
Decoder Network over Lightweight Reconstructed Feature for Fast Semantic

Style Transfer

Ming Lu ∗1, Hao Zhao1, Anbang Yao2, Feng Xu3, Yurong Chen2, and Li Zhang1

1Department of Electronic Engineering, Tsinghua University
2Cognitive Computing Laboratory, Intel Labs China

3School of Software, Tsinghua University
{lu-m13@mails,zhao-h13@mails,feng-xu@mail,chinazhangli@mail}.tsinghua.edu.cn

{anbang.yao, yurong.chen}@intel.com

Abstract

Recently, the community of style transfer is trying to

incorporate semantic information into traditional system.

This practice achieves better perceptual results by transfer-

ring the style between semantically-corresponding regions.

Yet, few efforts are invested to address the computation bot-

tleneck of back-propagation. In this paper, we propose a

new framework for fast semantic style transfer. Our method

decomposes the semantic style transfer problem into feature

reconstruction part and feature decoder part. The recon-

struction part tactfully solves the optimization problem of

content loss and style loss in feature space by particularly

reconstructed feature. This significantly reduces the com-

putation of propagating the loss through the whole network.

The decoder part transforms the reconstructed feature into

the stylized image. Through a careful bridging of the two

modules, the proposed approach not only achieves compet-

itive results as backward optimization methods but also is

about two orders of magnitude faster.

1. Introduction

Style transfer with Convolution Neural Network (CNN)

is becoming prevalent since the advent of the seminal work

[9]. It aims to generate a stylized image Io which preserves

the content of image Ic and the style of image Is. Both con-

tent and style are represented in the feature space of a deep

CNN f . The objective of neural style transfer is originally

formulated as the minimization of the content loss and style

loss:

∗This work was done when Ming Lu was an intern at Intel Labs China

supervised by Anbang Yao who is responsible for correspondence.

Our Method

(~1.5s)
Style Image Neural Doodle

(>100s)

Content Image

Figure 1. Our method can be applied to portrait style transfer.

Compared with backward optimization method [1], our method

can achieve competitive results but is about two orders faster.

Io = argmin
Io

Lcontent(f(Io), f(Ic))

+λLstyle(f(Io), f(Is))
(1)

The content loss is usually defined as the distance be-

tween CNN features. Comparatively, the community makes

great efforts to explore the representation of image style in

order to define the style loss. The image style can be rep-

resented as the gram matrix [9] of CNN feature. Then the

style loss can be naturally formulated by matching the gram

matrices between the stylized image and style counterpart.

Other methods [18, 19] based on neural patch characterize

the style loss as neural patch matching. These methods are

more suitable for the realistic style transfer than artistic style

transfer since local patch preserves more structural informa-

tion. The optimization of Eq. 1 can be solved by backward

12469

propagation.

However, these methods ignore meaningful spatial con-

trol over the transfer process, resulting in unsatisfying re-

sults. Recently, the community resorts to introduce seman-

tic information into the system. Some methods [1, 10]

are proposed to solve this semantic style transfer problem

which are still based on time-consuming backward propa-

gation. In [10], the authors present a possible solution to the

computation bottleneck by extending their spatial control to

fast neural style transfer [15]. Nevertheless, it is necessary

to enforce further factorisation during the network training

as discussed by the authors.

In this paper, we propose a fast semantic style transfer

method. Our motivation is to re-formulate the optimization

of L = Lcontent + λLstyle as below.

dL(f(Io))

dIo
=

dL(f(Io))

df(Io)

df(Io)

dIo
(2)

The first part
dL(f(Io))
df(Io)

is self-contained within the fea-

ture map. The second part
df(Io)
dIo

requires iterative back-

propagation through the deep neural network which is com-

putationally intensive. We try to shed some new insights on

these two parts in our framework. Specifically, we solve the

first part by our lightweight feature reconstruction method.

Regarding the second part, we train an decoder network as

a substitution which can reduce most of the computation.

The appealing merit of our method is that we solve the

semantic style transfer problem in feature space instead of

image space [9]. This avoids propagating the loss through

a deep neural network which demands heavy computation.

Extensive experiments demonstrate that our method can ob-

tain comparable results as backward optimization methods.

What’s more, it is about two orders of magnitude faster.

Our contributions can be concluded as follows:

1. We present a lightweight feature reconstruction

method to approximately solve the optimization of the con-

tent loss and style loss in feature space.

2. We train an decoder network to transform the recon-

structed feature into the stylized image.

3. We propose a fast and compelling framework for fast

semantic style transfer by associating the above modules.

2. Related Work

Backward Style Transfer Traditional style transfer

methods [13, 26] formulate the problem as matching the

local statistics of style image and content image. Based

on the recent development of deep neural network [28, 27],

[7, 9] propose a new framework for both texture synthesis

and style transfer. Their methods consider the problem as

the optimization of content loss and style loss. The style

loss can be expressed as matching the gram matrix or local

patch [18]. The patch based method [18] is more suitable

for realistic image transfer. Later, [10, 8] propose to control

the perceptual factors during style transfer. Other methods

focus on improving the results by incorporating additional

loss [32, 30] or giving an explanation of the gram matrix

for style transfer [20]. Besides, some methods extend the

applications of style transfer to video [23] or painting style

transfer for portrait image [24]. All the above methods solve

the optimization by backward optimization which is intrin-

sically time-consuming.

Fast Style Transfer In order to improve the speed of

backward style transfer, some methods [15, 19] propose to

train a feed-forward generation network to approximate the

optimization process. [15] uses perceptual loss defined over

deep convolution layers to train a transfer net. Regarding

texture synthesis and style transfer, a pre-trained texture

synthesis network can be applied to stylize a content im-

age. [19, 29, 31] train the texture network based on image

or neural patch. [2] presents a new method based on patch

swap to express style transfer in feature space. First, the

content and style images are forwarded through deep neu-

ral network to extract features. Then the style transfer is

formulated as neural patch swap to get a reconstructed fea-

ture map. This feature map is finally decoded by an inverse

network to image space. Methods like [6] propose to learn

a network which can combine several styles with a single

network. The above methods all ignore the semantic infor-

mation for better results. Recently, Generative Adversarial

Net (GAN) [11, 22, 14] has drawn a lot of attentions for im-

age generation. However, applying GAN to style transfer is

not a trivial problem because the content and style images

are variant.

Semantic Style Transfer Unlike global style transfer,

transferring the style between the corresponding regions of

the style and content images usually shows better perceptu-

al results than global style transfer [1]. In [1], the authors

extend the patch based method [18] to incorporate the se-

mantic masks into neural patch swap. This method is a s-

traightforward extension to semantic style transfer. Com-

bining semantic style transfer with modern segmentation

methods [25] is partially explored in portrait style transfer

by [24].

3. Proposed Method

The pipeline of our method is summarized as Figure 2.

We first forward the content image Ic and style image Is
through a VGG network [27] to get respective features Fc

and Fs. We simultaneously forward the semantic net to

retrieve the corresponding masks in each layer. For K se-

mantic regions, we denote the features in the k-th region as

F k
c and F k

s . Our feature reconstruction aims to optimize

the target feature F k
o which minimizes the content loss and

style loss [9] in individual regions. The features regarding

K regions are collected to reconstruct the stylized feature

2470

VGG

Semantic

Feature

Fusion

Decoder

Network

Figure 2. The pipeline of our method. The style and content images are first forwarded through a feature extraction network. The semantic

segmentation masks are also forwarded and overlayed on the feature maps. Then our method reconstructs the feature map within each

region. This feature map approximately solves the optimization [9] in a single layer. The feature map is finally decoded into a stylized

image.

Fo. This reconstructed feature will be decoded into the fi-

nal stylized image by a decoder network.

3.1. Lightweight Feature Reconstruction

We first describe our lightweight feature reconstruction

within a semantic region in a certain feature layer. For the k-

th region, we denote the content feature and style feature as

F k
c ∈ RC×Nk and F k

s ∈ RC×Mk , where, C is the number

of channels in a certain layer, Nk and Mk are the number

of activations in the k-th region of content image and style

image respectively. Now semantic style transfer can be de-

fined as optimizing the loss:

Lk(F
k
o) = Lcontent(F

k
o , F

k
c) + λLstyle(F

k
o , F

k
s) (3)

Similar to the formulation of [9], the content loss is de-

fined as the square Euclidean distance of F k
o and F k

c . The

style loss is defined as the square distance between the gram

matrices of F k
o and F k

s . The goal of semantic style transfer

is to obtain the stylized image Io by minimizing the above

loss. Optimization by back-propagating the gradient to im-

age space Io is adopted to minimize Eq. 3. As described in

[20], matching the Gram matrices of features is equivalen-

t to minimizing the Maximum Mean Discrepancy (MMD)

with the second order polynomial kernel. [20] achieves ap-

pealing results with several other kernels, validating their

claims. Inspired by their demonstration, we develop our

reconstruction method based on the linear approximation.

Here we provide the formulation under adopting linear ker-

nel k(x, y) = xT y instead of k(x, y) = (xT y)2. The new

style and content loss can be formulated as follows.

Lcontent =
1
2

C
∑

i=1

N
∑

k=1

(F ik
o − F ik

c)
2

Lstyle =
λ

4C2

1

N2

N
∑

k1=1

N
∑

k2=1

(

C
∑

i=1

F ik1

o F ik2

o)

−
λ

4C2

2

MN

N
∑

k1=1

M
∑

k2=1

(

C
∑

i=1

F ik1

o F ik2

s) + Cs

(4)

Cs denotes the self-product term of style feature which is

a constant. The above formulation is within a single region

so we omit the sub-script k. The goal of iterative optimiza-

tion is to find the optimal Fo minimizing Eq. 4. We deduce

the derivative of content loss and style loss respectively. The

local minimum can be obtained by solving dL
dF ik

o

= 0. In this

way, we obtain a rule to update the optimal feature F ik
o .

F ik
o = F ik

c +
λ

2MNC2
(

M
∑

k=1

F ik
s)−

λ

4NC2
(

N
∑

k=1

F ik
o) (5)

Similar to the iterative optimization method [9], we can

update F ik
o initialized by the feature of content image F ik

c .

Although our formulation still minimizes the style loss and

content loss, different from optimizing in image space, we

optimize the loss directly in feature space. This is important

for improving computation performance since propagating

the loss through a deep convolution neural network is much

slower than optimizing the losses within a single layer. We

name our formulation as a lightweight feature fusion to re-

construct the target feature F ik
o . Furthermore, for seman-

tic style transfer, this lightweight feature fusion shall recon-

struct feature within corresponding regions. Note that our

formulation is directly based on a single layer to character-

ize the content loss and style loss. A discussion on multiple

layers will be given in experimental section.

2471

VGG

Figure 3. The pipeline to train our decoder network. Our decoder

network is trained in an auto-encoder manner. We mix the real

images’ features and artistic images’ features in order to train the

decoder network. The extracted and mixed features are used to

train our inverse net. In this manner, the network is trained to

decode the features into images.

3.2. Neural Feature Decoder

Now, we detail the design and training of our decoder

network. Since the ground-truth stylized results are not

available, we train the decoder network in an auto-encoder

manner. The pipeline is shown in Figure 3.

We collect the content images and the style images sep-

arately from COCO [21] and PainterByNumber [5] hosted

by Kaggle. There are about 80000 natural content images

and 80000 artistic style images. In order to get the fused

features of content images and style images, we randomly

select pairs of content and style images. Pairs of content

and style images are passed through the VGG network [27]

to obtain the features Fc and Fs. The stylized images shall

keep the appearance of the content images while incorporat-

ing local statistics of the style images. We adopt the patch-

based method [18] to get the mixed feature Fo of Fc and Fs.

As shown in Figure 4, [18] reconstructs the content neural

patch with the nearest neighbour of style neural patch. In

this manner, the reconstructed feature keeps the appearance

of the content image while containing the local statistics of

the style image. By this way, we get the input feature sam-

ples to train the decoder network. We visualize some of

these samples in Figure 5. Although our feature reconstruc-

tion method can be used to generate training samples, here

we aims to efficiently generate a variety of feature maps for

training the decoder. Neural patch swap is faster than our

method which makes it more suitable for generating train-

ing samples.

We collect the training samples Fo (Figure 3) in a certain

layer as mentioned above. Here the decoder network is de-

noted as g(Fo; θ) and the network to extract CNN feature is

denoted as f . We use VGG [27] as f . Now the optimum of

our decoder network can be defined as:

Figure 4. Illustration of sample generation. We use patch based

method [18] to mix the real images with artistic images. In this

manner, the reconstructed feature map keeps the appearance of the

content image while the local distribution is similar as the style

image. This is consistent with our goal, training a decoder network

to inverse the fused feature.

Figure 5. Some training samples. The top row is the style images.

The second row is the content images. Apart from using the origi-

nal images, we use mixed feature maps based on neural patch swap

[18] as shown in the last two rows. In this manner, our inverse net

is trained on samples combining real and artistic images.

θ = argmin
θ

1

N

N
∑

i=1

∥

∥f
(

g(F i
o; θ)

)

− F i
o

∥

∥

2

F

+λLTV

(

g(F i
o; θ)

)

(6)

θ is the parameter of the decoder network while N is the

number of generated samples. We regularize the output im-

age by a total variation loss LTV . The network is trained in

an auto-encoder manner. The loss enforces that the feature

of decoded image is as same as possible to that of the input

feature. This decoder network training is similar with the

training of transfer net as in [15]. However, the purpose of

our network is to inverse the neural feature into an image.

2472

Instead, [15] aims to train an image to image translation

network.

4. Experimental Details

In the feature fusion process, the iteration is repeated by

N times. We fix N = 500 as our default setup and the average

reconstruction process takes about 1 second.

The neural decoder network is trained on COCO dataset

[21] and PainterByNumber from Kaggle [5]. The training

data we use consists of 80000 content images from COCO

and 80000 artistic images from PainterByNumber. We re-

size each pair of content and style images to 256× 256 and

train our inverse networks with a batch size of 2 for 80000

iterations, giving roughly two epochs over the training da-

ta as [15]. We use Adam [16] with a learning rate of 1e-3.

The output images are regularized with total variation loss

with a strength of 1e-6. We train our decoder networks sep-

arately at layer relu3 1, relu4 1 and relu5 1 of the VGG

network. Our implementation uses Torch [4] and cuDNN

[3]. The training takes roughly two days on a single GTX

Titan X GPU.

5. Results

5.1. Qualitative Analysis

Our Method versus Backward Optimization: Recall

that we provide illustrative results in Figure 1 to compare

the performance of our method and neural doodle [1]. Here,

we further compare our method against the latest method

Gatys2016 [10]. Both [1] and [10] solve the style loss and

content loss by back-propagation. Regarding our results, we

define the style loss and content loss both in relu3 1. The

reconstructed feature is updated with 500 iterations. As for

Gatys2016, we use the publicly available implementation

of [10]. As shown in the last two columns of Figure 6, our

method achieves competitive results compared with [10].

Although our feature reconstruction is lightweight, it is

still iterative. We compare the iteration number with the

transfer results in Figure 7. As optimization in image space,

optimization in feature space will also obtain a converged

stylized result. In feature space, the reconstructed feature

map maintains content image’s appearance. The local s-

tatistics of the content image iteratively is transformed into

the statistics of the style image. Both backward optimiza-

tion and our method converge in the local minimum within

a few iterations, however, iteration within a single feature

layer is obviously faster than iteration over the network. As

shown in Figure 7, after about 500 iterations, both the styl-

ized image and feature map converge. This is the reason

why we set 500 iterations as a default setup.

Our Method in Different Layers: In this experiment,

we perform a set of ablative experiments to analyze the ef-

fect of different layers to our method. In figure 8, we show

 Gatys2016Content Image Style Image Our Method

Figure 6. We show the results of our method compared with

Gatys2016 [10]. Although our method is the linear approxima-

tion of gram matrix, the decoded stylized images are perceptually

similar as time-consuming backward optimization [10].

Style

Image

Content

Image

N=1000N=600N=500N=400

N=300N=200N=100N=50

Figure 7. We show the transformation of both the feature map and

the output image using our method. The stylized image will con-

verge in a hundred iterations by our feature reconstruction. The

result feature keeps the content image’s appearance and incorpo-

rates the local statistics of style image.

our method in relu3 1 and relu4 1. As we can see, relu3 1
and relu4 1 obtain similar results, which proves the gener-

alization ability of our framework to different layers. How-

ever, compared with relu3 1, the results of relu4 1 are

darker. Although the texture is similar, the color distribu-

tion differs from the original content image. This might

because the deeper layer’s feature consists more abstract in-

2473

Content Image Relu3_1 Relu4_1 Relu3_1 Relu4_1

Figure 8. Our method in different layers. We present the results in

Relu3 1 and Relu4 1. The texture is successfully transferred in

both layers.

formation which fails to maintain the local color distribu-

tion. Besides, the deeper the layer, the larger receptive field

each activation can cover.

Our Method versus Fast-Gatys2016: The most relat-

ed work on fast semantic style transfer is the potential so-

lution mentioned by [10]. In [10], the author proposes an

approach to train a transfer net with additional guide chan-

nels. Here, we first compare our method with their paper

results. This approach trains the transfer net to learn the

correspondence between semantic style transfer and guide

masks. Our results in Figure 9 are based on relu3 1. As can

be seen, our method achieves similar results compared with

[10]. However, when we adopt their approach to transfer

the styles of different regions in one style image, the trans-

fer net doesn’t achieve visually pleasing results. This might

because transferring styles from different regions of a single

image is different from combining two style images. The

training of transfer net needs more regularization to enforce

the connection between guide channels and styles. In sharp

contrast to their strategy, our method still obtains satisfy-

ing results. All the results of [10] are from the open-source

code. We train the transfer net with default settings.

We provide more results of our method for portrait style

transfer in Figure 13. The purpose of our additional result-

s is to illustrate the generalization ability of our method.

The portrait images are from [25], we manually label the

semantic segmentations of some images. Furthermore, we

also label some head portrait paintings as our style images.

Single Layer versus Multi-Layer: In this part, we will

show the comparison results of defining the style loss in a

single layer versus multi-layer. [9] defines the content loss

in a CNN layer and formulates the style loss in multi-layer.

In contrast, our method defines both losses in a single layer.

In what follows, we will show the comparison of defining

style loss in one layer versus multi-layer. As shown in Fig-

ure 10, single layer causes some texture loss in the stylized

result compared with multi-layer. The overall appearance

Input Our Result

(Relu3_1)

Our Result

(Relu4_1)

Fast-Gatys2016 Gatys2016

Input Fast-Gatys2016

(candy over feathers)

Fast-Gatys2016

(feathers over candy)

Our Result

(candy over feathers)

Our Result

(feathers over candy)

Figure 9. The comparison of our method with Fast-Gatys [10].

The first row shows our results against [10]’s results in combining

two style images. Both methods obtain satisfying results. The

second row is the results when we try to train a guided transfer

net of semantic style transfer. Our results still achieve consistently

pleasing results.

Style Loss

(Multi-Layer)

Style Loss

(Single Layer)

Input Closeup

Figure 10. We show the comparison of single layer with multi-

layer. The overall artistic effect is sufficiently similar. However,

optimization on multi-layer transfers more texture as showed in

the closeups.

of single layer is almost the same as multi-layer. However,

for smooth regions, as shown in the closeups of Figure 10,

the results from multi-layer transfer more texture. To sum-

marize, single layer preserves less texture compared with

multi-layer. This is one limitation of our method. However,

even defining the style loss in a single layer, our method can

still achieve perceptually amazing results.

Reconstruction versus Neural Patch Swap: We use

neural patch swap [18] to generate the samples for training

our decoder network. Neural patch swap also satisfies the

two conditions of the target Fo. First, the reconstructed fea-

ture map keeps the appearance of content image. Second,

[18] also introduces local statistics into the reconstructed

feature map. Yet, as we show in Figure 11, the feature map

2474

Input Neural Patch

(Relu3_1)

Our Result

(Relu3_1)

Our Result

(Relu4_1)

Neural Patch

(Relu4_1)

Figure 11. This figure shows the comparison of our results with

neural patch swap [18]. Both neural patch swap and our method

reconstruct a feature map preserving the appearance of content im-

age and color statistics of style image. However, our method trans-

fers more texture than neural patch swap.

reconstructed by neural patch swap is only adaptive to the

transfer between realistic images. Less texture is introduced

into the stylized image compared with our method. Both

methods use the same decoder network over relu3 1 and

relu4 1 independently.

5.2. Quantitative Analysis

No Segmentation Masks: Neural doodle, Gatys2016

and our method use segmentation masks to guide the style

transfer. Segmentation masks help alleviate common failure

cases such as applying ground textures to sky regions. So

from the qualitative aspect, our method essentially achieves

better results compared with [9, 15]. If the segmentation

masks are not used, our method is faster than the back-

ward optimization methods [9] and slower than the feed-

forward methods [15]. We calculate the average time of

each method in 50 samples, the results are 112s [9], 1.35s

(our method) and 0.063s [15]. Both our method and [9]

use 500 iterations. Since our method explicitly minimizes

the losses proposed by [9], our result is more similar to [9]

which transfers more textures.

With Segmentation Masks: Both Neural doodle and

Gatys2016 are based on back-propagation, while our

method does not require any back-propagation which sig-

nificantly decreases computational cost. In Gatys2016, the

author also proposes a method to train a feed-forward net-

work to apply different styles to different regions. We de-

note this method as Fast-Gatys2016 and show the results in

Figure 9. Our method achieves similar result with its test

images (Figure 9, Row 1). However, Fast-Gatys2016 does

not achieve consistently pleasing results (Figure 9, Row 2).

We train the network using the default setting and the re-

leased code of Fast-Gatys2016. We think the network train-

ing needs more regularization to enforce the connection

between segmentation masks and styles. In contrast, our

method directly incorporates segmentation masks in feature

space which ensures the consistence of our results.

User Study: This study uses 19 portrait images as con-

tent and 12 portrait paintings as style, thus 228 stylized im-

ages are generated by each method. We show the content,

Relu3_1 Relu4_1 Relu5_1Input

Figure 12. Limitation. Our method obtains low-quality results in

Relu5 1 due to the information loss of deeper layer. Only texture

is transferred in deeper layer.

style and stylized images to testers. We ask the testers to

choose a score from 1 (worst) - 5 (best) for the purpose of

evaluating the quality of style transfer. We do this user study

with 100 testers online. The average scores of our method,

neural doodle, Gatys2016 and Fast-Gatys2016 are 3.8, 4.0,

4.1 and 1.5. Each portrait image has the same resolution of

600 x 800. The average time costs of individual methods

are 1.48s, 121.5s, 127.3s and 0.064s. This study shows that

our method achieves a better tradeoff between quality and

computation.

5.3. Limitation

In this section, we will discuss the limitations of our

method. In our experiments, we find that using our frame-

work directly in relu5 1 will obtain low-quality results as

shown in Figure 12. This might because the deeper layer-

s contains less spatial information. Although the features

from deeper layers have increased semantic meaning but

they have lower resolution compared with those from the

shallow layers. On the other hand, transferring in a single

layer results in less texture. This problem can be alleviated

by combining the features across layers. The topic of com-

bining multi-layer features has been widely explored in the

communities of semantic segmentation [12] and object de-

tection [17]. Our method can also adopt these techniques to

reconstruct and decode the concatenated feature map. We

consider it as a future extension to our current method.

6. Summary

In this paper, we propose a new framework for fast se-

mantic style transfer. We elucidate that the computation

bottleneck of semantic style transfer is the propagation of

the loss through the deep neural network. Different from

training a transfer net to approximate the backward opti-

mization, our method revisits the two parts of the original

formulation [9]. We first solve the optimization of style

transfer in feature space. Then the reconstructed feature is

decoded into the stylized image. Our method demonstrates

competitive results as backward optimization yet is much

faster. Our exploration of achieving better style transfer re-

sults with slight computational cost may bring a promising

2475

way to real-time applications. Furthermore, we hope our

framework will inspire future research on content-aware im-

age processing methods based on deep learning, like deep

image harmonization, in-painting, etc.

Acknowledgements. This work was jointly supported

by National Natural Science Foundation of China (Grant

No.61132007, 61172125, 61601021, and U1533132).

References

[1] A. J. Champandard. Semantic style transfer and turning

two-bit doodles into fine artworks. arXiv preprint arX-

iv:1603.01768, 2016.

[2] T. Q. Chen and M. Schmidt. Fast patch-based style transfer

of arbitrary style. arXiv preprint arXiv:1612.04337, 2016.

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,

B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives

for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[4] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, number EPFL-CONF-192376, 2011.

[5] S. Y. Duck. Painter by numbers, wikiart.org, 2016.

[6] V. Dumoulin, J. Shlens, and M. Kudlur. A learned represen-

tation for artistic style. 2016.

[7] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In Advances in Neural

Information Processing Systems, pages 262–270, 2015.

[8] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shecht-

man. Preserving color in neural artistic style transfer. arXiv

preprint arXiv:1606.05897, 2016.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2414–2423, 2016.

[10] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and

E. Shechtman. Controlling perceptual factors in neural style

transfer. arXiv preprint arXiv:1611.07865, 2016.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

[12] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 447–456, 2015.

[13] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive tech-

niques, pages 327–340. ACM, 2001.

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-

to-image translation with conditional adversarial networks.

arXiv preprint arXiv:1611.07004, 2016.

[15] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, pages 694–711. Springer,

2016.

[16] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[17] T. Kong, A. Yao, Y. Chen, and F. Sun. Hypernet: towards ac-

curate region proposal generation and joint object detection.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 845–853, 2016.

[18] C. Li and M. Wand. Combining markov random fields and

convolutional neural networks for image synthesis. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2479–2486, 2016.

[19] C. Li and M. Wand. Precomputed real-time texture syn-

thesis with markovian generative adversarial networks. In

European Conference on Computer Vision, pages 702–716.

Springer, 2016.

[20] Y. Li, N. Wang, J. Liu, and X. Hou. Demystifying neural

style transfer. arXiv preprint arXiv:1701.01036, 2017.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European Conference on Com-

puter Vision, pages 740–755. Springer, 2014.

[22] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[23] M. Ruder, A. Dosovitskiy, and T. Brox. Artistic style transfer

for videos. In German Conference on Pattern Recognition,

pages 26–36. Springer, 2016.

[24] A. Selim, M. Elgharib, and L. Doyle. Painting style transfer

for head portraits using convolutional neural networks. ACM

Transactions on Graphics (TOG), 35(4):129, 2016.

[25] X. Shen, A. Hertzmann, J. Jia, S. Paris, B. Price, E. Shecht-

man, and I. Sachs. Automatic portrait segmentation for im-

age stylization. In Computer Graphics Forum, volume 35,

pages 93–102. Wiley Online Library, 2016.

[26] Y. Shih, S. Paris, C. Barnes, W. T. Freeman, and F. Durand.

Style transfer for headshot portraits. 2014.

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015.

[29] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. In Int. Conf. on Machine Learning (ICML),

2016.

[30] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-

ization: The missing ingredient for fast stylization. arXiv

preprint arXiv:1607.08022, 2016.

[31] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Improved tex-

ture networks: Maximizing quality and diversity in feed-

forward stylization and texture synthesis. arXiv preprint arX-

iv:1701.02096, 2017.

[32] P. Wilmot, E. Risser, and C. Barnes. Stable and controllable

neural texture synthesis and style transfer using histogram

losses. arXiv preprint arXiv:1701.08893, 2017.

2476

Figure 13. Additional results on portrait style transfer. Our method shows compelling results with significantly decreased computational

cost, thus having the potential to achieve real-time video portrait stylization.

2477

