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Abstract

Infant recognition has received increasing attention in

recent years in many applications, such as tracking child

vaccination and identifying missing children. Due to the

lack of efficient identification methods for infants and new-

borns, the current methods of infant recognition rely on

identification of parents or certificates of identity. While

biometric recognition technologies (e.g., face and finger-

print recognition) have been widely deployed in many ap-

plications for recognizing adults and teenagers, no such

recognition systems yet exist for infants or newborns. One

of the major problems is that the biometric traits of infants

and newborns are either not permanent (e.g., face) or diffi-

cult to capture (e.g., fingerprint) due to lack of appropriate

sensors. In this paper, we investigate the feasibility of in-

fant recognition by their footprint using a 500 ppi commod-

ity friction ridge sensor. We collected an infant footprint

dataset in three sessions, consisting of 60 subjects, with

age range from 1 to 9 months. We proposed a new minu-

tia descriptor based on deep convolutional neural network

for measuring minutiae similarity. The descriptor is com-

pact and highly discriminative. We conducted verification

experiments for both single enrolled template and fusion of

multiple enrolled templates, and show the impact of age and

time gap on matching performance. Comparison experi-

ments with state of the art algorithm show the advantage of

the proposed minutia descriptor.

1. Introduction

The Global Vaccine Action Plan (GVAP1) is a roadmap

to prevent millions of deaths through more equitable access

to vaccines. Countries are aiming to achieve vaccination

coverage of over 90% nationally and over 80% world wide

by 2020. According to statistics from the World Health

Organization (WHO), global vaccination coverage has re-

1http://www.who.int/immunization/global_

vaccine_action_plan/GVAP_doc_2011_2020/en/

mained steady for the past few years. For example, during

2014, about 115 million (86%) infants worldwide received

three doses of diphtheria-tetanus-pertussis (DTP3) vaccine,

protecting them against infectious diseases that can cause

serious illness and disability or be fatal. By 2014, 129 coun-

tries out of a total of 193 had reached at least 90% coverage

of the DTP3 vaccine. Despite improvements in global vac-

cine coverage during the past decade, WHO also points out

that regional and local disparities continue to exist due to

1) limited resources, 2) competing health priorities, 3) poor

management of health systems, and 4) inadequate monitor-

ing and supervision2. Better management of health sys-

tems requires a more accurate and efficient child recogni-

tion system. It is estimated that vaccine wastage rates are

higher than 50% in some of the most challenging geogra-

phies3. Vaccinations are not administered to the children in

need due to the lack of an effective method to keep track

of which children have been vaccinated and which vaccines

have been administered to each child. There is an urgent

demand in immunization management system to track vac-

cination schedule of each child reliably and efficiently. Be-

sides tracking child vaccination, infant recognition is also

urgently desirable in many other applications such as iden-

tifying missing children, preventing baby swaps4 and other

child welfare applications.

Biometric recognition has been actively researched for

many decades with the aim to solve the problem of person

identification. Many of the techniques have been success-

fully deployed in a wide range of civil and forensic appli-

cations. However, almost all of the techniques are designed

for adults or teenagers, not for infants. These techniques

may not be useful for infants directly since some of the bio-

metric modalities, e.g. face, are not stable shortly after birth

for the purpose of automatic recognition. DNA is supposed

to be the most accurate means of child recognition (except

2http://www.who.int/mediacentre/factsheets/

fs378/en/
3http://vaxtrac.com
4http://timesofindia.indiatimes.com/city/

ahmedabad/-Civil-Hospital-tags-newborns-to-

prevent-baby-swapping/articleshow/6088759.cms?
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in the case of identical twins). However, the current DNA

based identification method is not suitable for real-time ap-

plication and may also be viewed as an invasive procedure

due to the inconvenience in sample capture. Further, the use

of DNA may raise some privacy concerns.

Skin friction ridge patterns appearing on the surface of

our hands and feet are a special kind of biometric modality

which is presumably stable even before birth [19]. Prior

work on infant recognition has investigated some of the

popular biometric traits, e.g., fingerprint and face [8], [9],

[7]. In this paper, we study the footprint as a means of in-

fant recognition. Footprints have several advantages over

other biometric traits for identifying newborns. For exam-

ple, in some countries, taking newborns’ footprint images is

a routine procedure for the certificate of birth before infant

is released from the hospital. Thus footprints have a lower

degree of parental concerns than fingerprints. Additionally,

newborns often keep their fists closed, making it difficult to

capture fingerprint images.

Footprint recognition has long been studied in forensic

applications for solving crime cases [21]. However, a fully

automatic footprint recognition system only appeared in re-

cent years [13]. However, it has not yet been extensively

studied for newborn and infant recognition.

Table 1 briefly reviews the literatures on infant footprint

recognition according to the type of features used for match-

ing. There are two types of footprint images which have

been studied in the literature. The first one is low resolu-

tion (around 100 ppi) footprint images where the friction

ridge information could not be captured. The main features

used are creases which can be captured at this low 100 ppi

resolution. The second type is high resolution (≥ 500 ppi)

footprint images where the friction ridge information, i.e.,

minutiae is captured5.

Several algorithms to match low resolution footprint im-

ages of newborns were proposed in [13], [12] and [11].

They collected footprint images from 101 feet within 2 days

in one session6 , after birth using Cannon Powershot SX110

IS camera. The best Equal Error Rate (EER) was reported

to be 1.34%. In [1], the authors collected 240 footprint im-

ages from 40 newborns within 2 days after birth using a

Canon EOS 7D camera. Among these 40 newborns, 22 sub-

jects had a special background setup and 18 subjects had

normal background condition during footprint capture. Au-

thors achieved a 65% rank-1 identification accuracy with

only 40 images in the gallery. In general, the low resolution

footprint image does not contain ridge friction information

which can be observed at a finer scale. The main features

that can be extracted in these images are creases which may

5For adults, the friction ridge can be observed at about 250 ppi resolu-

tion.
6They treated different feet as different subjects and some subjects only

provided footprint images of one foot. The scheduled second session of

data collection was abandoned due to the uncooperation of parents.

not be stable yet.

In [16], Kotzerke et al. proposed an algorithm for creases

feature extraction from newborn footprints, but matching

performance was not reported. Footprints have much larger

area than fingerprints and palmprints. As such footprints

have a larger number of minutiae than palmprints and fin-

gerprints. For recognition purposes, such a large amount

of friction ridge area or minutiae is actually not necessary.

In [15], Kotzerke et al. proposed to only use ridge structure

features of ballprint (the hallucal area under the big toe) for

recognition. They collected ballprint images from 54 new-

borns. The infants’ right and left ballprints were captured at

the ages of 2 days (the first session), 2 months (the second

session), and 6 months (the third session). In their exper-

iment, the ballprints captured at the first session were dis-

carded due to poor quality, and 192 ballpoints were selected

manually from the other two sessions. The EER of match-

ing ballprint images between session 2 and session 3 was

7.28%.

In this paper, we investigate the use of high resolution

footprint image as a means of infant recognition. An infant

footprint dataset was collected. The dataset includes 60 in-

fants with both left and right footprints captured; each infant

participated in all three sessions of data collection, most of

which were at the ages of 1 month old, 3 months old, and 6

months old. We proposed a new minutiae descriptor based

on deep convolutional neural network (CNN). Considering

the lack of large footprint dataset, the transfer learning strat-

egy is adopted. The CNN model is first trained on mil-

lions of hard samples of minutiae pairs selected from NIST

SD14 [18] by a state of the art fingerprint matcher [4], then

fine-tuned on a small set of infant footprint minutiae pairs.

With the proposed minutiae descriptor, a modified match

propagation algorithm [17] is proposed to match infant foot-

print images.

We conducted verification experiments for both single

enrolled template and fusion of multiple enrolled templates,

and showed the impact of age and time gap on performance.

The Genuine Accept Rate (GAR) values at a False Accept

Rate (FAR) of 0.01 of our footprint matching system are

61%, 55%, and 83% when matching session 1 vs session 2,

session 1 vs session 3, and session 2 vs session 3, and fusing

left and right footprint images. Comparison experiments

with traditional handcrafted minutiae descriptor show the

advantage of proposed descriptor.

2. Infant Footprint Matching

2.1. Ridge Width Normalization

Since the ridge spacing of infants’ footprints is much

smaller than that of adults’ footprints, we appropriately ad-

justed the resolution of the infant footprint image before

performing feature extraction. For simplicity, we model the
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Table 1. Summary of prior work on infant footprint recognition.

Author Dataset Sensor Performance Notes

Blake [3], 1959 1,388 newborn footprints collected

immediately after birth

Inked “79% of the original footprints

could be identified by flexure

crease alone”

Need manual processing

Shepard et

al. [20], 1966

51 newborns printed immediately

after birth and 5-6 weeks later

Inked 19.6% of the newborns

matched correctly

Need manual processing

Thompson et

al. [23], 1981

100 full-term infant footprints and

20 footprints from premature in-

fants; for premature babies, a sec-

ond set was captured at discharge 4-

8 weeks later

Inked Accuracy for full-term infant

and premature infants was re-

ported to be 11% and 0%, re-

spectively

Need manual processing

Jia et al. [13],

[12] and [11],

2012

1968 footprint images from 101 feet

captured within 2 days after birth

Cannon Power-

shot SX110 IS

camera

EER = 1.34% Low resolution images captured at

one session by researchers

Balameenakshi

and Sumanthi [1],

2013

240 images from 40 newborns, col-

lected within 2 days after birth

Canon EOS 7D

camera

65% rank-1 identification ac-

curacy with background size of

40 images

22 of the subjects had special back-

ground setup during image capture

Kotzerke [16],

2013

54 subjects within 3 days after birth,

41 subjects at 8 weeks and 4 sub-

jects at 6 months; 4 impressions of

each foot were captured

Nekoosa Printed

Products Iden-

tifier and HP

Scanjet G4010

No matching experiments con-

ducted

Offline image capture, including

cleaning feet, wiping with the ink-

less towelette, pressing on paper,

and scanning

Kotzerke [15],

2014

54 newborn footprint been col-

lected in three sessions (age: 2

days, 2 months and 6 months)

NEC PU900-10

(1000 ppi)

EER = 7.28% in matching foot-

prints captured at 6 months and

2 months age

The first session (2 days old) im-

ages were not used due to their low

quality. 192 images from the sec-

ond and third sessions were manu-

ally selected for matching

This work 756 images from 42 infants, cap-

tured in three sessions (age: 1

month (session 1), 3 months (ses-

sion 2) and 6 months (session 3))

Watson Mini

(500 ppi) from

Integrated Bio-

metrics, Inc.*

GAR values (at FAR=0.01) are

61%, 55%, and 83% when

matching session 1 vs. session

2, session 1 vs. session 3, and

session 2 vs. session 3, and fus-

ing left and right footprint im-

ages

Images were captured by doctors

did not have any special training in

footprint capture; no special back-

ground was setup during image cap-

ture

* http://www.integratedbiometrics.com

ridge width of infant footprint image as a linear function of

infant’s age in months:

� = ��+ �, (1)

where � and � are parameters of linear model which can be

estimated from the training data. The scale factor � is then

a function of infant’s age in months:

�(�) =
�̂

��+ �
, (2)

where �̂ is the desired ridge width. In this paper, �̂ is set to

10 for footprint image with 500ppi resolution.

2.2. Feature Extraction

The local ridge structure of footprint is similar to that of

palmprint. For a given footprint image after ridge width nor-

malization, the palmprint feature extraction algorithm pro-

posed in [10] was then used to compute feature components

of footprint images in a block-wise manner in the frequency

domain. For each block of size 16×16, six peak points were

selected from the magnitude map in the frequency domain.

Then, a region growing algorithm is applied onto these fea-

ture maps to group orientation and frequency features; high

quality groups with local features being consistent are com-

bined together. With the estimated orientation fields, an en-

hanced footprint image is obtained by Gabor filtering [6].

After thresholding and thinning the enhanced image, minu-

tiae were extracted from the skeleton image. These minu-

tiae form the footprint template.

2.3. Minutia Embedding

Minutia point is a feature point of footprint image, which

contains location and direction information. However, a

minutia with only location and direction is not distinguish-

able from other minutiae. For the minutiae pairing purpose,

it is desirable to describe a minutia with more discriminative

features, which we call minutiae descriptor. The traditional

minutiae descriptors are all handcrafted (e.g., MCC [5], ori-

entation descriptor [24], local minutiae structure descrip-

tor [14]). Recently, deep convolutional neural network has

shown its power in supervised feature representation learn-

ing [2]. In this paper, we design a new minutia descriptor

for infant footprint recognition based on deep learning.

Given a minutia � = (�, �, �), where (�, �) and � are the

minutia coordinate and direction, respectively, we represent

�� as an image patch that centered at (�, �) and around
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the direction � of minutia �. In this paper, the size of the

cropped image patch is 160× 160 pixels.

A minutia embedding function � takes an image patch

� as input, and output a feature vector ℎ (also called minu-

tia descriptor). The minutia embedding process is repre-

sented as ℎ = �(�). To obtain the embedding function � ,

a deep neural network is constructed. We train the DNN

with two sets of minutiae pairs, one large fingerprint minu-

tiae dataset set for coarse training and one small infant foot-

print minutiae dataset for fine tuning. Given a minutiae pair

(�,�′, �), where � = 1 if � and �′ from the same minu-

tia of footprint, otherwise � = 0, we first apply network �

on � and �′ to obtain the feature vector ℎ = �(��) and

ℎ′ = �(��′), respectively.

Then, we construct two tasks to train the network. The

first is to model the problem as a regression problem. The

inner product, � = ℎ⊗ ℎ′, is computed to predict the simi-

larity of � and �′. The second task is binary classification

task. The feature vector ℎ and ℎ′ are concatenated and then

followed by a fully connected layer to classify whether the

two minutiae are mated or not. The flowchart of the pro-

posed minutiae embedding network is shown in Fig. 1. The

weights of the embedding network are shared by both fea-

ture extraction of image patches. The VGG-16 model [22]

is used as the embedding function � , and the size of out-

put feature vector is 2048. The stochastic gradient descent

(SGD) optimization method is used in training.

2.4. Template Matching

Currently, there is no automatic matching algorithm

specifically designed for high resolution footprint images.

Given that the ridge characteristics of footprints are similar

to those of plamprints, we modified the palmprint matcher

proposed in [17] for our footprint matching problem. The

modified algorithm matches two footprint image templates

using the following steps:

1. Given a set of minutiae along with their local orien-

tation descriptors [24], a set of orientation descriptor

centroids is obtained by k-means clustering algorithm

(with � = 32). This step is performed offline.

2. In matching two templates of footprint, we first clas-

sify each minutia into one of the centroids.

3. Form a set of initial minutiae pairs by matching the

proposed minutiae descriptors between the minutiae of

the same type of orientation centroid. The top � minu-

tiae pairs with highest similarity are selected as initial

minutiae pairs.

4. From an initial minutiae pair with the highest similar-

ity, local match propagation is performed to find ad-

ditional minutiae pairs iteratively. A match score is

computed based on the number of matched minutiae

and their similarities. The minutiae similarity is com-

puted as the inner product of the proposed minutiae

descriptor. Since the number of minutiae in footprint

is large, the match propagation strategy is helpful to

reduce the overall computation time.

5. The final match score is the maximum score in match

propagation. In our experiments, five initial minutiae

pairs were selected (i.e., � = 5).

The difference between the proposed footprint template

matching algorithm and the one proposed in [17] is that we

replace the local minutiae structure descriptor with the pro-

posed fixed length minutiae descriptor in selecting initial

minutiae pairs and in computing the final match scores.

2.5. Training Sample Selection

The minutiae pairs for training the neural network is crit-

ical to the success of training. We collected two datasets for

training the model. The first dataset is a set of fingerprint

minutiae pairs selected from NIST SD14 database [18].

This database includes 27000 fingers with each finger con-

taining two impressions. Manual minutiae pairing is very

time consuming and expensive. In this paper, the finger-

print matcher proposed in [4] was used to select the training

minutiae pairs. Given two fingerprint images, the matcher

outputs a match score indicating the similarity of these two

images and a list of paired minutiae with corresponding

minutiae similarities. For the database of NIST SD14, we

have 27000 genuine matches and
27000×(27000−1)

2 impostor

matches in total. If the genuine match score greater than a

threshold, then the paired minutiae are selected as positive

training samples. The threshold is to make sure the out-

put minutiae pairs are truly mated. The number of impostor

matches is too big for our task. We randomly selected 4 mil-

lions of impostor matches, from which the output minutiae

pairs are selected as negative training samples. To simulate

the scaling problem of infant footprint images, we augment

the positive training samples by resizing the image patches

with a random scaling factor between 0.8 and 1.2. Finally,

we generated 4 millions positive training samples and 4 mil-

lions negative training samples.

The dataset of fingerprint minutiae pairs is used as a

coarse training of our model. To adapt the model specifi-

cally to the problem of infant footprint recognition, we col-

lected another dataset for fine tuning the coarse model. We

have collected footprint images from 18 infants. Each infant

participated three sessions with each session provided three

footprint impressions of both left and right feet. The palm-

print matcher proposed in [17] was used to select minutiae

pairs. For any genuine footprint match, we visually checked

the minutiae correspondences side by side and determined

whether the minutiae pairs are correct or not. If the match-

ing is successful, all the minutiae pairs are kept as positive
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Figure 1. Deep neural network for minutia embedding.

training samples. In this way, we selected 30K positive sam-

ples of footprint minutiae pairs. From the impostor footprint

matches, we selected the top 30K minutiae pairs with high-

est similarity as negative samples.

3. Experiments

3.1. Infant Footprint Data Collection

We collected the footprint data in Changqing Chaoming

community hospital in Hangzhou City, Zhejiang Province,

China. The infants come to the hospital with parents for

regular physical examination. Typically, the first infant visit

to the hospital should be at the age of 1 month, with subse-

quent visits at 3 months and 6 months. The doctors/nurses

working in the hospital collected the footprint images of

each infant during the three visits of the infants. For reasons

unknown to us, some of the subjects could not complete all

three capture sessions. These subjects were not considered

in our matching experiments.

We used Watson Mini fingerprint reader, manufactured

by Integrated Biometrics company7, to collect footprint

data. This device is designed for dual fingerprint capture.

Given that there are no specially designed live footprint

scanners available in the market due to the large sensing

area of Watson Mini, we use it for footprint collection.

The total number of footprint images captured is 1080

from 60 infants. Three impressions were captured for each

foot at each session. The dataset is divided into two sets,

i.e., training and testing datasets. The training dataset con-

tains 18 infants and testing dataset contains 42 infants.

It should be noted that the hospital staff who were col-

lecting the images did not have any expertise or background

7http://www.integratedbiometrics.com/products/

watson-mini/

related to footprints or biometric recognition. We trained

them with some basic guidelines about how to collect foot-

print images before they formally started. There is no spe-

cial setup of background environment at the hospital for

capturing footprints. Thus, this dataset is more realistic than

datasets used in prior works which were taken by experts

and under controlled conditions [11, 15, 16].

3.2. Experiment Protocols

According to the number of footprint images enrolled in

the system, we conducted three types of matching experi-

ments:

1. Scenario A: In this scenario, only one footprint image

is used as template, and one footprint image as query.

2. Scenario B: We assume there are three enrolled im-

ages of the same foot for each subject (left foot and

right foot are regarded as two different subjects). The

matching is conducted between one query footprint

and three enrolled templates. The resulting three

match scores were combined using the maximum fu-

sion strategy to arrive at the final match score.

3. Scenario C: The third experiment assumes that there

are six enrolled templates for one subject, with three

templates for each foot. The matching is conducted

between two queries, one for each foot, and their re-

spective enrolled templates. Thus, we have six match

scores and the final score is the fusion of six match

scores. In this experiment, we used maximum fusion

strategy.
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3.3. Matching Accuracy

3.3.1 Scenario A

In the first scenario, we conducted verification across differ-

ent sessions. The receiver operating characteristics (ROC)

curves are reported in Fig. 2. The ROC curves are classified

into three cases: Session 1 vs Session 2 (S12), Session 1

vs Session 3 (S13), and Session 2 vs Session 3 (S23). The

numbers of genuine matches are 756 for all three cases. The

number of impostor matches is 22,788. From the results, we

observe that S23 (i.e., Session 2 vs Session 3) outperforms

the other two cases. This is expected because ages of infants

associated with these templates are older than that of S12

and S13. The templates in S12 and S13 were all collected in

the first session. Still the performance of S12 is much better

than S13 because the time gap in S12 is shorter than that in

S13 by about 1 month. The average time gaps in S12, S13,

and S23 are 1.95 months, 4.81 months, and 2.86 months,

respectively. We do not have exactly the same time gaps

because some subjects did not come for physical examina-

tion at their scheduled time. The GARs (at FAR=0.01) of

S12, S13 and S23 are 48%, 33%, and 64%, respectively.
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Session 1 vs Session 3
Session 2 vs Session 3

Figure 2. ROC curves of cross sessions for the scenario A.

3.3.2 Scenarios B & C

For scenarios B and C, we fused the three (scenario B) or

six (scenario C) match scores to get a final score by the

maximum fusion strategy. The ROC curves of scenarios B

and C are shown in Fig. 3 and Fig. 4, respectively. Similar

trends as in Fig. 2 are observed. However, the curves are

not as smooth as those in scenario 1 due to fewer number of

match scores.

We again use S12, S13 and S23 to represent the three

cases as that in scenario A. For scenario B, the numbers of

genuine matches are 252 for all three cases. The GAR val-

ues (at FAR=0.01) of S12, S13 and S23 are 53%, 42%, and

74%, respectively. For scenario C, the number of genuine

matches are 126 for all three cases. The GAR values (at

FAR=0.01) of S12, S13 and S23 are 61%, 55%, and 83%,

respectively.

In Fig. 5, we compare the matching performance of all

three scenarios. The fusion of multiple templates improve

the overall performance. The overall GAR values (at FAR

= 0.01) of scenario A, B and C are 60%, 50% and 70%,

respectively.
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Figure 3. ROC curves for the scenario B.
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Figure 4. ROC curves for the scenario C.

Fig. 6 shows an example of successful genuine match-

ing (threshold at FAR=0.01 is 0.0013, score ranges in [0,1])

with 102 pairs of minutiae correspondences.
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Figure 5. Comparison of ROC curves of the three simulated match-

ing scenarios.

3.4. Comparison

The proposed minutia descriptor is compared with the

local minutiae structure (LocalMntStruct) descriptor pro-

posed in [17]. The proposed descriptor is learned from a

large dataset while the LocalMntStruct is hand designed.

We compared the Scenario A, B and C, separately. The

ROC curves are shown in Fig. 7. We see that our descrip-

tor outperforms the LocalMntStrut descriptor for all three

scenarios.

3.5. Computation Time

We implemented the footprint matching algorithm on a

Macbook Pro laptop with 2.6 GHz Intel Core i7 CPU, 16

GB 1600 MHz DDR3 RAM, 1 TB SSD disk, NVIDIA

GeForce GT 750M GPU and OS X Yosemite operating sys-

tem. The GPU was used for minutiae descriptor extraction.

The average computation time for enrolling one footprint

image is about 20 seconds, including preprocessing, en-

hancement, and minutiae detection; and the average com-

putation time for one genuine and one impostor matching

are 130 ms and 330 ms, respectively.

4. Conclusions

Infant recognition is an urgently needed technology in

many applications, such as tracking child vaccination, iden-

tifying missing children, and child welfare. Due to the

rapid growth rates of babies, there are large variations in

many biometric modalities, especially face. Like fingerprint

and palmprint, footprint is a friction ridge pattern that is

formed in gestation. Footprint capture has some advantages

over fingerprint or palmprint. For example, babies tend to

keep their fists closed, and there is relatively lower level of

parental concerns for footprint acquisition because it is al-

ready captured for newborns in many countries.

In this paper, we proposed a new minutiae descriptor

based on deep convolutional neural network for infant foot-

print recognition. To train this network, two sets of minutiae

pair datasets were constructed. The first dataset, including

8M samples of fingerprint minutiae pairs, is used for coarse

model training, and the second dataset, including 60K sam-

ples of infant footprint minutiae pairs, is used for fine tuning

the model. The experimental results on a database collected

by hospital staff (without any expertise in footprints) have

shown both the feasibility as well as challenges of using

footprint as a biometric for infants. Comparison experiment

with the state of the art palmprint matcher also shows the

advantage of the proposed minutiae descriptor for footprint.
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