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Abstract

We investigate the problem of person search in the wild in

this work. Instead of comparing the query against all can-

didate regions generated in a query-blind manner, we pro-

pose to recursively shrink the search area from the whole

image till achieving precise localization of the target per-

son, by fully exploiting information from the query and con-

textual cues in every recursive search step. We develop the

Neural Person Search Machines (NPSM) to implement such

recursive localization for person search. Benefiting from

its neural search mechanism, NPSM is able to selectively

shrink its focus from a loose region to a tighter one con-

taining the target automatically. In this process, NPSM em-

ploys an internal primitive memory component to memorize

the query representation which modulates the attention and

augments its robustness to other distracting regions. Eval-

uations on two benchmark datasets, CUHK-SYSU Person

Search dataset and PRW dataset, have demonstrated that

our method can outperform current state-of-the-arts in both

mAP and top-1 evaluation protocols.

1. Introduction

Person search [33, 41] aims to localize a specific per-

son matching the provided query in gallery images or video

frames. It is a new and challenging task that requires to ad-

dress person detection and re-identification simultaneously.

It has many important applications in video surveillance and

security, such as cross-camera visual tracking [22] and per-

son verification [37]. But it is difficult in real-world sce-

narios due to various distracting factors including large ap-

pearance variance across multiple cameras, low resolution,

cluttered background, unfavorable camera setting, etc.

To date, only a few methods have been proposed to ad-

dress this task. In the pioneer work [33], Xiao et al. adopted

the end-to-end person search model based on the proposed

Online Instance Matching (OIM) loss function to jointly

(a) Search process of previous methods

(b) Search process of the NPSM

Figure 1. Demonstration of person search process for one gallery

image in previous methods and our proposed method. (a) The

search process of previous methods. The query person is one-by-

one compared with the detection results for one gallery image;

then the search result ranked at the first place is obtained. The

red boxes indicate the wrong matched results while the green box

represents the truly matched person. (b) The search process of the

NPSM. When a target person is searched within a whole scene, the

search scope on which attention is focused is recursively shrink-

ing with guidance from memory of the query person’s appearance,

which is marked in red boxes.

train person detection and re-identification networks. The

recent work [41] also follows a similar pipeline. Generally,

all of the previous person search methods are based on such

a simple two-stage search strategy: first to detect all candi-

date persons within an image and then to perform exhaus-

tive comparison between all possible pairs of the query and

the candidates to output a search result ranked at the first

place within the searched images. This pipeline has some

drawbacks. Firstly, if the target person has distracting fac-

tors around, e.g., another person with similar appearance,

the search accuracy would be affected by the distracting
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factors. Secondly, extra error, such as inaccurate detection,

would be introduced by the two isolated frameworks, i.e.

person detection and re-identification. See Figure 1 (a) for

demonstration. The red boxes indicate the wrong matched

results while the green box represents the truly matched per-

son.

For person search, it is commonly assumed that within

an image, the target person only appears at a single loca-

tion. Such instance-level exclusive cues imply that instead

of examining all possible persons, a more effective strategy

is to only search within the regions possibly containing the

target person in a coarse-to-fine manner. This is similar to

human neural system for processing complex visual infor-

mation [2,23]. More concretely, after seeing and remember-

ing the appearance of a target person, one usually shrinks

his search area from a large scope to a small one and per-

forms matching with his memory in details within the small

scope with more effort. Such a coarse-to-fine search process

is intuitively useful for existing person search solutions.

Inspired by above observations, we propose a new and

more effective person search strategy and develop the Neu-

ral Person Search Machines (NPSM). Compared to the

search process in previous methods, our NPSM (Figure 1

(b)) takes the query person as memory to recursively guide

the model to shrink the search region and judge whether

the current region contains the target person or not. This

process would include more contextual cues beneficial for

person matching. In Figure 1 (b), the red box in each image

from left to right corresponds to a region that can be focused

on, and the arrow indicates a search process which can be

considered as the continuous shrinkage of the focus region.

Additionally, those irrelevant regions can be ignored after

every shrinkage of a subregion from a big region, which

can reduce the interference of other unimportant regions.

To model the above person search process, we need to

solve the following two non-trivial problems: 1) integrat-

ing information of the query person into the search process

as memory to exclude interference from impossible candi-

dates; 2) judging which subregion should be focused on in

the bigger region at each recursive step in the coarse-to-fine

search process under the guidance of memory.

For localizing the target person in a sequence correctly

and fully exploiting the context information, we propose

a neural search architecture to selectively concentrate on

an effective subregion of the input region, and meanwhile

ignore other perceived information from distracting sub-

regions in a recursive way. Take the third subregion of

the search process in Figure 1 (b) for example, the pro-

posed NPSM would highlight the truly matched person at

the left side of the region and ignore the similar person at the

right side. Considering the specific ability of Long Short-

Term Memory (LSTM) [10] to partially allow or deny in-

formation to flow into or out of its memory component, we

build our Neural Search Networks (NSN) upon Convolu-

tional LSTM (Conv-LSTM) [34] units which are capable

of preserving spatial information from the spatio-temporal

sequences.

Different from the vanilla Conv-LSTM, we augment our

NSN by equipping it with external primitive memory that

contains appearance information of the query and helps

identify the candidate regions at the coarse level and dis-

cards irrelevant regions. The external primitive memory

thus enables the query to be involved in the representation

learning for person search as well as the recursive search

process with region shrinkage.

To sum up, in this work we go beyond the standard

LSTM based models and propose a new person search

approach called Neural Person Search Machines (NPSM)

based on the Conv-LSTM [34], which contains the context

information of each person and employs the external mem-

ory about the query person to guide the model to attend to

the right region. Our approach is able to achieve better per-

formance compared with other methods, as validated by ex-

perimental results.

We make the following contributions to person search:

1) We redefine the person search process as a detection free

procedure of recursively focusing on the right regions.

2) We coin a novel method more robust to distracting factors

benefiting from contextual information.

3) We propose a new neural search model that can inte-

grate the query person information into primitive memory

to guide the model to recursively focus on the effective re-

gions.

2. Related Work

Person search can be regarded as the combination of

person re-identification and person detection. Most of ex-

isting works of person re-identification focus on design-

ing hand-crafted discriminative features [5, 8, 17], learning

deep learning based high-level features [1,14,18,19,31,32]

and learning distance metrics [12, 15, 20, 27, 38]. Re-

cent deep learning based person re-identification methods

[1, 14, 18, 19] re-design the structure of the deep network

to improve performance. For instance, [1] designed two

novel layers to capture relationships between two views of a

person pair. Among distance metric learning methods, [12]

proposed KISSME (KISS MEtric) to learn a distance metric

from equivalence constraints. Additionally, [38] proposed

to solve the person re-id problem by learning a discrimina-

tive null space of the training samples while [15] proposed a

method learning a shared subspace across different scales to

address the low resolution person re-identification problem.

For person detection, Deformable Part Model

(DPM) [6], Aggregated Channel Features (ACF) [4]

and Locally Decorrelated Channel Features (LDCF) [21]

are three representative methods relying on hand-crafted
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features and linear classifiers to detect pedestrians. Re-

cently, several deep learning-based frameworks have been

proposed. In [29], DeepParts was proposed to handle occlu-

sion with an extensive part pool. Besides, [3] proposed the

CompACT boosting algorithm learning complexity-aware

detector cascades for person detection. In our knowledge,

two previous works [33, 41] address person search by

fusing person re-identification and detection into an in-

tegral pipeline to consider whether any complementarity

exists between the two tasks. [33] developed an end-to-end

person search framework to jointly handle both aspects

with the help of Online Instance Matching (OIM) loss

while [41] proposed ID-discriminative Embedding (IDE)

and Confidence Weighted Similarity (CWS) to improve

the person search performance. However, these two works

simply focus on how the interplay of pedestrian detection

and person re-identification affects the overall performance,

and they still isolate the person search into two individual

components (detection and re-identification), which would

introduce extra error, e.g. inaccurate detection. In this

paper, we regard person search as a detection-free process

of gradually removing interference or irrelevant target

persons for the query person.

Recently, LSTM based attention methods have shown

good performance in image description [35], action recog-

nition [16, 25] and person re-identification [18]. In [35],

Xu et al. showed how the learned attention can be exploited

to give more interpretability into the model generation pro-

cess, while [16, 25] adopted attention methods to recognize

important elements in video frames based on the action that

is being performed. Moreover, [18] formulated an attention

model as a triplet recurrent neural network which dynami-

cally generates comparative attention location maps for per-

son re-identification. Analogously, our proposed NPSM

also has such a locally emphasizing property, but NPSM is

a query-aware model while the above attention-based meth-

ods all adopt a blind attention mechanism.

3. Proposed Neural Person Search Machines

In this section, we present the architecture details of the

proposed Neural Person Search Machines (NPSM), and ex-

plain how it works with the primitive memory modeling to

facilitate person search.

3.1. Architecture Overview

The overall architecture is shown in Figure 2. It con-

sists of two components, i.e. Primitive Memory and Neural

Search Networks. We propose to solve person search by re-

cursively shrinking the search area from the whole image

to the precise bounding box of the person of interest. And

each region in the shrinking search process would contain

the contextual information of the final search result. Be-

sides recursively utilizing the contextual cues, NPSM pro-

vides extra robustness to interference from other distracting

subregions for the model in the search process.

The proposed NPSM is trained end-to-end to learn to

make a decision on the subregion attention at each recursive

step and finally localize the person of interest. The Neural

Search Network enables the model to automatically focus

on relevant regions, and the Primitive Memory that mod-

els the representation of the query person continuously pro-

vides extra cues for every search step and facilitates more

precise localization of persons. After performing the re-

cursive region shrinkage, the model reaches a search re-

sult with the biggest confidence as the final search result

with an gallery image. Note that, different from previous

works [33, 41], our method is detection-free and includes

no Non-Maximum Suppression (NMS), as it is a search pro-

cess performing simultaneous region shrinking and person

identification. When the searching is finished, there will be

only one bounding box person search result left.

3.2. Person Search with NPSM

As aforementioned, we redefine the person search pro-

cess as the recursive region shrinking process. It is equiv-

alent to recursively focusing on a subregion containing the

person of interest from a bigger region. Here we describe

the details of our proposed NPSM and explain how to per-

form the recursive region shrinking to search the target per-

son for each gallery image.

3.2.1 Neural Search Networks

Learning to search for a person from a big region to a spe-

cific person region within the gallery image can be deemed

as a sequence modeling problem. Specifically, the shrink-

ing regions constitute a sequence. Thus a natural choice

for the model candidates is the Recurrent Neural Network

(RNN) or LSTM based RNN. However, the vanilla LSTM

[10] only models sequence information through fully con-

nected layers and requires vectorizing 2D feature maps.

This would result in the loss of spatial information, harming

person localization performance. In order to preserve the

spatial structure of the regions over the shrinking process

shown in Figure 2, we design a new network called Neu-

ral Search Network (NSN) based on Convolutional LSTM

(Conv-LSTM) [34] for each recursive step. Conv-LSTM

replaces the fully connected multiplicative operations in an

LSTM unit with convolutional operations. Different from

it, the NSN has an additional memory component recording

the query.

Conv-LSTM can be used for building attention networks

that can learn to pay attention to critical regions within fea-

ture maps. Thus, Conv-LSTM based NSN is also equipped

with attention mechanism to learn to gradually shrink the

region and selectively memorize the contextual information

contained in the searched bigger region at each recursive
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Figure 2. Architecture of our proposed Neural Person Search Machines (NPSM). It consists of two components, i.e. Primitive Memory

and Neural Search Networks. It works by recursively shrinking the search area from the whole image to the precise bounding box of the

person of interest under the guidance (orange dotted lines) of Primitive Memory. And each region in the shrinking search process would

contain the contextual information of the final search result. Red boxes denote the shrinking regions highlighted at different recursive steps

in our NPSM. “Res50 Part1” corresponds to the conv1 to conv4 3 of ResNet-50 while “Res50 Part2” represents the conv4 4 to conv5 3 of

ResNet-50. Best viewed in color.

step. However, our neural search model has a unique fea-

ture that distinguishes it from a plain attention model: in

addition to gallery images, a query illustrating the search

target is also input to the search network. Traditional atten-

tion networks cannot well model such extra cues. In this

work, we propose to model such query information into the

primitive memory in order to facilitate person search.

We now elaborate on the new Neural Search Networks

(NSN) of our NPSM, tailored for the person search task. In

the NSN component, the query person information, denoted

as q, is integrated into the computation within gates and

cell states in a way to bias the updating of internal states to-

wards emphasizing information relevant to the query while

forgetting irrelevant information. Here the query feauture

q is extracted from the query image through the pre-trained

“Res50 part1” (conv1 to conv4 3 of ResNet-50 [9]) which is

the same as the one extracting features from gallery images.

The cell and gates in the NSN are defined as

it = σ (wxi ∗ xt +whi ∗ ht−1 +wqi ∗ q+ bi)

ft = σ (wxf ∗ xt +whf ∗ ht−1 +wqf ∗ q+ bf )

ot = σ (wxo ∗ xt +who ∗ ht−1 +wqo ∗ q+ bo) (1)

gt = tanh (wxc ∗ xt +whc ∗ ht−1 +wqc ∗ q+ bc)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct) ,

where ∗ represents the convolutional operation and ⊙ is the

Hadamard product, wx∼, wh∼ are two-dimensional convo-

lutional kernels and xt which is the feature map of the re-

gion highlighted by the previous time-step denotes the input

at time step t. The input gate, forget gate, output gate, hid-

den state and memory cell are denoted as it, ft, ot, ht, ct re-

spectively, which are all three-dimensional tensors retaining

spatial dimensions. With their control, the contextual infor-

mation can be selectively memorized. Note the query per-

son information q is independent of the time step t, there-

fore serving as the global primitive memory that guides the

person search procedure continuously. The effect of such

memory information over the states is modeled through the

parameter wq∼.

3.2.2 Region Shrinkage with Primitive Memory

As stated above, the goal of NPSM is to effectively shrink

regions containing the target person based on the neural

search mechanism, guided by the primitive memory. That

is, the NPSM will decide which local region should be fo-

cused on at each recursive step in the search process as

shown in Figure 2. Through this way, more context in-

formation would be included from a large region and the

number of irrelevant person candidates with the target per-

son would be recursively reduced in the search process. In

this subsection, we introduce how the subregion of each re-

cursive time-step is generated and shrunk from the bigger

region of the previous time-step.

Here we define the region covered by the highlighted

proposal bounding boxes induced by current attention map

as follows:
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R = (min(θx1),min(θy1),max(θx2),max(θy2)),

where θx1,θy1,θx2,θy2 are the top left and lower right cor-

ner coordinates of all the highlighted bounding boxes from a

predefined collection, generated by an unsupervised object

proposal model (e.g., Edgeboxes [42]). Then we separate

the region R into several candidate subregions according to

the relationship of each contained bounding box in the re-

gion R. In this paper, we choose the Euclidean distance as

the metric of the relationship defined as

d(a,b) =

√

∑2

i=1
(ai − bi)2, (2)

where a and b are the centre coordinates of two pro-

posal bounding boxes A and B respectively. Specifically,

a = (a1, a2), b = (b1, b2), a1 = ax1 + 0.5 (ax2 − ax1),
a2 = ay1+0.5 (ay2 − ay1), b1 = bx1+0.5(bx2−bx1), b2 =
by1 + 0.5(by2 − by1). (ax1, ay1) and (ax2, ay2) are the top

left and lower right coordinates of bounding box A while

(bx1, by1) and (bx2, by2) are the top left and lower right co-

ordinates of bounding box B. Then the proposal bounding

boxes can be grouped into C clusters according to their re-

lationships. The corresponding subregions covered by pro-

posals are Rsub
(C). We denote the parent region to generate

subregions Rsub
(C) as Rpar.

At each recursive step t, the proposed NSN outputs an at-

tention map which predicts the scores (reflecting confidence

on containing the target person given the primitive memory

information) of shrinking to region Rsub
t,(C) after NSN taking

input the parent region R
par
t−1 at the previous step t− 1.

More specifically, at each time step (corresponding to

shrinking to one region), NSN takes input the query per-

son feature q and the region feature xt extracted from pre-

trained “Res50 part1” which denotes the conv1 to conv4 3

of ResNet-50 [9]. Here, we add a Region of Interest (ROI)

pooling layer following “Res50 part1” to make sure the re-

gions of different sizes can have feature maps of the same

size K×K×D. Compared with the standard LSTM based

model relying on multi-layer perceptron, NSN uses convo-

lutional layers to integrate the region representation with

primitive memory and produce attention maps. Specifically,

at each time step t, an attention score map of size K × K

for K ×K locations is computed:

zt = wz ∗ tanh (wqa ∗ q+wha ∗ ht + ba) (3)

l
i,j
t =

exp(zijt )
∑

i

∑

j exp(z
ij
t )

. (4)

The score for location (i, j) is denoted as l
i,j
t .

Then, in the process of region shrinkage, the NSN com-

putes the average scores of different subregions from the

parent region. NSN highlights the subregion with the max-

imum score as the region to be searched in the next step.

This computation would be performed many times until the

search path reaches the final proposal. The average score of

the subregion is computed as follows:

St =
1

m · n

m
∑

i=1

n
∑

j=1

l
i,j
t , (5)

where m and n are the height and the width of the sub-

region respectively. l
i,j
t corresponds to the score map de-

fined in Eqn. (4) generated on the parent region. In other

words, our model does not stick to the single region. If

some regions not highlighted before receive higher atten-

tion at certain search step, our model would jump to that

region with higher intra-region confidence scores. In this

way, the accumulative error in the shrinkage process can be

alleviated. Note that our NSN serves as a region shrinkage

method. In other words, our NSN only outputs the most

similar proposal with the query person in each gallery im-

age. Therefore, the features of the query person image and

the final search result are extracted from the “Identifica-

tion Net” (orange boxes in Figure 2) of the trained model

when the searching is finished. Here, the “Identification

Net” takes input the output of “Res50 Part2” (pink boxes

in Figure 2) representing the conv4 4 to conv5 3 of ResNet-

50. And it consists of a global average pooling layer and

a 256-dimension Fully Connected layer. Then the cosine

similarity between the features of the query person and the

final person search result is computed for evaluation.

3.3. Training Strategy

Here we detail the training of the proposed model.

Firstly, we use the architecture proposed in OIM [33] to pre-

train the Fully Convolutional Networks (FCN) including

both “Res50 part1” and “Res50 part2’. Then for the region

at each recursive time-step, the feature is extracted from the

ROI pooling layer after the pre-trained “Res50 part1”. After

that, all the features are fed to the NSN and we add a convo-

lutional layer of size 1×1×2 after output of each time step

to calculate the “region shrinkage loss”. Here we adopt seg-

mentation alike softmax loss as the “region shrinkage loss”.

The supervision label of each time step is defined as

Ut =

{

1, if G ∈ Rt

0, otherwise,
(6)

where G is the ground truth bounding box of the target per-

son while Rt is the region box reached at the tth time step.

This training strategy enables the proposed network to pro-

duce proper attention maps that fall into the region contain-

ing the target person as tight as possible. In other words,

our NPSM is expected to predict the probability of the tar-

get person appearing at each location in a gallery image.

Besides, to make the learned feature more discrimina-

tive, we add an identification loss following the “Identifica-

tion Net”, which takes input the output feature u of “Identi-
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fication Net” and is defined as

P (z = c|u) =
exp(Scu)

∑

k exp(Sku)
, (7)

Liden = −log(P (z = c|u)). (8)

where there are a total of I identities, z is the identity of the

person, and S is the softmax weight matrix while Sc and Sk

represent the cth and kth column of it, respectively.

4. Experiments

4.1. Datasets and Evaluation Protocol

4.1.1 Datasets

CUHK-SYSU: CUHK-SYSU [33] is a large-scale person

search dataset with diverse scenes, containing 18,184 im-

ages, 8,432 different persons, and 96,143 annotated pedes-

trians bounding boxes. Each selected query person appears

in at least two images captured from different viewpoints.

The images present large variations in viewpoint, lighting,

resolution, occlusion and background, intensively reflecting

the real application scenarios and scene diversity. We use

the official training/test split provided by the dataset. The

training set contains 11,206 images and 5,532 query per-

sons. Within the testing set, the query set contains 2,900

persons and the gallery contains 6,978 images in total.

PRW: The PRW dataset [41] is extracted from one 10-hour

video captured on a university campus. The dataset includes

11,816 video frames of scenes captured by 6 cameras. In

total 11,816 frames are manually annotated, giving 43,110

pedestrian bounding boxes. Among them, 34,304 pedestri-

ans are annotated with 932 IDs. It provides 5,134 frames of

482 different persons for training. The provided testing set

contains 2,057 query persons and a gallery of 6,112 images.

4.1.2 Evaluation Protocol

We adopt the mean Averaged Precision (mAP) and the top-1

matching rate as performance metrics, which are also used

in OIM [33] and [41]. Using the mAP metric, person search

performance is evaluated in a similar way as detection, re-

flecting the accuracy of detecting the query person from

the gallery images. The top-1 matching rate treats person

search as a ranking and localization problem. A matching is

counted if a bounding box among the top-1 predicted boxes

overlaps with the ground truth larger than the threshold 0.5.

4.2. Implementation Details

In this paper, the Fully Convolutional Networks (FCN)

including both “Res50 part1” and “Res50 part2” are pre-

trained by using the architecture proposed in OIM [33]. For

the input region at each time-step, we apply an ROI pooling

layer on the conv4 3 convolutional features of it to normal-

ize all the features to the same size of 14 × 14 × 1024. For

query person images, we also extract their 14 × 14 × 1024

convolutional features in the same way. These features are

then fed into the NPSM architecture. In particular, within

NSN, the convolutional kernels for input-to-input states and

state-to-state transitions are fixed as 3 × 3 with 1024 chan-

nels. At each recursive search step, we set the number C

of subregions covered by clustered proposals to 3. We im-

plement our network using Theano [28] and Caffe [11] deep

learning framework. The training of the NPSM converges in

roughly 50 hours for CUHK-SYSU dataset and 40 hours for

PRW dataset on on a machine with 64GB memory, NVIDIA

GeForce GTX TITAN X GPU and Intel i7-4790K Proces-

sor. The initial learning rate is 0.001 and decays at the rate

of 0.9 for the weight updates of RMSProp [30]. Addition-

ally, we manually augment the data by performing random

2D translation. The speed of our method is close to real-

time. For one gallery image, our model takes round 1s to

output a final searched result. However, overhead of rank-

ing over gallery is dominating. For the CUHK-SYSU with

gallery size of 100, calculating cosine similarity between

search result from all the gallery images and query for rank-

ing takes round 20s. For the PRW with 6,112 gallery im-

ages, ranking over gallery takes round 15 minutes.

4.3. Ablation Study

In this subsection, we perform several analytic experi-

ments on CUHK-SYSU benchmark to investigate the con-

tribution of each component in our proposed NPSM archi-

tecture. We analyze attention prediction, contextual cue and

primitive memory of query person. In total we have three

variants by training the model based on different combina-

tions of the above factors. And the gallery size is set to 100.

The details and corresponding results are shown in Table 1.

As aforementioned, we employ the framework in

OIM [33] which involves none of three factors, as the base-

line. Based on this framework, the results of OIM [33]

are obtained. In the method named “NPSM w/o C”, we

remove the “contextual cue and primitive memory integra-

tion” part (corresponding to Eqn. (1)) of the NSN in our

proposed NPSM. Instead, at each recursive step, we replace

the “contextual que and primitive memory integration” part

with a 3 × 3 × 1024 convolutional layer followed by the

concatenation of the FCN (“Res50 part1”) feature map of

the query person (primitive memory) and the current step

region (q and xt). Moreover, for each recursive step, we

only keep the shrinking region generation method and the

attention score prediction model (Eqn. (4) and (5) ) to pre-

dict the attention score map. This setting makes our NPSM

a simple version without contextual cues involved but still

with the attention prediction ability. Furthermore, in the

method named “NPSM w/o A&C”, we further remove the

attention prediction model and only generate the shrinking

region as the input of each recursive step and add a 1024-

dimension fully connected (FC) layer and a 2-dimension
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Table 1. Results of ablation study on CUHK-SYSU dataset with

100 gallery size setting. Legend: A: Attention prediction model,

C: Contextual cue, P: Primitive memory of query person. “w/o

A&C’ and “w/o C” are short for “without Attention prediction

model and Contextual cue” and “without Contextual cue but with

Attention prediction model” respectively.

A C P mAP(%) top-1(%)

OIM (Baseline) ✕ ✕ ✕ 75.5 78.7

NPSM w/o A&C ✕ ✕ ✓ 56.5 62.5

NPSM w/o C ✓ ✕ ✓ 72.5 76.3

NPSM ✓ ✓ ✓ 77.9 81.2

FC layer after the output (concatenation of the FCN fea-

ture map of query person (primitive memory) and the cur-

rent region) of each recursive step. And the 2-dimension FC

layer aims at predicting the score of each highlighted sub-

region from the parent region. From comparison between

the results of “OIM” and “NPSM w/o A&C”, we can see

that simply using primitive memory of query without con-

textual cues involved to search for a target person in the

recursive way can not achieve satisfactory results. From the

result of “NPSM w/o C” , we find that the sightly higher

performance is achieved than the baseline due to usage of

the attention model which can introduce more spatial lo-

cation information than the “NPSM w/o A&C”. However,

both “NPSM w/o A&C” and “NPSM w/o C” lack a con-

textual cue memory mechanism. In other words, the above

methods are unable to memorize the context information

provided in a larger region through previous recursive steps.

From the result of “NPSM” overtaking the baseline method

“OIM” by 2.4% and 2.5% for mAP and top-1 evaluation

protocol, we find that the neural search mechanism induced

by our proposed NPSM is beneficial for person search per-

formance, and memory of query person can also effectively

guide the neural search model to find the right person.

4.4. Comparison with State­of­the­art Methods

We compare NPSM with several state-of-the-arts, in-

cluding end-to-end person search ones proposed by Xiao

et al. [33] and Zheng et al. [41] and some other methods

combining commonly used pedestrian detectors (DPM [6],

ACF [4], CCF [36], LDCF [21] and their respective R-CNN

[7]) with hand-crafted features (BoW [40], LOMO [17],

DenseSIFT-ColorHist (DSIFT) [39]) and distance metrics

(KISSME [12], XQDA [17]).

4.4.1 Results on CUHK-SYSU

We report the person search performance on CUHK-SYSU

with 100 gallery size setting in Table 2, where “CNN” rep-

resents the detector part (Faster-RCNN [24] with ResNet-

50) and “IDNet” denotes the re-identification part in the

framework of OIM [33]. Compared with CNN+IDNet,

Figure 3. Test mAPs of different approaches under different

gallery sizes.

the OIM achieves performance improvement by introducing

joint optimization of the detection and identification parts,

but still follows the isolated “detection+re-identification”

two-stage strategy in the person search process. Compar-

atively, our proposed NPSM is a detection-free method and

solves localization and re-identification of the query per-

son simultaneously by introducing the query-aware region

shrinkage mechanism which can include more contextual

information beneficial for search accuracy. It can be veri-

fied by results shown in Table 2. NPSM beats all compared

methods consistently for both the mAP and top-1 metrics.

Table 2. Comparison of NPSM’s performance on CUHK-SYSU

with 100 gallery size setting with the state-of-the-arts.

Method mAP(%) top-1(%)

ACF [4]+DSIFT [39]+Euclidean 21.7 25.9

ACF+DSIFT+KISSME [12] 32.3 38.1

ACF+BoW [40]+Cosine 42.4 48.4

ACF+LOMO+XQDA [17] 55.5 63.1

ACF+IDNet [33] 56.5 63.0

CCF [36]+DSIFT+Euclidean 11.3 11.7

CCF+DSIFT+KISSME 13.4 13.9

CCF+BoW+Cosine 26.9 29.3

CCF+LOMO+XQDA 41.2 46.4

CCF+IDNet 50.9 57.1

CNN [24]+DSIFT+Euclidean 34.5 39.4

CNN+DSIFT+KISSME 47.8 53.6

CNN+BoW+Cosine 56.9 62.3

CNN+LOMO+XQDA 68.9 74.1

CNN+IDNet 68.6 74.8

OIM [33](Baseline) 75.5 78.7

NPSM 77.9 81.2

Moreover, Figure 3 shows the mAP of the compared

methods with different gallery sizes, including [50, 100,

500, 1000, 2000, 4000]. One can see that the mAP drops

gradually as the gallery size increases, but our method can

still outperform all other methods under different gallery

size settings. In particular, NPSM improves average per-

formance per gallery size over OIM [33] by around 2%.
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Ground truth Query image Attention maps

Figure 4. Attention maps learned by our NPSM model for different testing person samples in CUHK-SYSU and PRW dataset. The first

three rows are from CUHK-SYSU, while the bottom row is from PRW. Green boxes represent the ground truth boxes while red boxes are

the region bounding boxes highlighted by our NPSM model.

4.4.2 Results on PRW

On PRW dataset, we conduct experiments to compare

NPSM with some state-of-the-art methods combining

different detectors (respective R-CNN [7] detectors of

DPM [6], CCF [36],ACF [4], LDCF [21]) and recognizers

(LOMO, XQDA [17], IDEdet, CWS [41]). Among them,

AlexNet [13] is exploited as the base network for the R-

CNN detector. Although VGGNet [26] and ResNet [9] have

more parameters and are deeper than AlexNet, according

to [41], AlexNet can achieve better performance than the

other two for DPM and ACF incorporating different rec-

ognizers. The results are shown in Table 3. Because the

OIM method is the baseline of our NPSM, we implement

the source code provided in OIM [33] to obtain the baseline

result on the PRW dataset. Compared with the result, our

NPSM outperforms it by 2.9% and 3.2% for mAP and top-1

accuracy separately. Besides, compared with all other state-

of-the-arts considering five bounding boxes per gallery im-

age, our method achieves better performance by only keep-

ing one bounding box for testing per gallery image.

In Figure 4, we visualize some attention maps produced

by our NPSM for testing samples from CUHK-SYSU and

PRW datasets, which are all ranked top 1 in search results.

The first three rows are from CUHK-SYSU, while the bot-

tom row is from PRW. We observe that our NPSM can effec-

tively shrink the search region to the correct person region

guided by primitive memory of the query person.

5. Conclusions

In this work, we introduced a novel neural person search

machine solving person search through recursively localiz-

Table 3. Comparison of NPSM’s performance on PRW with state-

of-the-arts.

Method mAP(%) top-1(%)

DPM-Alex+LOMO+XQDA [17] 13.0 34.1

DPM-Alex+IDEdet [41] 20.3 47.4

DPM-Alex+IDEdet+CWS [41] 20.5 48.3

ACF-Alex+LOMO+XQDA 10.3 30.6

ACF-Alex+IDEdet 17.5 43.6

ACF-Alex+IDEdet+CWS 17.8 45.2

LDCF+LOMO+XQDA 11.0 31.1

LDCF+IDEdet 18.3 44.6

LDCF+IDEdet+CWS 18.3 45.5

OIM(Baseline) 21.3 49.9

NPSM 24.2 53.1

ing effective regions, with guidance from the memory of the

query person. Extensive experiments on two public bench-

marks demonstrated its superiority over state-of-the-arts in

most cases and the benefit to recognition accuracy in person

search.
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