t−1 sampled from the current policy so far. This process

is illustrated in Figure 1. If we are in a terminal state, we

define Q(g1:T , EOS) = R(g1:T ).
The above gradient estimator is an unbiased but high

variance estimator. One way to reduce its variance is to

estimate the expected baseline reward Egt [Q(g1:t−1, gt)]
using a parametric function; we will denote this baseline

as Bφ(g1:t−1). We then subtract this baseline from

Qθ(g1:t−1, gt) to get the following estimate for the gradient

(using M = 1 sample paths):

∇θVθ(s0) ≈
T
∑

t=1

∑

gt

[πθ(gt|st)∇θ log πθ(gt|st)

× (Qθ(st, gt)−Bφ(st))] (7)

where st = g1:t−1. Subtracting the baseline does not

affect the validity of the estimated gradient, but reduces its

variance. Here, we simply refer to prior work ([31], [23])

for a full derivation of this property.

We train the parameters φ of the baseline estimator to

minimize the following loss:

Lφ =
∑

t

EstEgt(Qθ(st, gt)−Bφ(st))
2 (8)

In our experiments, the baseline estimator is an MLP which

takes as input the hidden state of the RNN at step t. To

avoid creating a feedback loop, we do not back-propagate

gradients through the hidden state from this loss.

In language generation settings, a major challenge facing

PG methods is the large action space. This is the case in

our task, where the action space corresponds to the entire

vocabulary of 8,855 symbols. To help “warm start” the

training, we pre-train the RNN decoder (stochastic policy)

using MLE training, before switching to PG training. This

prevents the agent from performing random walks through

exponentially many possible paths at the beginning of the

training.

The overall algorithm is summarized in Algorithm 1.

Note that the Monte Carlo rollouts only require a forward

pass through the RNN, which is much more efficient

than the forward-backward pass needed for the CNN.

Additionally the rollouts can be also be done in parallel for

multiple sentences. Consequently, PG training is only about

twice as slow as MLE training (in wall time).

Algorithm 1: PG training algorithm

1 Input: D = {(xn,yn) : n = 1 : N} ;

2 Train πθ(g1:T |x) using MLE on D ;

3 Train Bφ using MC estimates of Qθ on a small subset

of D;

4 for each epoch do

5 for example (xn, yn) do

6 Generate sequence g1:T ∼ πθ(·|x
n) ;

7 for t = 1 : T do

8 Compute Q(g1:t−1, gt) for gt with K

Monte Carlo rollouts, using (6);

9 Compute estimated baseline Bφ(g1:t−1);

10 Compute Gθ = ∇θVθ(s0) using (7);

11 Compute Gφ = ∇φLφ;

12 SGD update of θ using Gθ;

13 SGD update of φ using Gφ;

3.2. Reward functions for the policy gradient

We can use our PG method to optimize many different

reward functions. Common choices include BLEU, CIDEr,

METEOR and ROUGE. Code for all of these metrics is

available as part of the COCO evaluation toolkit.1 We

1 https://github.com/tylin/coco-caption.
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decided to use a weighted combination of all of these. Since

these metrics are not on the same scale, we chose in our

experiments the set of weights such that all metrics have

approximately the same magnitude. More specifically, we

choose the following weighted combination: 0.5*BLEU-1

+ 0.5*BLEU-2 + 1.0*BLEU-3 + 1.0*BLEU-4 + 1.0*CIDEr

+ 5.0*METEOR + 2.0*ROUGE. Such a combination

ensures that the model would not ignore any particular

aspect of caption quality. In practice, a different weighting

could be set depending on the focus of optimization.

Optimizing this weighted combination of BCMR gives

state-of-the-art results on the COCO test set, as we discuss

in Section 4.2.

One problem with the BCMR metrics is that individually

they are not well correlated with human judgment [1].

We therefore also tried optimizing the recently introduced

SPICE metric [1], which better reflects human estimates of

quality. We use the open source release of the SPICE code2

to evaluate the metric.

Interestingly, we have found that just optimizing SPICE

tended to result in captions which are very detailed, but

which often had many repeated phrases, as we show in

Section 4. This is because SPICE measures semantic

similarity (in terms of a scene graph) between sets of

sentences, but does not pay attention to syntactical factors

(modulo the requirement that the generated sentence be

parseable). We therefore combined SPICE with the CIDEr

metric (considered the best of the standard automatic

metrics for COCO), a combination we call SPIDEr for

short. We decided to use an equal weighting in our

experiments; further increasing the weighting for SPICE

would slighly increase the performance according to

SPICE, at the expense of all syntactic metrics according

to COCO public evaluation results. A better combination

could be found through systematic search, although that is

not the main focus of this work.

3.3. Encoder-decoder architecture

We use a CNN-RNN architecture similar to the one

proposed in the original Show-Tell paper [22]. A high-level

diagram is shown in Figure 2. Each symbol in the

vocabulary is embedded as a 512 dimensional dense word

embedding vector, whose values are initialized randomly.

The encoder CNN is implemented as an

Inception-V3 [18] network pretrained on ImageNet3.The

RNN decoder is a one-layer LSTM with a state size of

512 units, initialized randomly. Each image is encoded by

Inception-V3 as a dense feature vector of dimension 2, 048
which is then projected to 512 dimension with a linear

layer and used as the initial state of RNN decoder.

At training time, we always feed in the ground truth

2 https://github.com/peteanderson80/SPICE.
3Open-source implementation at: https://goo.gl/8opezA

Figure 2: Model architecture of Show and Tell image

captioning system [22]. The tokens in green and yellow

are respectively BOS (beginning of sequence) and EOS (end

of sequence) tokens. At testing time, output from previous

time step gt−1 is used as input in lieu of yt−1.

symbol to the RNN decoder; at inference time we use just

greedy decoding, where the sampled output is fed to the

RNN as the next input symbol.

4. Results

4.1. Experimental protocol

We report results obtained by different methods on the

COCO dataset. This has 82,081 training images, and

40,137 validation images, each with at least 5 ground

truth captions. Following standard practice for methods

that evaluate on the COCO test server, we hold out a

small subset of 1,665 validation images for hyper-parameter

tuning, and use the remaining combined training and

validation set for training.

We preprocess the text data by lower casing, and

replacing words which occur less than 4 times in the 82k

training set with UNK; this results in a vocabulary size of

8,855 (identical to the one used in [22]). At training time,

we keep all captions to their maximum lengths. At testing

time, the generated sequences are truncated to 30 symbols

in all experiments.

We use the Show-Tell model from [22] for all methods.

We “pre-train” this model with MLE, and then optionally

“fine tune” it with other methods, as we discuss below.

4.2. Automatic evaluation using BCMR metrics

In this section, we quantitatively evaluate various

methods using the standard BCMR metrics on the COCO

test set. Since the ground truth is not available for the test

set, we submitted our results to the COCO online evaluation

server4 on Nov 2016. Table 1 shows the results of the

top 5 methods (at the time of submission) on the official

C-5 leaderboard, along with the results of our experiments.

In particular, we tried training the Show-Tell model with

the following methods: MLE, PG-BLEU-4, PG-CIDEr,

4mscoco.org/dataset/#captions-leaderboard
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Submissions CIDEr-D Meteor ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

MSM@MSRA [28] 0.984 0.256 0.542 0.739 0.575 0.436 0.330

Review Net [27] 0.965 0.256 0.533 0.720 0.550 0.414 0.313

ATT [29] 0.943 0.250 0.535 0.731 0.565 0.424 0.316

Google [22] 0.943 0.254 0.530 0.713 0.542 0.407 0.309

Berkeley LRCN [7] 0.921 0.247 0.528 0.718 0.548 0.409 0.306

MLE 0.947 0.251 0.531 0.724 0.552 0.405 0.294

PG-BLEU-4 0.966 0.249 0.550 0.737 0.587 0.455 0.346

PG-CIDEr 0.995 0.249 0.548 0.737 0.581 0.442 0.333

MIXER-BCMR 0.924 0.245 0.532 0.729 0.559 0.415 0.306

MIXER-BCMR-A 0.991 0.258 0.545 0.747 0.579 0.431 0.317

PG-BCMR 1.013 0.257 0.55 0.754 0.591 0.445 0.332

PG-SPIDEr 1.000 0.251 0.544 0.743 0.578 0.433 0.322

Table 1: Automatic evaluation on the COCO C-5 test split, as of Nov 2016. Methods below the line are our contributions.

PG-BCMR, PG-SPIDEr (with equal weight on SPICE and

on CIDEr), and MIXER.

Our MLE method gets similar results to the scheduled

sampling method of [22]. Not surprisingly, PG-BCMR

significantly outperforms MLE training, since it directly

optimizes for BCMR. Similarly, PG-BCMR outperforms

PG-SPIDEr. We also showed that PG-BLEU-4 and

PG-CIDEr specifically improves on the metric optimized

for, compared to MLE baseline. In particular, PG-BLEU-4

successfully achieved the highest score on BLEU metrics,

while largely neglected others. This demonstrates the

general applicability of our optimization method to target

any specific metric of interests. However, as shown below

optimizing for the current COCO metrics does not translate

into better captions.

We also see that our PG-BCMR method significantly

outperforms all the top 5 methods, even the ones which use

more sophisticated models, such as those based on attention

(Montreal/Toronto, ATT, Review Net), those that use more

complex decoders (Berkeley LRCN), and those that use

high-level visual attributes (MSM@MSRA, ATT).

Our PG-BCMR method also outperforms the MIXER

algorithm; we discuss this in more detail in Section 4.4.

4.3. Human evaluation

Table 2 shows some example captions generated by

6 different methods: MLE, PG-SPICE, MIXER-BCMR,

MIXER-BCMR-A, PG-BCMR, and PG-SPIDEr. We see

that PG-SPICE tends to generate ungrammatical sentences,

with a lot of repeated phrases. This is because SPICE

measures how well the scene graph induced by a sentence

matches the ground truth scene graph, but is relatively

insensitive to syntactic quality. However, when we combine

SPICE with CIDEr, we get much better results. We

therefore ignore pure SPICE in the rest of this paper.

Figure 3: Results of human evaluation on 492 images

randomly sampled from the COCO test set. We report the

breakdown in percentage of “not bad” captions for each

method compared to baseline 38% of MLE model.

We also see that PG-SPIDEr tends to generate more

reasonable captions that PG-BCMR, even though it did

worse on the COCO metrics. Also, both methods seem to be

better than MLE. (See for example the third row in Table 2.)

To quantify this, we turn to a user study. In particular,

we use a crowd sourcing platform, using raters who have

prior experience with evaluating image captioning and other

computer vision models. We showed each image-caption

pair to 3 different raters, and asked them to evaluate it on

a 4 point scale, depending on whether the caption is “bad”,

“okay”, “good” or “excellent”.5

5 The definitions of these terms, which we gave to raters, is

as follows. Excellent: “The caption correctly, specifically and

completely describes the foreground/main objects/events/theme of the

image.” Good: “The caption correctly and specifically describes

most of the foreground/main objects/events/theme of the image, but

has minor mistakes in some minor aspects.” Okay: “The caption

correctly describes some of the foreground/main objects/events/theme of

the image, but is not specific to the image and has minor mistakes in

some minor aspects.” Bad: “The caption misses the foreground/main
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Images Ground Truth Captions Generated Captions

1. a red and yellow fire truck and some buildings

2. An overhead view shows a fire engine in the street.

3. A red and yellow fire truck with ladders on top

4. A firetruck is parked in the street in between stop lights.

5. A fire truck (ladder truck) drives down a street in the city.

1. MLE: a red and white bus is driving down the street

2. PG-SPICE: a red double decker bus on a city street on a street with a bus

on the street with a bus on the street in front of a bus on

3. MIXER-BCMR: a yellow bus driving down a city street .

4. MIXER-BCMR-A: a red fire truck driving down a city street .

5. PG-BCMR: a red bus driving down a city street .

6. PG-SPIDEr: a red fire truck is on a city street.

1. A woman walking on a city street in a red coat.

2. A group of people that are standing on the side of a street.

3. A woman in a red jacket crossing the street

4. a street light some people and a woman wearing a red

jacket

5. A blonde woman in a red coat crosses the street with her

friend.

1. MLE: a woman walking down a street while holding an umbrella .

2. PG-SPICE: a group of people walking down a street with a man on a

street holding a traffic light and a traffic light on a city street with a

city street

3. MIXER-BCMR: a group of people walking down a street .

4. MIXER-BCMR-A: a group of people walking down a street .

5. PG-BCMR: a group of people walking down a city street .

6. PG-SPIDEr: a group of people walking down a street with a traffic light .

1. A group of people converse in an office setting.

2. A group of people playing a game with remote controllers.

3. Four young people have crowded into a small office.

4. A group of people standing next to each other in a room.

5. a group of people standing next to each other with some

of them holding video game controllers

1. MLE: a group of people standing around a living room .

2. PG-SPICE: a group of people in a room with a man in a chair holding a

nintendo wii remote in a living room with a man in a chair holding a

3. MIXER-BCMR: a group of people standing in a living room .

4. MIXER-BCMR-A: a group of people standing in a living room playing a

video game .

5. PG-BCMR: a group of people standing in a room .

6. PG-SPIDEr: a group of people playing a video game in a living room .

1. A man looking through a book on top of a table.

2. A man sitting on a bed looking at a book

3. a man is flipping through a book on a bed

4. A man sitting on a bed flipping through pages of a book.

5. A man in a black jacket is flipping through a large book.

1. MLE: a man sitting in front of a laptop computer .

2. PG-SPICE: a man sitting in front of a book and a laptop on a table with a

laptop computer on top of a table with a laptop computer on top of

3. MIXER-BCMR: a man sitting in a chair with a book .

4. MIXER-BCMR-A: a man sitting at a table with a book .

5. PG-BCMR: a man sitting in front of a book .

6. PG-SPIDEr: a man sitting at a table with a book .

Table 2: Example captions from different models on COCO hold-out validation images.

p-value(X >Y) PG-BCMR MLE

PG-SPIDEr 0.014 <0.001

PG-BCMR - 0.003

Table 3: p-values derived from a pairwise sign test applied

to human ratings on 492 images from COCO test set.

Statistically significant comparisons (at the 0.05 level) are

shown in bold. X and Y correspond to rows and columns

respectively.

We then take the majority vote to get the final rating.

If no majority is found, the image is excluded from the

analysis. For MLE and PG-BCMR, we kept all 492 images;

for PG-SPIDEr, 490 are kept.

Since current captioning systems are far from perfect,

our main goal is to develop a captioning system that does

not make “embarrassing” errors, we focus on measuring the

fraction of captions that are classified as “not bad”, which

we interpret as the union of “okay”, “good” and “excellent”.

As “quality control”, we first evaluated 505 ground truth

objects/events/theme of the image or the caption contains obviously

hallucinated objects/activities/relationships.”

captions from the COCO validation set. Humans said that

87% of these captions were “not bad”. Some of the 13%

of ground truth captions that were labeled “bad” do indeed

contain errors6, due to the fact that COCO captions were

generated by AMT workers who are not perfect. On the

other hand, some captions seem reasonable to us, but did

not meet the strict quality criteria our raters were looking

for. In any case, 87% is an approximate upper bound on

performance we can hope to achieve on the COCO test set.

We then randomly sampled 492 images from the test

set (for which we do not have access to the ground truth

captions), and generated captions from all of them using our

3 systems, and sent them for human evaluation. Figure 3

shows the fraction of captions that are “not bad” compared

to the MLE baseline of 38%. Including their respective

rating breakdown (”okay“, ”good“, ”excellent“ from left to

right). We draw the following conclusions:

1. All methods are far below the human ceiling of 87%.

6 For example, some captions contain repeated words, e.g., “this is an

image image of a modern kitchen”. Others contain typos, e.g., “a blue and

white truck with pants in it’s flat bed”. And some do not make semantic

sense, e.g., “A crowd of people parked near a double decker bus”.
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2. All PG methods outperform MLE training by a significant

margin (see Table 3 for pairwise p-value analysis).

This is because the PG methods optimize metrics that

are much more closely related to caption quality than

the likelihood score.

3. PG-SPIDEr outperforms PG-BCMR by a 4% margin,

despite the fact that PG-BCMR outperforms

PG-SPIDEr on COCO metrics. This is because

SPIDEr captures both fluency and semantic properties

of the caption, both of which humans pay attention to,

whereas BCMR is a more syntactic measure.

4. Compared to MLE, PG-BCMR promotes captions from

”bad“ to ”okay“ and ”good“ whereas PG-SPIDEr

further moves captions to ”excellent“.

4.4. Comparison with MIXER

We now compare our method with [15] in more detail.

When using MLE training, they get a BLEU-4 score of

0.278, and when they used MIXER to optimize BLEU-4,

they get 0.292, which is about 0.1 better. (They do not

report any other results besides BLEU-4.) Note, however,

that their numbers are not comparable to the numbers in

Table 1, since they are evaluated on 5000 images from the

COCO validation set, and not the official test server.

In order to do a fair comparison with our work (and other

publications), we reimplemented their algorithm. When we

used their train/test split7, and used our implementation of

MIXER to optimize BLEU-4, we were able to reproduce

their BLEU-4 result. We then used MIXER to optimize

BCMR, using the standard train/test split. Once again, we

see that the BLEU-4 score is about 0.1 better than MLE,

but the other metrics are sometimes worse, whereas our

PG method was significantly better than MLE across all

metrics.

Upon digging into their open source code8, we noticed

that they used a different optimization algorithm: we use

Adam [10], whereas they used vanilla stochastic gradient

descent with a hard-coded learning rate decay. When we

reran MIXER-BCMR with Adam (a combination we call

MIXER-BCMR-A) with well tuned parameters, we saw

significantly improved results, which come closer to our

best results obtained with PG-BCMR in almost all metrics

(and even slightly beating us in Meteor).

However, the final results are not the entire story. We

have found that MIXER is much slower to converge, and

much less stable during training, than our PG-Rollout

method. This is illustrated in Figure 4, where we

plot the BCMR metrics on the validation set for three

methods: PG-BCMR (blue), MIXER-BCMR-A (red),

MIXER-BCMR (green). We show the best of 10 runs for

7 We thank Marc’Aurelio Ranzato for sharing their code and data split.
8 https://github.com/facebookresearch/MIXER

(a) BLEU-4 (b) ROUGE-L

(c) CIDEr (d) METEOR

Figure 4: Performance of PG-BCMR (blue-triangle),

MIXER-BCMR-A (red-dashed) and MIXER-BCMR

(green-solid) on the validation set during the first 1 million

gradient steps.

MIXER, and a single run for PG. (Repeated runs of PG give

similar performance.)

We see that MIXER-BCMR with vanilla SGD does

poorly. Using Adam helps but performance is still very

unstable; in particular, we had to try the method 10 times,

with different learning rates and gradient multipliers for the

baseline estimator, to get their best result shown in Figure 4.

Note that the plateau in MIXER’s performance curve for

the first 500k steps is because MIXER starts with just MLE

training; no progress is made during this time, since we

initialize the models with a model that was already trained

with MLE. At the 500k epoch, MIXER uses MLE for the

first 6 words in the caption, and REINFORCE for the rest.

At the 600k epoch, MIXER switches to REINFORCE for

the entire sequence. Over time, the baseline estimator is

learned, and this can compensate for the inaccurate estimate

of future rewards. Hence eventually, MIXER-BCMR-A can

catch up with our PG-Rollout method.

5. Conclusion

In this paper, we have proposed a robust and efficient

policy gradient method, and successfully applied it to

optimize a variety of captioning metrics. By optimizing the

standard COCO metrics, we show that we can achieve state

of the art results, according to the leaderboard. However,

we also show that these metrics do not correlate well with

human judgement. We therefore also proposed a new

metric, SPIDEr, and show that optimizing this with our new

algorithm produces qualitatively superior results, as judged

by human raters.
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