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Abstract

We describe a method to produce a network where cur-

rent methods such as DeepFool have great difficulty produc-

ing adversarial samples. Our construction suggests some

insights into how deep networks work. We provide a rea-

sonable analyses that our construction is difficult to defeat,

and show experimentally that our method is hard to defeat

with both Type I and Type II attacks using several standard

networks and datasets. This SafetyNet architecture is used

to an important and novel application SceneProof, which

can reliably detect whether an image is a picture of a real

scene or not. SceneProof applies to images captured with

depth maps (RGBD images) and checks if a pair of image

and depth map is consistent. It relies on the relative dif-

ficulty of producing naturalistic depth maps for images in

post processing. We demonstrate that our SafetyNet is ro-

bust to adversarial examples built from currently known at-

tacking approaches.

1. Introduction

Adversarial examples are images with tiny, impercep-

tible perturbations that fool a classifier into predicting the

wrong labels with high confidence. x denotes the input to

some classifier, which is a natural example and has label

l. A variety of constructions [9, 14, 20, 25] can generate

an adversarial example a(x) to make the classifier label it

m 6= l. This is interesting, because ||a(x)− x ||2 is so small

that we would expect a(x) to be labelled l.
Adversarial examples are a persistent problem of clas-

sification neural networks, and of many other classifica-

tion schemes. Adversarial examples are easy to con-

struct [30, 22, 3], and there are even universal adversarial

perturbations [19]. Adversarial examples are important for

practical reasons, because one can construct physical adver-

sarial examples, suggesting that neural networks in current

status are unusable in some image classification applica-

tions (e.g. imagine a small physical modification that could

reliably get a stop sign classified as a go faster sign [25, 16]).

Adversarial examples are important for conceptual reasons
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Figure 1: SafetyNet consists of a conventional classifier (in

our experiments, either VGG19 or ResNet) with an RBF-

SVM that uses discrete codes computed from late stage Re-

LUs to detect adversarial examples. We show that (a) Safe-

tyNet detects adversarial examples reliably, even if they are

produced by methods not represented in the detectors’ train-

ing set and (b) it is very difficult to produce examples that

are both misclassified and slip past SafetyNet’s detector.

too, because an explanation of why adversarial examples

are easy to construct could cast some light on the inner life

of neural networks. The absence of theory means it is hard

to defend against adversarial examples (for example, distil-

lation was proposed as a defense [26], but was later shown

to not work [2]).

Adversarial example constructions (e.g., line search

along the gradient [9]; LBFGS on an appropriate cost [30];

DeepFool [20]) all rely on the gradient of the network, but it

is known that using the gradient of another similar network

is sufficient [25], so concealing the gradient does not work

as a defense for current networks. An important puzzle is

that networks that generalize very well remain susceptible

to adversarial examples [30]. Another important puzzle is

that examples that are adversarial for one network tend to

be adversarial for another as well [30, 15, 27]. Some net-

work architectures appear to be robust to adversarial exam-

ples [13], which still need more empirical verification. At

least some adversarial attacks appear to apply to many dis-

tinct networks [19].

We denote the probability distribution of examples by

P (X). At least in the case of vision, P (X) has support on
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some complicated subset of the input space, which is known

as the “manifold” of “real images”. Nguyen et al. show how

to construct examples that appear to be noise, but are con-

fidently classified as objects [23]. This construction yields

a(x) lies outside the support of P (X), so the classifier’s la-

beling is unreliable because it has not seen such examples.

However, most adversarial examples “look like” images to

humans, such as figure 5 in [30], so they are likely to lie

within the support of P (X).
One way to build a network that is robust to adversarial

examples is to train networks with enhanced training data

(adding adversarial samples [18]); this approach faces diffi-

culties, because the dimension of the images and features in

networks means an unreasonable quantity of training data is

required. Alternatively, we can build a network that detects

and rejects an adversarial sample. Metzen et al. show that,

by attaching a detection subnetwork that observes the state

of the original classification network, one can tell whether it

has been presented with an adversarial example or not [17].

However, because the gradients of their detection subnet-

work are quite well behaved, the joint system can be at-

tacked (Type II attack) easily in both their and our experi-

ments. Both their and our experiments also show that their

detection subnetwork is easily fooled by adversarial sam-

ples produced by attacking methods which are not used in

detector training process.

Our method focuses on codes produced by quantizing

individual ReLUs in particular layers of the classification

network (“patterns of activation”), and proceed from the hy-

pothesis:

Hypothesis 1 Adversarial attacks work by producing dif-

ferent patterns of activation in late stage ReLUs to those

produced by natural examples.

These patterns lie outside the family for which the softmax

layer would be reliable. This hypothesis suggests that: (a)

the presence of an adversarial example can be detected (as

in Metzen et al. [17]); (b) such detectors can be made very

difficult to defeat (unlike Metzen et al. [17]; section 3); (c).

such detectors should be good at generalization for different

adversarial attacks (unlike Metzen et al. [17]); (d) transfer

attacks work because an example that generates unfamiliar

patterns in one network tends to generate unfamiliar pat-

terns in other networks too; (e) transfer attacks could be

defended as well (section 3).

Contributions: Section 2 describes our SafetyNet ar-

chitecture, which consists of the original classifier network

and a detector that rejects adversarial examples. A type I

attack on SafetyNet consists of a standard adversarial ex-

ample crafted to be (a) similar to a natural image; (b) mis-

classified by the original network. A type II attack consists

of an example that is crafted to be (a) similar to a natural

image; (b) misclassified; and (c) not rejected by SafetyNet.

We show that SafetyNet is robust to both types of attacks

and generalize well. Concealing the gradients is highly ef-

fective for SafetyNet, and it produces a black box that is

strongly resistant to the best attacks we have been able to

construct. This is in sharp contrast to all other known meth-

ods [25, 17].

In section 3, we demonstrate SceneProof, a robust and

reasonably effective proof that an image is an image of a

real scene (a “real” image; contrast a “fake” image, which

is not an image of a real scene). We identify images of real

scenes by checking a match between the image and a depth

map, which is hard to manipulate. We show that SceneProof

is (a) accurate and (b) strongly resistant to attacks that try to

get manipulated scenes identified as authentic scenes.

In section 4, we propose a model that explains why our

approach works, and it also demonstrates that SafetyNet is

difficult to attack in principle.

2. SafetyNet: Spotting Adversarial Examples

SafetyNet consists of the original classifier, and an ad-

versary detector which looks at the internal state of the later

layers in the original classifier, as in Figure 1. If the adver-

sary detector declares that an example is adversarial, then

the sample is rejected.

2.1. Detecting Adversarial Examples

The adversary detector needs to be hard to attack. We

force an attacker to solve a hard discrete optimization prob-

lem. For a layer of ReLUs at a high level in the classification

network, we quantize each ReLU at some set of thresholds

to generate a discrete code (binarized code in the case of one

threshold). Our hypothesis 1 suggests that different code

patterns appear for natural examples and adversarial exam-

ples. We use an adversary detector that compares a code

produced at test time with a collection of examples, mean-

ing that an attacker must make the network produce a code

that is acceptable to the detector (which is hard; section 3).

The adversary detector in SafetyNet uses an RBF-SVM on

binary or quaternary codes (activation patterns) to find ad-

versarial examples.

We denote a code by c. The RBF-SVM classifies by

f(c) =

N
∑

i

αiyi exp(−||c− ci||
2/2σ2) + b (1)

In this objective function, when σ is small, the detector pro-

duces essentially no gradient unless the attacking code c is

very close to a positive example ci. Our quantization pro-

cess makes the detector more robust and the gradients even

harder to get. Experiments show that this form of gradient

obfuscation is quite robust, and that confusing the detector

is very difficult without access to the RBF-SVM, and still
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difficult even when access is possible. Experiments in sec-

tion 3 and theory in section 4 confirm that the optimization

problem is hard.

2.2. Attacking Methods

We use the following standard and strong attacks [2],

with various choice of hyper-parameters, to test the robust-

ness of the systems. Each attack searches for a nearby a(x)
which changes the class of the example and does not cre-

ate visual artifacts. We use these methods to produce both

type I attack (fool the classifier) and type II attack (fool the

classifier and sneak past the detector).

Fast Sign method: Goodfellow et al [9] described this

simple method. The applied perturbation is the direction in

image space which yields the highest increase of the lin-

earized cost under l∞ norm. It uses a hyper-parameter ǫ to

govern the distance between adversarial and original image.

Iterative methods: Kurakin et al. [14] introduced an

iteration version of the fast sign method, by applying it sev-

eral times with a smaller step size α and clipping all pixels

after each iteration to ensure that results stay in the ǫ neigh-

borhood of the original image. We apply two versions of

this method, one where the neighborhood is in L∞ norm

and another where it is in L2 norm.

DeepFool method: Moosavi-Dezfooli et al. [20] in-

troduced the DeepFool adversary, which is able to choose

which class an example is switched to. DeepFool iteratively

perturbs an image xadv
0 , linearizes the classifier around xadv

n

and finds the closest class boundary. The minimal step ac-

cording to the lp distance from xadv
n to traverse this class

boundary is determined and the resulting point is used as

xadv
n+1. The algorithm stops once xadv

n+1 changes the class of

the actual classifier. We use a powerful L2 version of Deep-

Fool.

Transfer method: Papernot et al. [25] described a way

to attack a black-box network. They generated adversarial

samples using another accessible network, which performs

the same task, and used these adversarial samples to attack

the black-box network. This strategy has been notably reli-

able.

2.3. Type I Attacks Are Detected

Accuracy: Our SafetyNet can detect adversarial sam-

ples with high accuracy on CIFAR-10 [12] and ImageNet-

1000 [4]. For classification networks, we used a 32-layer

ResNet [10] for CIFAR-10 and a VGG19 network [29] for

ImageNet-1000. Figures 2 shows the detection accuracy

of our Binarized RBF-SVM detector on the x5 layer of

ResNet for Cifar10 and on the fc7 layer of VGG19 trained

for ImageNet-1000. Adversarial samples are generated by

Iterative-L2, Iterative-Linf, DeepFool-L2 and FastSign

methods. Figure 2 compares our RBF-SVM detection re-

sults with the detector subnetwork results of [17]. The RoC

for our detector for Cifar-10 and ImageNet-1000 appears in

Figure 3.

Our results show: When our detector is tested on the

same adversary as it is trained on, its performance is simi-

lar to the detector subnetwork [17], even though our detec-

tor works on quantized activation patterns while the detec-

tor subnetwork works on original continuous activation pat-

terns. DeepFool is a strong attack. Increasing the number

of categories in the problem makes it easier for DeepFool to

produce an undetected adversarial example, likely because

it becomes easier to exploit local classification errors with-

out producing strange ReLU activations. If DeepFool is re-

quired to produce a label outside the top-5 for the original

example, the attack is much weaker.

Generalization across attacks: Generally, a detector

cannot know at training time what attacks will occur at test

time. We test generalization across attacks by training a de-

tector on one class of attack, then testing with other classes

of attack. Figure 2 shows that our RBF-SVM generalizes

across attacks more reliably than a detector subnetwork. We

believe this is because the representation presented to the

RBF-SVM has been aggressively summarized (by quanti-

zation), so that the classifier is not distracted by subtle but

irrelevant features. Note this kind of generalization is not

guaranteed just by using a neural network; for example, Ta-

ble 3 shows networks trained on normal quality JPEG im-

ages are confounded by low quality JPEG test images.

Our supplementary materials contain dataset description,

rejecting by classification confidence, and Type II attack re-

sults.

3. Application: SceneProof

SceneProof is a model application of our SafetyNet, be-

cause it would not work with a network that is subject to ad-

versarial examples. We would like Alice to be able to prove

to Bob that her photo is real without the intervention of a

team of experts, and we’d like Bob to have high confidence

in the proof. This proof needs to operate at large scales (i.e.

anyone could produce a proof while taking a picture), and

automatically.

Current best methods to identify fake images require

careful analysis of vanishing points [8], illumination an-

gles [6], and shadows [11] (reviews in [8, 7]). Such anal-

yses are difficult to conduct at large scales or automati-

cally. RGB image editing is easy, with very powerful tools

available. We construct a proof by capturing an RGBD im-

age (easily accessible with consumer depth sensors), which

changes the security aspect because it’s quite hard to edit

a depth map convincingly and those edits need to be con-

sistent with the image. The proof of realness is achieved

by a classifier that checks both image and depth and deter-

mines whether they are consistent. Such a system works

if (a) the classifier is acceptably accurate (i.e. it can deter-
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Figure 2: SafetyNet accurately detects adversarial attacks. To facilitate comparison, we follow the conventions of [17],

plotting the success of the adversary (i.e. its ability to fool the classifier; leftward is better) on the horizontal axis and the

accuracy of the detector on the vertical axis (higher is better). We show results for binary (SVM) and quaternary (M-SVM)

codes, and for a variety of attacks. A: Results for the detection subnetwork on CIFAR-10 from [17]. B: Results for SafetyNet

on CIFAR-10, where the detector was trained and tested on adversarial samples generated by the same attacking method

(same setting as A). C: Results for SafetyNet and the detection subnetwork (cnn) of [17] on CIFAR-10, where the detector

was trained on L∞ attack and tested on other attacking methods; SafetyNet generalizes better than detection subnetwork to

different adversarial attacking methods. D: Results for SafetyNet on ImageNet-1000, where the detector was trained and

tested on the same adversarial method. The classifier is evaluated with top-5 accuracy (E is evaluated with top-1 accuracy,

note difference in x axis); using top-5 accuracy significantly advantages the adversary detector, because forcing an adversarial

example to move out of top-5 requires larger changes. F: Results for SafetyNet on ImageNet-1000 (top-5), where the detector

was trained on L∞ attack and tested on other attacking methods; SafetyNet has relatively small loss of detection accuracy

(compared to E). We cannot compare to the detection subnetwork of [17], because they do not provide results for ImageNet-

1000.

CIFAR-10 ImageNet-1000, top-1 ImageNet-1000, top-5

Figure 3: ROC curve for our adversary detector on various adversaries. Left: CIFAR-10; center: ImageNet-1000, top-1;

right: ImageNet-1000, top-5. Deepfool-5 is a variant of deepfool that is required to force the adversarial example out of the

original example’s top 5 classes. Deepfool is a strong adversarial attack, and seems to benefit from being able to choose the

target class from multiple classes.
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Non Attack Type I Attack Type II Attack

Method F→T T→F T→T reject F→T T→F T→T reject F→T T→F T→T reject

Non Attack Data 9.7% 0% 9.4% N/A N/A N/A N/A N/A N/A

Unfamiliar Data Average 17.3% 0% 0% N/A N/A N/A N/A N/A N/A

Gradient Descent Attack N/A N/A N/A 9.9% 5.0% 6.1% 16.3% 3.7% 6.2%

Transfer Attack Average N/A N/A N/A 4.6% 9.4% 33.6% 7.9% 9.8% 26.6%

Table 1: Summary of our fc7 RBF-SVM detector’s reaction on various non attack data and Type I, Type II attacks (smaller is

better). F→T means the rate at which false label images are classified as true and the detector does not spot, same for T→F.

T→T reject means the rate at which true label images are classified as true, however, they are rejected by the detector. This

number only matters for non attack data because attacks are likely to distort activation patterns even when the label keeps

same. As expected, Type I attacks are less successful than Type II attacks. This is because a Type I attack does not explicitly

try to fool the detector.

Type I Attack

True to False

Type I Attack

False to True

Image Depth Attacked Depth Depth Diff

Type II Attack

True to False

Type II Attack

False to True

Figure 4: We show figures for successful Type I attacks

(fool the classifier) on the original classifier network, and

successful Type II attacks (fool both the classifier and detec-

tor) on our SafetyNet. Attackers are only allowed to manip-

ulate the depth. Our SafetyNet is very difficult to attack and

attacks changing label from False to True is harder. Suc-

cessful attacks on our SafetyNet requires the original inputs

hard to classify and the attacks also need to manipulate the

images more.

mine whether the pair is real or not accurately); (b) it can

detect a variety of adversarial manipulations of depth or im-

age or both (i.e. type I attacks fail) ; and (c) type II attacks

generally fail. We achieve this by using the SafetyNet ar-

chitecture.

We are mainly concerned with attacks label “fake” im-

ages “real”. Natural attacks on our system are: produce a

depth map for an RGB image using some regression method

to obtain an RGBD image (regression); manipulate RGBD

image by inserting new objects; take an RGBD image la-

beled “fake” and manipulate it to be labeled “real” (type I

adversarial); take an RGBD image labeled “fake” and ma-

nipulate it to be labeled “real” in a way that fools Safe-

tyNet’s adversary detector (type II adversarial). There is a

wide range of available regression/adversarial attacks, and

our system needs to be robust to various methods which

might be used to prepare the regression/adversarial attack.

Real test data is easily obtained. We use the raw

Kinect captures of LivingRoom and Bedroom from NYU

v2 dataset [21]. However, fake data requires care. To evalu-

ate generalization over different attacks, we omit some “re-

gression” methods from the training data and use them only

in test. “Regression” methods used in both train and test

are: random swaps of depth and image planes; single im-

age predicted depth [5]; rectangle cropped region insertion

and random shifted or scaled misaligned depth and image.

“Regression” methods used only in test are: all zero depth

values; nearest neighbor down-sample and up-sampled im-

ages and depths; low quality JPEG compressed images and

depths; Middlebury stereo RGBD dataset [28] and Sintel

RGBD dataset [1](which should be classified “fake” be-

cause they are renderings). Refer to Figure 4 for dataset

and attacks.

Type I attacks on SafetyNet fail: Type I attacks on

SceneProof using a familiar adversary (i.e. one used to train

the detector) fail. We report results for two detectors A (ap-

plied to fc7 of VGG19) and B (applied to fc6 of VGG19) in

Table 2. Type I attacks on SceneProof using an unfamiliar

adversary (i.e. one not used to train the detector) generally

fail. We report results for two detectors A (applied to fc7 of

VGG19) and B (applied to fc6 of VGG19) in Table 3.

A type II attack must both fool the classifier and sneak

past the detector. We distinguish between two conditions.

In non-blackbox case, the internals of the SafetyNet system

is accessible to the attacker. Alternatively, the network may

be a black box, with internal states and gradients concealed.

In this case, attackers must probe with inputs and gather

outputs, or build another approximate network as in [25].

Type II attacks on accessible SafetyNet fail: a type
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Test example type Classifier Acc B A B ∧ A A∨B A∨B, T

Natural RGBD, False 91.8% 15.2% 17.1% 14.3% 18.8% 19.6%

Natural RGBD, True 97.7% 10.1% 11.6% 9.2% 12.7% 10.8%

Adversarial RGBD, False 33.1% 89.1% 88.6% 87.3% 90.4% 88.9%

Adversarial RGBD, True 15.3% 81.3% 81.0% 79.1% 83.3% 83.7%

Table 2: This table shows detailed information about behavior of classifiers and detectors, summarized in Table 1. In this

table, results are calculated on the whole SceneProof dataset testing split. Type I attacks on SceneProof using a familiar

adversary (i.e. one used to train the detector) fail. We report results for two detectors: A is applied to fc7 of VGG19;

B is applied to fc6 of VGG19. Each detector column gives the rate at which the detector labels examples as adversarial.

A∨B means the example is reported adversarial if either detector says it is adversarial. A∧B means the example is reported

adversarial if both detectors say it is adversarial. A∨B, T gives the fraction of examples that were detected as adversarial

among these that were labelled True by the classifier. We break out results by type and ground truth label. For example,

for natural RGBD images that do not represent real scenes (first row), the classifier labels 91.8% correctly; of the 8.2%

incorrectly labelled true, the A∨B adversary detector rejects 19.6% as adversarial examples (last column).

Test example type Classifier Acc B A B ∧ A A∨B A∨B,T

zero D channel 76.5% 6.5% 25.6% 6.1% 26.0% 82.0%

down-up sampled 75.2% 54.9% 60.6% 51.3% 63.4% 87.6%

low quality JPEG 36.4% 80.1% 79.2% 77.2% 82.2% 81.8%

Sintel RGBD [1] 27.6% 45.3% 51.7% 39.7% 57.2% 61.4%

Middlebury RGBD [28] 24.0% 39.7% 40.3% 33.4% 46.6% 47.8%

Table 3: This table shows detailed information about behavior of classifiers and detectors, summarized in Table 1. The table

arrangement is same to Table 2. Type I attacks on SceneProof using an unfamiliar adversary (i.e. one not used to train the

detector) generally fail. All these examples should be labelled false, OR rejected as adversarial. The column for each detector

reports the rate at which the detector identifies examples as adversarial. For example, in the first row, 76.5% of zero D channel

RGBD images are correctly labelled as false by the classifier; of those labelled “true”, 82.0% are rejected as adversarial (last

column). This means that a total of 4.2% of zero D channel RGBD images pass through SafetyNet with “true” labels.

II attack involves a search for an adversarial example that

will be (a) mislabelled and (b) not detected. This search

is made difficult by the quantization procedure and by the

narrow basis functions in the RBF-SVM, so we smooth

the quantization operation and the RBF-SVM kernel oper-

ation. Smoothing is essential to make the search tractable,

but can significantly misapproximate SafetyNet (which is

what makes attacks hard). Our smoothing attack uses a sig-

moid function with parameter λ to simulate the quantization

process. We also help the search process by increasing the

size of the RBF parameter σ to form smoother gradients.

Even after smoothing the objective function, attacks tend to

fail, likely because it is hard to make an effective tradeoff

between easy search and approximation. Table 4 includes

Type I and Type II, blackbox and non-blackbox attacking

results on SceneProof dataset. Our SafetyNet is the most

robust architecture to various attacks.

Type II attacks on black box SafetyNet fail: Assume

the state of SafetyNet is concealed. We follow [24, 19] by

building attacks on various alternative networks, then trans-

ferring these network’s adversarial samples. These attacks

fail for our SafetyNet, refer to Table 4. In contrast to Safe-

tyNet, the detector subnetwork of [17] is generally suscep-

tible to type II attacks in both blackbox and non-blackbox

settings. This is because of quantization process and detec-

tion subnetwork’s classification boundary problem [19].

4. Theory: Bars and P-domains

We construct one possible explanation for adversarial ex-

amples that successfully explains (a) the phenomenology

and (b) why SafetyNet works. In this explanation, we as-

sume the network uses ReLU and weight decay, because

they are representative, make it easier to explain, and likely

to extend to other conditions with some modifications. We

have a network with N layers of ReLU’s, and study y
(k)
i (x),

the values at the output of the k’th layer of ReLUs. This is a

piecewise linear function of x. Such functions break up the

input space into cells, at whose boundaries the piecewise

linear function changes (i.e. is only C0). Now assume that

for some y
(k)
i (x) there exist p-domains (union of cells) D

in the input space such that: (a) there are no or few exam-

ples in the p-domain; (b) the measure of D under P (X) is

small; (c) |y
(k)
i (x) | is large inside D and small outside D.

We will always use the term “p-domain” to refer to domains

with these properties. We think that the total measure of all
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Method Ori Subnet Det Det A Det ABC

F→T T→F F→T T→F T→T reject F→T T→F T→T reject F→T T→F T→T reject

Non Attack Data 16.3% 0.6% 8.4% 0% 10.2% 9.7% 0% 9.4% 8.4% 0% 9.9%

Gradient Descent (I) 32.8% 55.3% 13.4% 9.5% 6.0% 9.9% 5.0% 6.1% 8.4% 0.3% 6.3%

VGG FastSign TF (I) 30.6% 2.8% 14.9% 2.2% 54.1% 7.5% 2.5% 44.1% 6.6% 1.9% 47.2%

ResNet GradDesc TF (I) 28.9% 36.7% 15.3% 22.4% 33.2% 3.6% 13.4% 29.1% 2.7% 11.9% 30.3%

ResNet FastSign TF (I) 22.2% 29.1% 7.6% 15.1% 29.8% 2.8% 12.2% 27.5% 2.2% 11.6% 27.8%

Type I Average 28.6% 30.9% 12.8% 12.3% 30.8% 6.0% 8.3% 26.7% 5.0% 6.4% 27.9%

Gradient Descent (II) 32.8% 55.3% 26.3% 21.9% 11.9% 16.3% 3.7% 6.2% 13.2% 2.6% 9.6%

VGG Finetune TF (II) 20% 3.1% 17.1% 0% 43.5% 17.2% 0% 45.6% 17.2% 0% 48.4%

VGG Subnet Det TF (II) 16.3% 0.6% 13.7% 0% 15.6% 10.3% 0% 12.5% 9.1% 0% 13.1%

ResNet Finetune TF (II) 15.6% 40.3% 8.5% 31.3% 29.3% 1.3% 27.2% 20.6% 0.3% 25% 21.0%

ResNet Subnet Det TF (II) 23.8% 29.7% 17.6% 19.3% 29.8% 2.8% 12.2% 27.5% 2.2% 11.6% 27.5%

Type II Average 21.7% 25.8% 16.6% 14.5% 26.0% 9.6% 8.6% 22.5% 8.4% 7.84% 23.9%

Table 4: Type I and Type II attacks, non-blackbox and blackbox attacks on SceneProof all fail. This table is gather by

attacking a randomly selected subset of 3200 images from the whole SceneProof dataset test split (contains 80K images).

The table compares a VGG19 network (Ori) with the detection subnetwork of [17] (Subnet), and two variants of SafetyNet

(Det A, where we have an RBF-SVM on fc7; and Det ABC, where we have an RBF-SVM on each of fc7, fc6 and pool5,

and declare an adversary when any detector responds). T→F shows the rate at which true label classified as false and not

detected and F→T shows false label classified as true and not detected (i.e. lower is better). T→T reject shows the rate

at which true samples are classified as true, but rejected by detector. This rate only matters for non attack data, and does

not matter for all attacks because attacks are likely to distort the activation patterns even if the classification label has not

been changed. There is no manipulation for the non attack data, which represents unforced errors by the classifier; note that

each of the adversary detectors catches a high percentage of the false positives committed by the classifier and rejects them

as adversarial. We group attacks by type I attack (I) and type II attack (II). The gradient descent shows the performance

of an attack by gradient descent method (type I or type II) on an accessible network. Even when the network is accessible,

attacks tend to be unsuccessful. TF represents blackbox transfer attacks where adversarial samples are obtrained from another

network (VGG - a VGG19 model; ResNet - a ResNet model). The VGG19 (ResNet) FastSign TF gives results for a type I

attack by transferring FastSign adversarials from a VGG19 (ResNet) model. VGG (ResNet) Finetune TF finetunes a VGG19

(ResNet) network with adversarial examples labelled false, and generate adversarials; VGG (ResNet) Subnet Det TF uses a

VGG19 (ResNet) network with the detection subnetwork of [17]. The results show that original classifier network is easy

to attack successfully with all attacking methods. Subnet methods can detect type I attacks, but are not robust to transfer

attacks and are vulnerable to type II attacks. Our SafetyNet is robust to Type I and Type II attacks, as well as gradient descent

and transfer attacks, likely because: quantization hides irrelevant patterns; SafetyNet works like a matcher, so is hard to

differentiate; and the subnetwork suffers from the classification boundary problem noted in [19].

p-domains under P (X) is small.

By construction, ReLU networks can represent such p-

domains. We construct a p-domain using a basis function

with small support. R(u) denote a ReLU applied to u. We

have basic bar function φ.

φ(x; i, s, ǫ) =
1

ǫ





R((xi − s) + ǫ)−
2R((xi − s))+
R((xi − s)− ǫ)





where φ has support when |xi − s | < ǫ and has peak value

1. For an index set I with cardinality #I and vectors s, ǫ,
we write bar function b as

b(x; I, s, ǫ) = R(

(

∑

i∈I

φ(x; i, si, ǫi)−#I + 1

)

)

where b has support when ||xI − sI ||1 < ǫI . Figure 5 il-

lustrates these functions. It is clear that a CNN can encode

bars and weighted sums of bars, and that for at least k ≥ 2

every y
(k)
i could in principle be a bar function. Appropriate

choices of s, ǫ and I choose the location and support of the

bar and so can produce bars which have low measure under

P (X). Now the functions presented to the softmax layer

are a linear combination of the y
(N)
i (x). This means that

with choice of weight and parameters, a bar can appear at

this level, and create a p-domain.

Figure 5: Simple example bar functions on the x, y plane,

where black is 0 and white is 1. Left: φ(x; 1, 0, 1) (i.e. a

bar in x, independent of y); center: φ(x; 2, 0, 1); and right:

b(x; {1, 2} ,0, 1).

452



We expect such p-domains to have several important

properties. Adversarial fertility: P-domains can be used

to make adversarial examples by choosing a point in a p-

domain close to x. Because there are no or few exam-

ples in the p-domain, the loss may not cause the classi-

fier to control the maximum value attained by y
(k)
i (x) in

this p-domain; and the large range of values inside the

p-domain can be used to change the values in layers up-

stream of k, by moving the example around the p-domain.

Generalization-neutral: The requirement that p-domains

have small measure in P (X) means that both train and

test examples are highly unlikely to lie in p-domains. A

system with p-domains could generalize well without be-

ing immune to adversarial examples. Some subset of p-

domains are likely findable by LBFGS. Consider the gra-

dient of y
(N)
i (x) with respect to x in two cells separated by

a boundary, where some ReLU changes state, weight de-

cay encourages a relatively small change in gradient over

these boundaries. If cells neighboring a p-domain have no

or few examples in them, we can expect that the gradient

change within cell is small too and a second order approx-

imation of y
(N)
i (x) could be reliable. We also expect cells

to be small, so search and entering a p-domain are possi-

ble and requires crossing multiple cell boundaries, which

means many changes in ReLU activation. This argument

suggests p-domains present odd patterns of ReLU activa-

tion, particularly in p-domains where some of the y
(k)
i (x)

are large in the absence of examples.

Why p-domains could exist: As Zhang et al. point out,

the number of training examples available to a typical mod-

ern network is small compared to the relative capacity of

deep networks [31]. For example, excellent training error is

obtainable for randomly chosen image labels [31]. We ex-

pect that y
(N)
i (x) will have a number of cells that is expo-

nential in the dimension of x, ensuring that the vast majority

of cells lack any example. However, the weight decay term

is not sufficient to ensure that y
(N)
i is zero in these cells.

Overshoot by stochastic gradient descent, caused by poor

scaling in the loss, is the likely reason that y
(N)
i (x) has sup-

port in these cells. Szegedy et al. demonstrate that, in prac-

tice, ReLU layers can have large norm as linear operators,

despite weight decay (see [30], sec. 4.3), so large values

in p-domains are plausible. This large norm is likely to be

the result of overshoot. Recall that the value of y
(N)
i (x) is

determined by the product of numerous weights, so in some

locations in x, the value of y
(N)
i could be large, which is a

result of multiple layer norms interacting poorly.

An alternative to attacking by search using smoothed

RBF gradients is as follows. One might pass an example

through the main classifier, determine what code it had, then

seek an adversarial example that produces that code (and

so must fool the RBF-SVM). We sketch a proof that the

optimization problem is extremely difficult. Choose some

threshold t > 0. We use bt(u) for the function that bina-

rizes its argument with t. Assume we have at least one unit

y
(k)
i that encodes a weighted sum of bar functions. We wish

to create an adversarial example a(x∗) that (a) meets cri-

teria for being adversarial and (b) ensures that bt(y
(k)
i (a))

takes a prescribed value (either one or zero). The feasible

set for this constraint can be disconnected (e.g. a sum of the

bump functions of Figure 5 (right)), and so need not be con-

vex, implying that the optimization problem is intractable.

As a simple example, the following constraint set is discon-

nected for ǫ < 1/2

{x | bt(b(x; 1,0, ǫ) + b(x; 1,1, ǫ)) = 1} .

5. Discussion

We have described a method to produce a classifier that

identifies and rejects adversarial examples. Our SafetyNet

is able to reject adversarial examples that come from attack-

ing methods not seen in training data. We have shown that

it is hard to produce an example that (a) is mislabeled and

(b) is not detected as adversarial by SafetyNet. We have

sketched one possible reason that SafetyNet works, and is

hard to attack. Many interesting problems are opened by

our work, and we provides lots of insights into the mecha-

nism that neural network works.

SaferNet: There might be some better architecture than

our SafetyNet, whose objective function is harder to opti-

mize. The ideal case would be an architecture that forces

the attacker to solve a hard discrete optimization problem

which does not naturally admit smoothing.

Neural network pruning: Our work suggests that net-

works behave poorly for input space regions where no data

has been seen. We speculate that this behavior could be

discouraged by a post-training pruning process, which re-

moves neurons, paths or activation patterns not touched by

training data.

Explicit management of overshoot during training:

we have explained adversarial examples using p-domains,

which is the result of poor damping of weights during train-

ing. We speculate that constructing adversarial examples

during training, by identifying locations where this damping

problem occurs and exploiting structural insights into net-

work behavior, could control the adversarial sample prob-

lem (rather than just using adversarial examples as training

data).
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