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Abstract

The intensive annotation cost and the rich but unlabeled
data contained in videos motivate us to propose an unsuper-
vised video-based person re-identification (re-ID) method.
We start from two assumptions: 1) different video track-
lets typically contain different persons, given that the track-
lets are taken at distinct places or with long intervals; 2)
within each tracklet, the frames are mostly of the same per-
son. Based on these assumptions, this paper propose a step-
wise metric promotion approach to estimate the identities
of training tracklets, which iterates between cross-camera
tracklet association and feature learning. Specifically, We
use each training tracklet as a query, and perform retrieval
in the cross-camera training set. Our method is built on
reciprocal nearest neighbor search and can eliminate the
hard negative label matches, i.e., the cross-camera nearest
neighbors of the false matches in the initial rank list. The
tracklet that passes the reciprocal nearest neighbor check
is considered to have the same ID with the query. Exper-
imental results on the PRID 2011, ILIDS-VID, and MARS
datasets show that the proposed method achieves very com-
petitive re-ID accuracy compared with its supervised coun-
terparts.

1. Introduction

Person re-identification (re-ID), aiming to retrieve a
query identity from a gallery in a different camera view,
usually relies on large volumes of labeled data. Due to the
high labeling cost, this paper is devoted to the unsupervised
scenario in which no identity labels are needed.

Focusing on video-based unsupervised re-ID, our work
is motivated from three aspects. First, videos contain much
richer information than single images, e.g., the space-time
cues and the pose variations, and are non-trivially available
by detection and tracking. The appearance/temporal infor-
mation can significantly improve the discriminative ability
of the learned visual representations [48, 29, 39]. More-
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Figure 1. A video frame on the MARS dataset [48]. We draw
in this frame two tracklets (red and yellow) which are actually
observed at distinct time stamps. It is intuitive to assume that the
two tracklets can be treated as different identities. This observation

contributes to the model initialization process.

over, since videos contain more prior knowledge about the
scenario, the influence of background noise can be largely
weakened [42].

Second, video tracklets, produced by pedestrian detec-
tion and tracking (Fig. 1), are reliable data source for unsu-
pervised learning methods. This process is fully automatic
and unsupervised. As implied in the recent survey [50],
different tracklets can be treated as different identities, as
long as we assume that the tracklets are captured at distinct
places or with long intervals. Therefore, even if no human
annotation is available, a discriminative model can be ob-
tained via the tracklet data.

Third, feature learning using tracklets from the same
view may result in low discriminative ability. In fact, the key
component in unsupervised re-ID is label estimation. Given
the tracklets that provide some supervision under a certain
camera, it is important to propagate these labels across dif-
ferent cameras, so that cross-camera characteristics will be
learned.

Framework. This paper adopts an rather intuitive unsu-
pervised framework for video-based person re-ID. In brief,
two steps are involved: 1) classifier initialization using the
tracklets in the same camera [50] (see Fig. 1); 2) itera-
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tions between cross-camera tracklet association and feature
learning. With more iterations, the learned feature becomes
more discriminative, and the data association processes gets
more accurate. This framework is also adopted in two con-
temporary works [5, 41].

Our Method. The proposed metric promotion approach
iterates between model update and label estimation. For
label estimation, under camera A, we use each tracklet as
query to search for its k nearest neighbors (NNs) in camera
B. Among these k candidates, the best match is selected as
being associated with the query tracklet. We employ neg-
ative mining to reduce the impact of false positive matches
in the £-NNs. This k-NN search process is then reversely
repeated using the best match as query to see whether the
initial query is its best match, a confirmation protocol to
ensure that the initial query and the best match are truly as-
sociated. The the associated pairs are adopted for model
updating. The main contributions of our approach are sum-
marized as follows:

e A cross-camera framework is introduced for video-
based person re-ID, in which the tracklets under one
camera are used for model initialization.

e Negative Mining and label propagation are proposed
for tracklet association.

e On three datasets, we report competitive performance
compared with recent state of the art.

2. Related Work

Video-based re-ID. Due to the rich information con-
tained in video, video-based re-ID [38, 9, 42, 30, 17, 54, 38]
has drawn increasing attentions recently. The space-time
information from image sequences has been both exploited
n [22] and [38], where the former constructs to select the
most discriminative image in video automatically while the
latter aims to build a spatio-temporal appearance represen-
tation for walking pedestrian. Cho et al. [1] conduct the
multi-shot person re-ID task by analyzing the camera view-
points and estimating the pose of pedestrian. You et al [42]
present a Top-Push Distance Learning model (TDL) [42],
in which a latent space is explicitly learned to enlarge the
margin between video sequences by enforcing a top-push
constraint at the top rank. Some deep learning based ap-
proaches have also been presented for video-based re-ID.
Niall et al. [30] exploit a siamese network architecture to
present the pedestrian via a single feature vector which con-
nects to all time-steps sequences. Zheng et al. [48] report a
CNN descriptor learned via an extensive video benchmark
(MARS) which shows good generalization ability on other
video re-ID task upon fine-tuning.

Unsupervised re-ID. Compared with supervised meth-
ods [16,52,34,43,24,40, 44], there are fewer unsupervised

methods available for re-ID. Most of them directly utilize
hand-crafted descriptors [27, 8, 6, 35, 19, 49]. For example,
Ma et al. [26] propose the BiCov by combining the Bio-
logically Inspired Features (BIF) and Covariance descrip-
tors. Zheng et al. [49] propose a Bag-of-Words (BOW) de-
scriptor which describes each pedestrian by visual word his-
togram and enables global fast matching. LOMO [19] ex-
tracts the local maximal occurrence representation scheme
based on HSV color histograms and Scale Invariant Local
Ternary Pattern (SILTP) [20]. Tetsu et al. [35] describe the
local region in an image via hierarchical Gaussian distri-
bution in which both means and covariances are consid-
ered. Another saliency matching approach, Unsupervised
Saliency Learning (USL) [47], matches persons by building
dense correspondence between image pairs and learning hu-
man salience on patch level.

For unsupervised learning approaches, Ma et al. [28]
propose a selective sequence matching method to match two
partial segments of two sequences. In [5], k-means cluster-
ing is used for label estimation, and the ID-discriminative
embedding (IDE) [48] is used for feature learning. In [41],
Ye et al. propose a graph matching method for cross-camera
label estimation, followed by metric learning to iteratively
improve the accuracy of label estimation.

Label Propagation. In the semi-supervised framework,
the idea of label propagation [4, 46, 45, 23] has been used to
estimate the label value in many research fields, such as im-
age annotation and patch labeling. With the assumption that
data points occupying the same manifold may be very likely
to share similar/same label, the label confidence associated
with each sample could be spread to their nearby neighbors
through an iterative process. Therefore, when given a probe
data point, we can estimate the label value by computing its
similarities among some reliable labeled samples.

Negative Mining. Negative mining has been ap-
plied in classification and weakly labeled data annotation
[25, 33, 10]. The negative mining method in this paper is
related to POP [21], which performs a post-rank optimiza-
tion process by allowing a user to manually select some
negative samples to refine the initial rank list. The sparse
human negative feedback on-the-fly in POP steers an auto-
matic selection of more relevant re-identification features.
By merging the negative information with the initial rank
list, the accuracy of matching the true positive sample at
the top rank rises up. Nevertheless, POP is a re-ranking
method, requiring the assistance of human, which is appli-
cable to unsupervised learning. In this paper, given a query
tracklet in camera A, we first perform k-NN retrieval in the
same camera. The k nearest neighbors can thus be thought
as negative samples (details to be described in Section 3.3).
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Figure 2. The pipeline of the proposed approach (best viewed in color). After model initialization, several candidates of a given probe
are selected and refined via the K-reciprocal nearest neighbor searching and negative mining. Cross-camera tracklets associated with this
query are located and used to updated the model. Model updating and sample association stop when no more cross-camera tracklet pairs

are generated.

3. Proposed Approach
3.1. Overall Framework

The framework adopted in this paper is in essence simi-
lar to two contemporary works [5, 41]. In a nutshell, three
components are involved.

e The model is first initialized, e.g., using a transferred
representation [5] from the source.

e Standard metric learning [ 14] or feature learning meth-
ods [50] are applied iteratively with label estimation.
During the iterations, the learned features and esti-
mated labels improve simultaneously.

e After model convergence, the learned features/metrics
are used for testing.

Three fundamental issues are critical in this framework:
(1) how to initialize a discriminative model; (2) how to ac-
curately associate the tracklets from different camera views;
and (3) how to upgrade the model with the augmented cross-
camera pairs.

This paper contributes to problem 1) and problem 2),
which will be elaborated in Section 3.2 and Section 3.3,
respectively. As for problem 3), this paper adopts some
readily available techniques for metric and feature learning,
such as the XQDA [19], KISSME [ 4] and the deep feature
learning method IDE [48]. The pipeline of the proposed
approach is stated in Figure 2.

3.2. Model Initialization

Model initialization is a critical component in an unsu-
pervised re-ID system. It is expected that a well initialized
model can lead to a superior model upon convergence. In
[5], the CNN model is initialized by directly deploying a

fine-tuned CNN model on a source dataset. This initializa-
tion method is suitable for image-based datasets.

In this paper, we propose an alternative approach for
model initialization which particularly suits the video-based
re-ID task. Our key assumption is two-fold. First, different
tracklets contain different person identities, as long as these
video tracklets are taken at distinct places or with long time
intervals. Second, within each tracklet, the frames generally
depict the same person.

On the one hand, under the first assumption, we can ob-
tain different IDs. Chance is remote that two tracklets be-
long to the same person, if they are captured in place and
time disjoint cameras. So generally speaking, the first as-
sumption holds. On the other hand, although tracking er-
ror sometimes appears, in which one tracklet may contain
different IDs, our second assumption is usually valid con-
sidering the fast improvement of pedestrian detection and
tracking.

Given the two assumptions, this paper uses the video
tracklets in one camera for model initialization. More for-
mally, we use N tracklets from one camera which repre-
sents N IDs. Let n;,7 = 1,..., N denote the number of
frames for tracklet i. We thus have n; positive samples for
identity ¢. For example, for the iLIDS [37] and PRID [11]
datasets, each ID has but one tracklet under each camera, so
we select all the tracklets in one camera for initialization.
For MARS [48], since each ID has more than one tracklets
under each camera, we manually select one tracklet for each
ID, simulating the situation when tracklets are captured with
long time intervals. Tracklet selection errors are also evalu-
ated during experiment. Using these unlabeled tracklets in
a camera, a discriminative model can be initialized, which
demonstrates a fair distinguishing ability even to the sam-
ples in the other views.

We validate the effectiveness of the classifier which
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top rank result

Figure 3. Some top-15 ranking results of camera view 2-6 on the
MARS dataset via the classifier initialized by training data from
camera view 1. Images framed in green correspond to the ground
truth image of the probe image in the other views.

learned from automatically labeled data by training a classi-
fier using only a single view features on the MARS dataset,
and employing this classifier in searching the most similar
samples in the other five views. Figure 3 presents an intu-
itive example, where with respect to the probe the top-15
ranking results are illustrated from left to right. The images
with green rectangle boxes correspond to the ground truth
images in the other views. From this figure, we can see that
the truly matched persons have more chance to be listed in
top-ranked results.

3.3. Label Estimation with Negative Mining

The challenge for unsupervised learning in video per-
son re-id consists in how to more accurately associate the
tracklets captured under different cameras. In this paper,
we propose to use negative samples for cross-camera label
estimation. Specifically, given a probe tracklet (in the train-
ing set) to be associated with the gallery set (in the training
set, too), the matching function generates a rank list of the
gallery set by computing their similarities. The top-ranked
candidates are thought to be visually similar to the probe,
but the rank-1 candidate cannot be guaranteed to be the true
positive match. To address this issue, we introduce a nega-
tive mining approach to trigger the refinement of the subop-
timal rank list. Specifically, our method aims to utilize the
nearby neighbors of the probe tracklet in the same camera,
which exhibit high visual similarities but are false matches,
to propagate negative information to re-order the initial rank
list, as shown in Figure 4. The detailed procedure of this ap-
proach is described as follows.

First, given a probe tracklet x,, (in the training set) and
the gallery set (in the training set), the initial ranking list
can be obtained by computing their Mahalanobis distance.
It is intuitive to associate the top match in the ranking list
with the probe, but this method may be prone false matches.

top ranks in gallery view

top ranks in probe view

Figure 4. The overview of negative mining. Some false matches
of the probe are removed by propagating negative information to
their nearby neighbors in the gallery view.

In this paper, we view the top-K samples as possible candi-
dates. This idea has also been revealed in [53] that the K-
reciprocal nearest neighbors are more related to the probe.
Therefore, we adopt the K -reciprocal nearest neighbors as
candidates.

Second, to further refine the ranking list and improve the
ratio of correctly associated samples, we introduce nega-
tive mining into the model. The similar but label differ-
ent samples (M Nearest Neighbor) in the same view of
the probe tracklet z;, are defined as x}, z2, ..., z)!, where
YL = {yp, yzl,, ceny ;»V[ } are the corresponding class labels.
These samples are taken as the negative pairs and be used
to re-order the ranking list. Let X = {xp,z,,...,2)},
Xy ={x},22,...,2[} be the top ranks of z, in the gallery
view where the corresponding label Yy = {y,), ...,y } are
unobserved, the problem is to estimate Y7y from X and Y.

An affinity graph is created among all the labeled and un-
labeled data points, where the edge between any nodes ¢, j
is weighted so that the closer the nodes are in Mahalanobis
distance, d; ;, the larger the weight w; ;. The weights are
computed by

d: ;
wij = exp(=—3 ), M
o
where o is the controlled parameter. The probabilistic tran-
sition matrix P is defined as

Pij= St @)

where P; ; denotes the probability of jumping from node j
to 7. Also define a label matrix Y, whose i-th row represents
the label probabilities of node 7, and the top (K + 1) rows
are Y7, and the remaining rows the Y7;. All nodes propa-
gate labels for one step is computed by Y <— PY. The Y},
should never change for keeping the labeled data not “fade
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away”, and we split the P after the (K + 1)-th row and
(K + 1)-th column into 4 sub-matrices
Prr  Pru

P = 3

[PUL Pyy )

We attach the label of the probe X, to the unlabeled in-
stance with the highest similarity in Y77, where

Yy = - Pyy) 'PuLYr. 4)

A reverse directional process is also operated, and the
tracklet pairs who share each other as the top rank are asso-
ciated together. The associated pairs are then gathered for
model updating.

In this paper, we extend the XQDA approach to unsu-
pervised learning (U-XQDA), where we consider to learn
a unified projection W and distance metric M for all the
training samples with a close-form solution. In XQDA,
the corresponding Generalized Rayleigh Quotient for pro-
jection direction W is written as

CWTSEW

TW) = WTE, W

&)
, where >; and X are the intra-personal variations and
the extra-personal variations. Compared to XQDA, the
proposed approach utilize both the label auto-marked set
S1 and the label-estimated tracklet pairs So to update the
model. Therefore, the objective function can be written as

WT(EE’Sl +EE’32)W
WT(Z]’Sl + E[,SZ)W '

J(W) = (6)

, where the X 5,,YXg s, and X7 g,, X7 5, are the extra-
personal variations and the intra-personal variations. This
maximization problem can be also solved by the gener-
alized eigenvalue decomposition approach. The updated
model is then used to estimate the label and associate cross-
view tracklet pairs, and this iterative process of the model
optimization and label estimation step stops when no more
cross-view tracklets pairs are generated. In Figure 5, we
show the pipeline of the method for better understanding.

3.4. Test Stage

Currently, almost all the video-based person re-
identification approaches measure person similarity utiliz-
ing the point-to-point distance via a max-pooling strategy
(a sequence of descriptors is remodeled into a vector), as
shown in the left part of Figure 6. However, in some
video-based recognition or multi-view object recognition
tasks [36], measuring the distance between two image sets
seems to be a much proper way by computing the aver-
age distance among all images of the tracklets, as shown

Initialized Model updated Model

Label Estimation

K-NN Search | < [Negative Mining

Figure 5. The pipeline of the proposed method. The initialized
(in unsupervised manner) or the further updated(via the estimated
label) model are used to measure the similarity in the label estima-
tion part.
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Figure 6. Max-pooling distance and set-to-set distance.

in the right part of Figure 6. We employ the set-to-set dis-
tance measurement rather the max-pooling strategy to com-
pute the similarity between tracklet pairs in both the train-
ing (i.e., unlabeled data association) and testing stage. The
performance comparisons of the max-pooling strategy and
set-to-set distance measurement will be reported in the ex-
perimental section.

4. Experiments
4.1. Datasets

In this experiment, we compare our method with other
related algorithms by using three public video datasets
for person re-identification, including the PRID 2011 [11],
ILIDS-VID [37], and most recent MARS [48] datasets.

PRID 2011: The image sequences of the PRID 2011
dataset [ 1] are captured from two static surveillance cam-
eras for different views, which have different illumination,
background, and camera characteristics. One camera view
shows 385 persons and another one captures 749 persons,
and only the first 200 persons appear in both views. Each
video consists of 5 to 675 frames, with an average number
of 100. To guarantee the effective length of the video, we
select 178 persons that appear more than 27 frames. Then,
89 persons are randomly selected for training and the re-
maining ones are adopted for testing. This partition proce-
dure is repeated 10 times and then the average results are
reported.
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ILIDS-VID: The ILIDS-VID dataset [37] consists of 300
distinct individuals observed in two non-overlapping cam-
era views. In each view, each person has 23 to 192 images
(the average number per person is 73). Since this dataset
is captured at an airport arrival hall under a multi-camera
CCTYV network, it is challenging because of clothing sim-
ilarities among persons as well as lighting and viewpoint
variations across views. In our experiments, the ILIDS-
VID dataset is randomly partitioned into two subsets with
the same size, i.e., 150 persons for training and 150 persons
for testing. The cumulative matching characteristic (CMC)
curve is used to measure the performance of different algo-
rithms. The partition procedure is also repeated 10 times for
reporting a reliable result.

MARS: The MARS dataset [48] is the largest and most
recent video dataset for person re-identification, which is
captured from six near-synchronized cameras on Tsinghua
campus. A total of 20,478 tracklets are automatically gen-
erated via the DPM [7] detector and GMMCP [3] tracker.
Among them, there exist 3,278 distractor tracklets exist be-
cause of false detection and association. This dataset con-
tains 1,261 different persons who appear in at least 2 cam-
eras and average 13.2 tracklets for each person. The en-
tire dataset is partitioned into 625 persons for training and
the others for testing. In our experiments, we adopt the
same partition to evaluate our algorithm and other compet-
ing ones. Each person from each view corresponds to mul-
tiple tracklets, from which we randomly select one tracklet
to represent the person. Since a query responds to multiple
ground truths in the MARS system, it does not fully reflect
the true ranking performance to merely use the CMC rule.
Thus, we apply both CMC score and mean Average Preci-
sion (mAP) as the evaluation criterion in our experiments.

4.2. Feature Representation and Parameter Setting

In this work, the proposed method is implemented with
the recently proposed Local Maximal Occurrence (LOMO)
feature [19]. The LOMO feature includes HSV color and
SILTP histograms, resulting in 26,960 dimensions in total
for each person image with the normalized 128x48 size.
The PCA method is further exploited to reduce the feature
dimension into 600 in our implementation, and the nearby
neighbor number is set to 10 in all the reported datasets.

4.3. Experimental Results

Results on the PRID 2011 and ILIDS-VID datasets. We
compare with some existing state-of-art methods and two
baseline method (Euclidean distance of LOMO and GOG
feature) on these two datasets. In addition, deep-learning-
based methods [30, 48] and an unsupervised saliency
matching algorithm [47] are also compared.

The CMC curve and the rank-n (n = 1, 5, 10, 20)
matching rates are shown in Figure 7(a), Figure 7(b) and

Table 1. These results show that: (1) the proposed ap-
proach outperforms the existing unsupervised methods,
with rank-1 matching rate achieving 80.9% and 41.7% on
the PRID2011 and ILIDS dataset, respectively. (2) com-
pared to the supervised deep learning methods, our ap-
proach still achieves satisfactory performance.

Results on the MARS dataset. This dataset is the largest
and most practical video dataset for person re-identification.
Since it is a most recent dataset, the results of few meth-
ods are available. In this experiment, we compare the pro-
posed algorithm with a baseline method based on the Eu-
clidean distance with the LOMO feature and the supervised
method (XQDA [19]). The detailed results are reported
in Table 2, from which we can see that the proposed un-
supervised algorithm performs significantly better than the
baseline method and slightly worse than the compared su-
pervised approaches, with rank-1 matching rate and mAP
value 3.33% and 1.78% lower than the XQDA approach,
respectively.

4.4. Analysis of the Proposed Method

Algorithm Convergence: In this work, the discriminative
power of the proposed method is improved gradually with
more positive cross-view pairs generated. The iterative pro-
cess is terminated when no more cross-view pair is gen-
erated through the negative label propagation step. To in-
vestigate the convergence effect of the proposed method,
in Figure 8 (a), the changes of the objective function dur-
ing the iterations on the PRID 2011 dataset is visualized,
which shows that the proposed method can be converged
after a few iterative steps. Figure 8 (b) shows the growth of
the generated cross-view pair number during iterations (in
one trail), including the correctly associated number (red)
and the total associated number (blue). In Figure 8 (c),
the improvement of rank-n (n = 1, 5, 10) matching rates
(marked in red, blue and yellow respectively) with the it-
erations are illustrated, where the rank-1 matching rate im-
proves by around 30% via our iterative process.

Set-to-Set vs Maxpooling: To fully exploit the abundant
information within video, we exploit the set-to-set distance
rather than the traditional max-pooling scheme in the test
phase, which computes the tracklets similarities by the aver-
age distance among all images from the tracklets. Figure 8
(d) shows the CMC curves of both set-to-set measurement
and max-pooling strategies on the PRID 2011 dataset via
the proposed approach and the XQDA method. From this
figure, we can see that the set-to-set distance achieves much
better performance than the max-pooling scheme for video-
based person re-identification.

Analysis of parameter K : As described in former, ex-
tending the nearest neighbor number from 1 to K may lead
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Figure 7. Comparison with the state-of-the-art methods on (a) PRID-2011 and (b) ILIDS-VID datasets. The CMC curves are shown.

Table 1. Matching results by the proposed algorithm and other competing methods on the PRID 2011 and ILIDS-VID datasets. The CMC
scores (%) of rank-1, 5, 10, 20 are reported.

PRID 2011 ILIDS-VID
Methods Rank-1 | Rank-5 | Rank-10 | Rank-20 | Rank-1 | Rank-5 | Rank-10 | Rank-20
Ours(LOMO) 80.9 95.6 98.8 99.4 41.7 66.3 74.1 80.7
Ours(GOG) 80.8 96.0 98.3 99.3 33.2 55.7 64.4 72.5
XQDA(LOMO) [19] 83.3 97.1 98.7 99.4 58.7 81.0 88.1 92.9
XQDA(GOG) 86.9 97.2 98.8 99.3 52.7 78.3 85.7 92.2
Euclidean(LOMO) 9.0 29.6 48.31 73.2 7.1 24.5 33.1 48.6
Euclidean(GOG) 42.1 67.4 77.2 87.2 23.3 45.7 55.2 66.3
Salience [47] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9
CSPL [2] 83.0 97.8 99.4 99.9 48.7 77.9 87.3 93.7
DTDL [12] 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9
RCN [30] 70.0 90.0 95.0 97.0 58.0 84.0 91.0 96.0
CNN + XQDA [48] 77.3 93.5 - 99.3 53.0 81.4 - 95.1
CNN + KISSME [48] 69.9 90.6 - 98.2 48.8 75.6 - 92.6
DGM(MLAPG,LOMO)[41] 73.1 92.5 96.7 99.0 37.1 61.3 72.2 82.0
DGM(XQDA,LOMO)[41] 82.4 95.4 98.3 99.8 31.3 55.3 70.7 83.4
DGM((DE)[41] 56.4 81.3 88.0 96.4 36.2 62.8 73.6 82.7
LFDA [31] 43.7 72.8 81.7 90.9 329 68.5 82.2 92.6
TDL [42] 56.7 80.0 87.6 93.6 56.3 87.6 95.6 98.3
LADF [18] 473 75.5 82.7 91.1 39.0 76.80 89.0 96.8
RDC [51] 25.6 47.3 56.1 74.4 15.8 36.9 52.6 66.0
TopRank [15] 31.7 62.2 75.3 89.4 22.5 56.1 72.7 86.0
PRSVM [32] 37.0 60.5 72.5 83.0 21.5 50.6 66.0 80.8
STA [22] 64.0 87.0 90.0 92.0 44.0 72.0 84.0 92.0
SRID [13] 35.1 59.4 69.8 79.7 24.9 44.5 55.6 66.2
to better performance. Since more reciprocal pairs are in- dataset of a random trail with different K value (setting as
troduced via the increasing K, more positive pairs may be 1, 5, 10, 20, 50). In Table 3 , we state the rank-n (n = 1,
searched. We conducted experiments on the PRID2011 5, 10) matching rate and the corresponding score of Recall.
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Table 2. Comparison of the proposed approach and some super-
vised methods using LOMO on the MARS dataset .

Rank
Methods rank-1 | rank-5 | rank-20 mAP
Ours 23.59 | 35.81 4490 | 10.54
XQDA 26.92 | 38.13 50.66 | 12.32
Eucl 12.78 | 21.16 31.57 4.29

Table 3. Comparison of different K on the PRID 2011 dataset.

K rank-1 | rank-5 | rank-10 | Recall
K=1 70.8 92.1 97.8 | 0.5168
K=5 80.9 93.3 97.8 | 0.7303
K=10 | 80.9 93.3 97.8 |0.8314
K=20 | 84.27 | 96.6 98.9 | 0.8764
K=50 | 78.65 | 95.5 96.6 | 0.8202

Table 4. The Precision, Recall and F-score value on the three re-
ported datasets.

Dataset Recall | Precision | F-score
PRID2011 | 0.8494 | 0.9767 | 0.9086
ILIDS-VID | 0.5120 | 0.5413 | 0.6644
MARS 0.5972 | 0.7082 | 0.6480

As can be seen, the Recall achieves 0.8314 when K is ex-
tended to 10 which outweigh 0.3146 than only selecting one
possible candidate.

Performance of Label Estimation: We adopt the
Precision-Recall value and F-score to evaluate the perfor-
mance of the proposed label estimation and report the re-
sults in Table 4, where the F-score reported in this paper is
computed by

2 x Precision x Recall

F-sc = . 7
seore Precision + Recall 7

The results on the PRID2011 and ILIDS-VID datasets
are the average result via 10 trails. The proposed approach
achieves F-score at around 0.91, 0.66 and 0.65 for the
PRID2011, ILIDS-VID and MARS dataset, respectively.

Running Cost: We conduct the proposed approach with
Matlab implementation on a desktop PC with E5-2650 v3
@2.30GHz CPU, and the reported running time is aver-
aged via 10 trails on the PRID 2011 dataset. The computa-
tion time of our iterative training process is 113.48 seconds,
which demonstrates that our iterative process is actually ef-
fective. For the testing phase, it costs 0.00025 seconds to
compute the similarity for each two tracklets, which indi-
cates good applicability of the proposed approach in real
system.

1 2 3 4
Iteration Iteration

1 PRID 2011
100

Figure 8. (a) The changes of objective functions between itera-
tions. (b) The growth of the total/correct associated cross-view
tracklet pairs. (c) The rank-n (n = 1, 5, 10) matching rates im-
provement with iterations. (d) Comparison of the set-to-set mea-
surement and the max-pooling stratedgy.

5. Conclusion

In this paper, we develop a novel cross-view stepwise
metric promotion algorithm for video-based person re-
identification in an unsupervised manner. Motivated by our
empirical observation that the classifier trained in a given
view also has much discriminant power for the other views,
the proposed method firstly initializes a view-specific clas-
sifier for each individual view and then introduces the cross-
view information by allowing the negative samples to prop-
agate negative information. After that, a metric learning
process is exploited to improve the basic classifiers from the
automatically labeled training samples and the former asso-
ciated cross-view pairs based on an iteration process. The
final classifiers are obtained after iteration convergence and
then combined with a set-to-set distance scheme to match
persons across different views. Other feature learning meth-
ods or deep models can also be used. Numerous experi-
mental results on the PRID 2011, ILIDS-VID, and MARS
datasets demonstrate that the proposed method not only out-
performs the other unsupervised methods but also achieves
competitive performance relative to many supervised algo-
rithms.
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