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Abstract

Edge and surface are two fundamental visual elements

of an object. The majority of existing object proposal ap-

proaches utilize edge or edge-like cues to rank candidates,

while we consider that the surface cue containing the 3D

characteristic of objects should be captured effectively for

proposals, which has been rarely discussed before. In this

paper, an object-level proposal model is presented, which

constructs an occlusion-based objectness taking the surface

cue into account. Specifically, the better detection of oc-

clusion edges is focused on to enrich the surface cue in-

to proposals, namely, the occlusion-dominated fusion and

normalization criterion are designed to obtain the approx-

imately overall contour information, to enhance the occlu-

sion edge map at utmost and thus boost proposals. Exper-

imental results on the PASCAL VOC 2007 and MS COCO

2014 dataset demonstrate the effectiveness of our approach,

which achieves around 6% improvement on the average re-

call than Edge Boxes at 1000 proposals and also leads to a

modest gain on the performance of object detection.

1. Introduction

Object proposal aims to generate a certain amount of

candidate bounding boxes to determine the potential objects

and their locations in an image, which is widely applied to

many visual tasks for pre-processing, e.g., object detection

[12], [29], segmentation [8], [28], object discovery [15],

and 3D match [3]. Due to the great practicability, it has

been a significant research recently.

As Perception of the Visual World writes, “The elemen-

tary impressions of a visual world are those of surface and

edge.” Indeed, edge and surface are fundamental to perceive

everything in vision, including objects. Most of existing ap-

proaches utilize the edge or edge-like cues to generate pro-

posals, but the surface cue has been rarely discussed. The

main reason is that achieving the high-level surface cue in
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Figure 1. The formation of occlusion and contour. (a) a natural

image, (b) the surface of the object cow and its projection, (c)

the contour of the cow formed by occlusion edges in red, (b) the

detailed occlusion edges.

an unsupervised manner is a challenging task.

From the perspective of optics [25], the smooth surface

of an object presented on the 2D image forms the complete

and continuous contour, which is produced by the occlusion

events in the 3D space [23]. Fig.1 illustrates the formation

of occlusion and contour. In (b), the optical rays (orange

lines) project the object cow in the 3D space onto the back-

ground, and then its surface is delineated by contour in the

2D image. It is observed that the contour just occurs at the

boundary where the surface of the cow occludes the back-

ground. Formally, the contour is composed of a set of occlu-

sion edges. In this paper, an occlusion edge is an edge sig-

nalling depth discontinuity between regions, and the edge

is called the basic edge for clarity. As shown in Fig.1 (c)

and (d), the red occlusion edge is essentially a blue basic

edge between two junctions, circled in yellow. Moreover,

discontinuous occlusion edges form the complete contour,

corresponding to the object surface. Consequently, occlu-

4921
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Figure 2. The comparative results of proposals, where the top

corresponds to Edge Boxes [30] while the bottom is our approach

with the surface cue added. (a) the proposals, where blue boxes

are the best candidates for the found ground truth boxes in green,

and the red are missing ones, (b) the edge maps, (c) the detailed

edges contained in the green and red boxes in (b).

sion edges are employed to capture the surface cue. Based

on the discussion above, the contour produced by connect-

ing occlusion edges reflects the boundary of object surface

in the 3D space, which is similar to [22]. Thus, a novel

model based on the occlusion edges is presented to obtain

the surface cue effectively to boost the performance of pro-

posals.

The comparative performance is illustrated in Fig.2,

where the top is the result of Edge Boxes [30], and the bot-

tom corresponds to our method with the surface cue intro-

duced. It is observed that the edge map of Edge Boxes in

(b) produces weak and discontinuous response, which poor-

ly delineates objects, e.g., the big boat in the green box and

the small boat in the red box are not coherently complete,

leading to the loss of proposals and their localization accu-

racy in (a). However, our informative occlusion edge map

generated from the surface cue appears more consistent, and

strengthens the objects’ contours corresponding to their sur-

face in the 3D world, which depicts objects more saliently

for proposals. As shown in (b) and (c), the occlusion edges

capturing the surface cue obviously contribute to the com-

prehensive and accurate discovery of objects, e.g., the small

boat is found with our edge map, and the big boat is local-

ized more precisely than Edge Boxes.

In this paper, a novel object-level approach of proposal

generation is presented, where the surface cue is consid-

ered in the form of occlusion edge. To this end, occlu-

sion edge detection is firstly demanded and formulated as

a supervised learning task. Based on the work in [19], the

edge cues are extracted to form feature samples and the k-

ernel ridge regression is applied to acquire the occlusion

edge map. Moreover, a novel sparsity induced optimization

objective with Huber loss [14] is proposed to dynamically

select a set of proper training samples, i.e., the basis. To

further enrich the surface cue for proposals, an occlusion-

dominated fusion is designed to obtain the overall contour

information, namely, a more reliable occlusion edge map.

In addition, it is observed that normalization is beneficial to

most of proposals for small objects. Hence, a specific nor-

malization criterion is proposed to measure its effect and

determine whether the normalization should be done or not,

which improves the occlusion edge map at utmost.

In summary, our contributions lie in:

1. An object-level proposal approach is presented with

the surface cue considered. To the best of our knowl-

edge, this is the first paper to introduce the surface cue

into proposals.

2. Occlusion edges are novelly utilized for the capture of

object surface cue to enhance proposals, and a whole

occlusion-based framework is constructed for the bet-

ter occlusion edge map and corresponding objectness.

3. In contrast with Edge Boxes, our approach achieves

6% improvement on the average recall at 1000 pro-

posals, which also leads to a modest gain on the per-

formance of object detection.

2. Related work

In general, two main categories may be distinguished for

object proposals: window scoring approaches and group-

ing approaches. The former utilize a set of sampled win-

dows to score and sort them based on the likelihood of con-

taining an object to remove proposals with low rankings,

e.g., Objectness [1] combines several image cues measur-

ing characteristics of objects in a Bayesian framework, Bing

[6] proposes a simple and powerful feature called binarized

normed gradients to improve the search for objects using

objectness scores. The latter usually partition an image in-

to multiple patches and merge them with specific criteria to

generate candidate region proposals, e.g., Selective Search

[24] combines the strength of both an exhaustive search and

segmentation, CPMC [4] exploits multiple graph-cut based

segmentations with multiple foreground seeds and biases to

propose objects, and MCG [2] develops the multiple hierar-

chical work by combinatorially grouping regions. However,

these state-of-the-art methods rarely consider the 3D cues

of object surface, while our object-level method takes the

surface cue into account. In addition, recent deep learning

based works achieve excellent performance for proposals,

e.g., Deep Mask [20] and Sharp Mask [21], but they may be

at the cost of efficiency.

2.1. Reviewing edge boxes

Since our object-level approach closely depends on oc-

clusion edges, we deeply review Edge Boxes [30], which

defines the specific objectness score based on an edge map
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to model the observation. Here, we thoroughly probe into

the deficiency of the basic edge map [9] utilized in it:

• The basic edge map involves many tiny edges with

weak response, so some relatively large candidate boxes

containing them are likely to obtain higher scores than real

yet small ones, which brings the great difficulty to small ob-

ject proposals. In Fig.3 (b), the boat contained in the green

dashed box is composed of weak edges, leading to the lower

score, while other weak edges contained in a relatively large

box score higher than the boat, so it is more likely to be an

object, e.g., the red dashed box, which is a false judgement.

• Most of the basic edges are incomplete and weakly

continuous, making the objects with large aspect ratio hard

to find. The reason is that the candidate boxes intersecting

the weak edges achieve the higher score ranking, e.g., for

the train in the green dashed box in Fig.3 (b), the response

gets so weak in the half that the red box truncating its weak

edges acquires a higher score than the whole train.

Therefore, we attempt to address the issues above and

improve the edge response to promote proposals, namely,

enhance the response and consistency of object contours

and weaken or remove false contours to obtain a more rea-

sonable edge map, i.e., the occlusion edge map.

3. Object-level proposals

Since occlusion effectively captures the surface cue, we

focus on occlusion estimation and occlusion-based object-

ness to propose objects. However, occlusion edges in the

complex scenarios are hard to detect completely, which

needs further improvement. Considering that basic edges

provide overall yet weak response, an occlusion-dominated

fusion is elaborately for a more reliable occlusion edge map

to compensate for the lost surface cue.

3.1. Occlusion edge response

With the edge representation in [19], F ∈ RU×N denotes

the sample matrix with N training edges, each of which has

U dimensional features. However, such immense and mis-

cellaneous samples greatly increase the complexity when

training the occlusion edge detector, so a set of basic sam-

ples are necessary to accelerate learning and boost accuracy.

Specifically, the basis matrix B ∈ RU×M is learnt to rep-

resent the original samples approximately and as exactly as

possible, namely, F ≈ BS, where S ∈ RM×N is the coeffi-

cient matrix for B, M is the number of basis and M ≪ N .

[19] employs the Mean Shift Clustering [7] to obtain the

cluster centers as representative samples, which are fixed

and may include some noises. To avoid the adverse effects

of them, dynamic basis learning is novelly introduced.

Motivated by the sparse coding [27], we present a sparsi-

ty induced optimization objective with the Huber loss [14],

(a) (b) (c)

Figure 3. (a) the natural images, with ground truth boxes shown

in green, (b) the basic edge maps, with ground truth boxes shown

in green and false proposal boxes shown in red, (c) the occlusion

edge maps with our approach.

which is formulated as:

min
B,S

∑

i

∑

j

Hα(rij) + μ‖S‖1

s.t. B ≥ 0, S ≥ 0, ‖bi‖
2
2 ≤ d, ∀ i = 1, ...,M

(1)

where d is a constant and ||S||1 =
∑M

i=1

∑N

j=1 |si,j | de-

notes the ℓ1-norm of the matrix. The residue ri,j = fi,j −
bi·s·j indicates the reconstruction error of each dimension.

Hα(·) denotes the Huber loss function with a parameter α.

which is defined as:

Hα(r) =

{

r2/2 |r| < α

α|r| − α2/2 |r| ≥ α
(2)

According to Eq.(2), if the residue |r| < α, representing

the normal samples, the objective is the ℓ2-regularized loss.

Otherwise, it means that there may exist noises, i.e., the

edges are useless for reconstruction, and hence the objec-

tive is the ℓ1-regularized loss, which is insensitive to large

errors. Therefore, the Huber loss is robust to accommo-

date noises caused by the arbitrary of the edges, while ||S||1
encourages each edge to be approximated by a sparse com-

bination of the basis.

Taking Eq.(2) into consideration, Eq.(1) can be approxi-

mately converted to the weighted least square problem with

sparsity and non-negativity constraints:

min
B,S

1

2
W ⊙ ‖F − BS‖2F + μ‖S‖1

s.t. B ≥ 0, S ≥ 0, ‖bi‖
2
2 ≤ d, ∀ i = 1, ...,M

(3)

where ⊙ is the Hadamard product of matrices, and W can be

interpreted as the weight matrix of the residue r. Given the

pth iteration of the optimization procedure, each element of

W is defined as:

wp
ij =

⎧

⎨

⎩

1 |rpij | < α
α

|rpij |
|rpij | ≥ α

(4)
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Aiming to solve the optimization problem in Eq.(3), we

alternate between updating B and S. Fixing B, with the non-

negativity constraint to S, the objective is similar to the s-

parse coding, and thus the update rule in [26] is employed

to optimize S. In turn, fixing S, the formula is reduced

to a conventional weighted least square problem with non-

negativity constraint, which can be done efficiently by the

Lagrange dual in [17].

With the optimized training samples B∗, the kernel ridge

regression in [19] is utilized to learn the occlusion classi-

fier, which has a simple closed form solution, i.e., v =
(K + γI)−1L, where K = κ(B∗,B∗) is a kernel matrix

calculated by the kernel function κ, γ is the regularization

parameter, I is an identity matrix and L is the occlusion la-

bel vector. When testing, we calculate regression values for

each edge with the trained classifier and only positive ones

are retained, which is stated as:

ce = max(0, vκ(B∗, fe)) (5)

where fe is the feature vector of the edge e. Consequently,

the occlusion confidence cp of each edge pixel p ∈ e is ce.

Then, the occlusion edge map is constructed by assigning

corresponding confidence cp to each edge pixel p, denot-

ed by the matrix Ec. Note that the following edge map-

s with response known are obtained in the same way. As

seen in Fig.3 (c), the occlusion edge maps strengthen the

edge response of small objects, e.g., the boat, and remove

a certain amount of irrelevant edges. Moreover, the edges

of objects are more continuous and complete in comparison

with edge response in Fig.3 (b), which can delineate objects

more saliently and contribute to finding proper proposals,

e.g., the boundary of long train.

3.2. Occlusion-based objectness

Since the contour produced by connecting occlusion

edges reflects the boundaries of object surface in the 3D

space, the discovery of objects directly from them seems

so simple. Unfortunately, due to the complexity of natu-

ral scenes, e.g., the similar appearance to the background

or the heavy shading, occlusion edges cannot be correctly

and completely detected. However, our object-level mod-

el is no need of strictly closed and continuous occlusion

edges to propose objects. With the rough outline of objects,

the objectness of each box b is evaluated directly based on

the degree of overlapping between occlusion edges and box

boundaries, which is formulated as:

Γ(b) =
∑

e∈b−bo

Ce −
∑

e∈Ob

sin θ(e,b)Ce (6)

where bo is the inner box with half size centered in b, and

Ce is the sum of occlusion edge confidence ce for all pixels

in the edge e. Ob is the set of occlusion edges overlap-

ping the box b’s boundary, which can be obtained efficient-

ly with the two data structures in [30]. θ(e,b) ∈ [0◦, 90◦] is

(a) (c)(b)

(d) (f)(e)

θ(e,b)

Figure 4. (a) an object in the image, (b) the occlusion edge map

with improper proposals in the three boxes, where the warmer

color corresponds to the higher occlusion confidence, (c) the oc-

clusion edge map with the best proposal in the large yellow box,

which obtains a relatively high score ranking, (d), (e) and (f) re-

spectively correspond to the three proposal boxes in (b).

the angle between e and its intersecting box boundary, and

the weight sin θ(e,b) can be interpreted as the dissimilarity

between them. Note that the score should be accordingly

scaled like Edge Boxes.

According to Eq.(6), the objectness is mainly related to

several factors: the number and confidence of occlusion

edges straddling the box’s boundary, the occlusion edges

included in the inner box, and the orientation disparity be-

tween box’s boundary and occlusion edges at the neigh-

bourhood of the box. As shown in Fig.4, the large yellow

proposal box in (c) obtains a higher score than the three

boxes in (b). Firstly, the box’s boundary is almost tangen-

t to the detected occlusion edges of the bird, meaning that

the proposal covers the object along its boundary approxi-

mately, i.e., θ(e, b) is small as marked in (c). Secondly, the

inner yellow box hardly contains occlusion edges, which

indicates its interior appearance is coherent and it is more

likely to be an object. Hence, despite the contour of the

bird is not complete, we still propose it correctly with our

occlusion-based model. In contrast, (d), (e) and (f) illus-

trate several typical improper proposals, corresponding to

the white, green and pink boxes in (b) respectively. The red

points in (d) shows all intersection angles between occlu-

sion edges and the box’s boundary are large, which is much

likely that the white box in (b) truncates the object and thus

the score is degraded. The green box in (e) is better than

(d) because some of the intersection angles are relatively s-

mall. For the large pink box in (f), although the boundary

of the box is consistent with occlusion edges like (c), the

inner pink box contains many occlusion edges with large

confidence, which means there may exist a more suitable

proposal box to represent an object.
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(a) (c)(b)

Figure 5. (a) the image whose occlusion edges are hard to de-

tect completely, (b) the occlusion edge map Ec, (c) the improved

occlusion edge map Ẽ
c

with the lost response circled in yellow .

3.3. Occlusion-dominated fusion

Considering that the basic edges can compensate for

the detailed response lost in occlusion map, an occlusion-

dominated fusion is introduced to further promote occlusion

edge map, which can make our occlusion-based objectness

more reliable. Specifically, due to the informative 3D char-

acteristic of occlusion, we novelly regard occlusion confi-

dence as the weighting term to dominate the fusion, which

is formulated as:

Ẽ
c
= Ec ⊙ Ec + (Ec

m − Ec)⊙ Eg (7)

where Ec
m is the matrix filled with the maximum confidence

of all occlusion edges in the image. Eg , Ec and Ẽ
c

re-

spectively represent the basic edge, occlusion edge and im-

proved occlusion edge maps constructed like Section 3.1.

According to Eq.(7), for a certain edge pixel, we obtain

the corresponding response in the edge map matrix with its

location i and j, i.e., Ẽc
ij = Ec

ijE
c
ij + (Ec

m(ij) − Ec
ij)E

g
ij .

Thus, the occlusion response Ec
ij is the weight between Ec

ij

and Eg
ij , which can adjust the response based on both edge

and surface cue. For instance, a large Ec
ij makes Ẽc

ij prefer

Ec
ij itself, while a small one places more weight on Eg

ij to

compensate for the lost response. As shown in Fig.5, the

improved occlusion edge map Ẽ
c

not only further enhances

the occlusion edges of real objects, but also recovers weak

yet necessary response of ambiguous boundaries lost in Ec,

e.g., the masts of ships in (a) are too narrow to be detected in

the occlusion edge map (b), but with the supplement of ba-

sic edges, the occlusion edge map in (c) provides the weak

response for them, circled in yellow, and thus can obviously

contribute to precise discovery of ships.

However, some small objects with low score rankings

are still difficult to find. To tackle this issue, we normal-

ize the improved occlusion edge map into [0, 1], namely,

Ẽ
c

n = Ẽ
c
⊘ Ẽ

c

m, where ⊘ is the element-wise division and

Ẽ
c

m is similar to Ec
m. For these small objects, the normal-

ization can diminish their score distance to obvious object-

s, which promotes their rankings and makes them easier to

find, but it may risk losing some informative response. Thus

a specific normalization criterion is designed to measure its

9.425

0

1.299

0.051

3.309

0.602

3.199

0.031

0.601

0.438

(a) (b) (c)

Figure 6. (a) the natural images, the top image is in need of nor-

malization, while the bottom one is not, (b) the ground truth box-

es with maximum and minimum scores obtained by Ẽ
c

, (c) the

ground truth boxes with maximum and minimum scores obtained

by Ẽ
c

n
.

effect. Given an image, a score ratio g is defined as:

g =
maxb∈ΩΓ(b)

minb∈ΩΓ(b) + ε
(8)

where Ω is the set containing all ground truth boxes, Γ(b) is

the objectness in Eq.(6) and ε is a sufficiently small number

for smoothing. Eq.(8) is the ratio of maximum objectness

to minimum objectness among ground truth boxes, which

partly reflects the score distance between small and obvious

objects. Based on Ẽ
c

and Ẽ
c

n, we can calculate the ratios

gc and gcn respectively with Eq.(8). Then the normalization

criterion is stated as:

E =

{

Ẽ
c

n gc > gcn

Ẽ
c

gc ≤ gcn
(9)

where gc > gcn means normalization works, otherwise it

fails to reduce the distance so that Ẽ
c

is unchanged. Fig.6

illustrates the two situations, where the top image is in need

of normalization, while the bottom one is not. Scores of

all ground truth boxes are marked near the green boxes in

(b) and (c) respectively, and the corresponding score ratios

are obtained based on Eq.(8). For the top image, gc ≫
gcn indicates normalization is much significant to the image.

But for the bottom one, gc < gcn means Ẽ
c

is more effective.

4. Experiments

In this section, we mainly evaluate the performance of

our approach on the PASCAL VOC 2007 dataset [10]. Re-

ferring to the experimental settings of Edge Boxes [30], we

employ the training and validation sets to report the results

on variants of our algorithm, while the test set is used for

contrast with state-of-the-art approaches. For each dataset,

we measure the results with three proposal metrics: Firstly,

we set the Intersection over Union (IoU) threshold to 0.7

and vary the number of object proposals from 10 to 10000.
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Figure 7. Comparison on variants of our approach on the PASCAL VOC 2007 dataset. (a) recall versus number of proposals given IoU =

0.7, (b) recall versus IoU overlap threshold given 1000 proposals, (c) average recall versus number of proposals between IoU 0.5 to 1.
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Figure 8. Comparison of our approach with state-of-the-art hand-crafted methods on the PASCAL VOC 2007 dataset. (a) recall versus

number of proposals given IoU = 0.7, (b) recall versus IoU overlap threshold given 1000 proposals, (c) average recall versus number of

proposals between IoU 0.5 to 1.

Secondly, given 1000 proposals, the IoU threshold ranges

from 0.5 to 1. Thirdly, the average recall (AR) between IoU

0.5 to 1 is introduced in [13] to summarize proposal perfor-

mance across IoU thresholds, varying from 10 to 10000 pro-

posals too. In addition, we make comparison on the capabil-

ity of variants of our algorithm to propose specific objects,

and finally explore the effects of different existing methods

on object detection. Recently, MS COCO has become the

mainstream dataset for object proposal, especially for deep

learning based works, thus some additional experiments are

done on the MS COCO 2014 dataset [18].

4.1. Comparison on variants of the approach

First, we make comparison on variants of our approach,

and the results are shown in Fig.7. Edge Boxes is regarded

as the baseline, the second variant utilizes our occlusion-

based objectness with primary occlusion edge map and the

third employs the occlusion-dominated fusion. The final is

our whole method including normalization criterion. It is

observed that our occlusion-based objectness is better than

Edge Boxes. The reason is that occlusion edges indicate the

3D discontinuity of object surface and provide the informa-

tive surface cue not involved in edges, which increases the

accuracy of proposals and makes localization more precise.

Then, when we properly add basic edges to improve occlu-

sion edge map, the recall further rises. Even though for less

proposals or higher IoU threshold, the performance is bet-

ter than the methods with single edge map. Finally, with

our normalization criterion introduced, there is still a mod-

est gain in accuracy, which demonstrates that the refinement

of occlusion edge response with our approach is effective to

promote object proposals.
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Edge Boxes (I) (II) Ours

Small size 0.142 0.191 0.204 0.212

Aspect ratio 0.381 0.453 0.477 0.483

Table 1. Comparison results of recall on the specific objects for

1000 proposals and IoU 0.7 on the PASCAL VOC 2007 dataset.

(I) is the occlusion-based objectness only with occlusion edges.

(II) utilizes the occlusion-dominated fusion. Ours is the whole

framework with the normalization criterion added based on (II).

Additionally, as mentioned in Section 2.1, Edge Boxes

based on the basic edges perform poorly for some specific

objects, e.g., the objects with large aspect ratio or extremely

small size. Thus, we compare the ability of different edge

maps when proposing these difficult objects. In the exper-

iment, a ground truth box b in the image I is defined as a

small object if area(b) < 0.01 ∗ area(I), while the box

with its aspect ratio more than 3 is also considered. Ta-

ble 1 illustrates the results of recall for 1000 proposals and

IoU 0.7. Small objects are too difficult to discover, but the

occlusion-based objectness with primary occlusion edges

(I) obtains 5% gain in contrast with Edge Boxes. When

we further improve the occlusion edge map with occlusion-

dominated fusion (II), the performance gets better. Finally,

with the normalization criterion added, our whole approach

achieves 7% improvement than Edge Boxes, which demon-

strates the superior ability of our method to propose small

objects. For the objects with large aspect ratio, the promo-

tion is more significant. The recall of occlusion exceeds 7%

than Edge Boxes, which indicates that occlusion effectively

preserve the integrality of the objects. Similarly, when we

refine the occlusion edge map with occlusion-dominated fu-

sion and normalization criterion, the results also obtain the

corresponding rise. Above all, our final occlusion edge map

achieves 10% improvement than Edge Boxes for the objects

with large aspect ratio.

Note that the pipeline of the presented method is the

same as Edge Boxes, which only contains two parts: oc-

clusion edge detection and object proposal generation with

the occlusion edge map, namely, both of us train the specific

edge detectors for supervised edge detection, and then use

similar window scoring mechanism for unsupervised object

proposal. For the PASCAL VOC 2007 dataset, the runtime

of Edge Boxes is 0.55s, while ours is 0.7s, which is nearly

as efficient as Edge Boxes, but achieves much higher recall

when fixing the number of proposals.

4.2. Comparison with hand-crafted approaches

In Fig.8, several hand-crafted methods are selected from

[13] to evaluate our approach, where their competing results

are provided. Selective Search (SSearch) [24] and Geodesic

[16] achieve promising accuracy and perform similarly for

the three metrics. Both of them fall behind at a small num-

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

IoU between [0.5,1]

# proposals

av
er

ag
e 

re
ca

ll

 

 
SSearch

Edge Boxes

MCG

Deep Mask

Sharp Mask

Ours

Figure 9. Comparison results of average recall for 1, 10, 100,

1000 proposals between typical hand-crafted and deep learning

based methods on the MS COCO 2014 validation set.

ber of proposals but rise rapidly with candidates increas-

ing, especially at the larger number of proposals and higher

IoU values, and Selective Search gets much powerful for

proposals when the amount is very large (about > 5000).

CPMC [4] obtains relatively few yet high-quality proposal-

s. In contrast, Edge Boxes [30], MCG [2] and our object-

level approach achieve superior results of recall as a whole,

and ours is the best. Both Edge Boxes and our approach

perform well at the small or large number of proposals.

However, due to the low localization accuracy of window

scoring mechanism, their results get worse than grouping

methods when IoU > 0.8, which adversely affects the aver-

age performance. MCG has a comparatively strong ability

to propose objects and localize them precisely, leading to

the competitive average accuracy across all proposals, as

shown in Fig.8 (c). Nevertheless, when we introduce the

informative surface cue into proposals, both the quality and

localization precision are enhanced, and thus the average

recall exceeds around 6% than Edge Boxes at 1000 propos-

als. Moreover, our approach outperforms MCG on overall

performance, which demonstrates the effectiveness of our

refined occlusion edge map.

4.3. Comparison with deep learning based ap-
proaches

Due to the powerful capability of feature extraction and

well-designed structure of convolutional networks, recen-

t deep learning based works like Deep Mask [20] and Sharp

Mask [21] achieve excellent accuracy, and thus outperfor-

m hand-crafted methods. As shown in Fig.9, we compare

the average recall (AR) between IoU 0.5 and 1 for 1, 10,

100, 1000 proposals on the MS COCO 2014 validation set,

which is larger and more diverse. It is observed that our

method still outperforms other hand-crafted ones, but Deep
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aero bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

CPMC 65.3 61.7 58.3 37.5 17.9 71.4 67.3 76.7 22.9 61.2 64.6 70.3 77.0 69.0 54.8 18.5 52.6 63.4 71.7 61.5 57.1

Geodesic 64.2 67.0 55.9 39.2 19.9 71.8 70.4 74.4 24.8 65.9 63.5 65.6 78.7 69.2 58.0 20.4 54.5 57.8 70.2 60.9 57.5

SSearch 70.1 67.1 61.5 42.5 21.4 68.3 68.7 76.4 27.6 65.7 66.8 70.0 75.5 68.9 57.9 25.6 53.6 63.7 76.0 62.5 59.6

MCG 66.4 69.3 60.3 42.3 28.5 71.3 72.3 77.3 30.1 61.4 62.4 69.8 77.4 68.2 62.2 27.4 57.6 66.1 75.8 59.4 60.3

Edge Boxes 67.1 69.8 59.7 46.2 28.3 72.9 72.3 73.9 28.7 68.1 62.4 67.6 79.1 73.6 62.4 28.3 55.8 61.2 70.4 59.7 60.4

Ours 68.1 71.4 62.1 45.7 32.9 73.1 72.9 76.1 31.2 68.9 62.8 67.9 79.0 72.9 63.6 31.6 56.9 61.7 70.7 59.8 61.5

Table 2. Fast R-CNN (model M) detection results (AP) on the PASCAL VOC 2007 dataset, where mean average precision is listed at the

end. Bold numbers indicate the best proposal method per class. Our approach is better than other state-of-the-art methods for the majority

of objects, and achieve the best mean performance of detection.
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Figure 10. The results of our approach with 1000 proposals and

IoU threshold of 0.7. Ground truth bounding boxes are shown in

green and red, where red boxes indicate the objects are not found.

Blue bounding boxes with their obtained scores nearby are the

generated object proposals close to green ground truth boxes.

Mask and Sharp Mask perform better than hand-crafted

methods, including ours. However, our method is entire-

ly based on the unsupervised hand-crafted features and has

comparable strengths. Firstly, it reflects a good tradeof-

f between recall and speed for object proposal, which takes

less time than most deep learning based methods per image.

Secondly, it does not require fully-labeled training images,

and is easier to be generalized to work on other unlabeled

data, compared with supervised deep learning methods.

4.4. Proposals for object detection

Proposals are commonly applied to object detection,

whose precision is related to the average recall and localiza-

tion accuracy of candidate boxes. Hence, we consider the

well-known object detector, the Fast R-CNN [11]. After ob-

taining 2000 proposals with our approach, the Fast R-CNN

is trained on the training and validation sets of the PASCAL

VOC 2007 dataset, and then detect objects on the test set.

For efficiency, proposals generated by different methods s-

tart from the same pre-trained VGG-M network [5]. Table 2

shows the per-class Fast R-CNN detection results of diverse

approaches, as well as mean average precision (mAP). Se-

lective Search, MCG and Edge Boxes achieve comparable

accuracy results because their proposals are relatively high-

quality. Geodesic and CPMC perform a little bit worse.

In contrast, due to the improvements of the average recall

and localization accuracy, our approach obtains the best re-

sults for the majority of objects and thus the highest mAP

among these methods, which demonstrates that the high-

quality proposals generated with our approach can be fur-

ther utilized for effective object detection.

Finally, qualitative results of our proposal method are

shown in Fig.10. Due to the introduced surface cue with

improved occlusion edges, our approach almost discovers

diverse objects effectively in various scenes, including the

objects with large aspect ratio or small size, which are dif-

ficult to find only with the basic edge map.

5. Conclusion

This paper presents a novel object-level proposal model,

where the occlusion-based objectness captures the surface

cue reflecting abundant 3D characteristic of objects with oc-

clusion edges. Specifically, to obtain the high-quality occlu-

sion edge map for proposal, an optimization objective with

Huber loss is first constructed to select proper samples for

occlusion detection. Then an occlusion-dominated fusion is

elaborately designed, with specific normalization criterion

added, to further promote the occlusion edges and propos-

als. Experiments on the PASCAL VOC 2007 and MS CO-

CO 2014 dataset demonstrate the superiority of our method

over state-of-the-art methods, especially 6% improvement

on the average recall at 1000 proposals than Edge Boxes.
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