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Abstract

Many state-of-the-art approaches to multi-object track-

ing rely on detecting them in each frame independently,

grouping detections into short but reliable trajectory seg-

ments, and then further grouping them into full trajectories.

This grouping typically relies on imposing local smoothness

constraints but almost never on enforcing more global ones

on the trajectories.

In this paper, we propose a non-Markovian approach to

imposing global consistency by using behavioral patterns

to guide the tracking algorithm. When used in conjunc-

tion with state-of-the-art tracking algorithms, this further

increases their already good performance on multiple chal-

lenging datasets. We show significant improvements both in

supervised settings where ground truth is available and be-

havioral patterns can be learned from it, and in completely

unsupervised settings.

1. Introduction

Multiple Object Tracking (MOT) has a long tradition for

applications such as radar tracking [18]. These early ap-

proaches gradually made their way into vision community

for object tracking purposes. They initially relied on Gating,

Kalman Filtering [17, 64, 36, 89, 57] and later on Particle

Filtering [32, 78, 66, 45, 90, 60, 19]. Because of their recur-

sive nature, when used to track objects in crowded scenes,

they are prone to identity switches and trajectory fragmen-

tations, which are difficult to recover from.

With the recent improvements of object detectors [27, 8],

the Tracking-by-Detection paradigm [4] has now become

the preferred way to address MOT. In most state-of-the-art

approaches [80, 23, 61, 88], this involves detecting objects

in each frame independently, grouping detections into short

but reliable trajectory segments, or tracklets, and then fur-

ther grouping those into full trajectories.

While effective, existing tracklet-based approaches tend
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Figure 1. Top row. At training time, our procedure alternates be-

tween learning global patterns from trajectories and improving the

trajectories on the basis of these patterns. When the initial trajec-

tories come from annotated ground truth data, the patterns are sim-

ply learned without further iterations. Bottom row. At run time,

the learned patterns are used to improve trajectories produced by

state-of-the-art algorithms.

to only impose local smoothness constraints on the trajec-

tories. These are Markovian in nature as opposed to being

global ones that stem from behavioral patterns. For exam-

ple, a person entering a building via a particular door can

be expected to head to a specific set of rooms. Similarly,

a pedestrian emerging on the street from a shop will often

turn left or right to follow the sidewalk. Such patterns are of

course not absolutes because people sometimes do the un-

expected but they should nevertheless inform the tracking

algorithms. We know of no existing technique that imposes

this kind of global non-Markovian constraints in a globally

optimal fashion.

Our first contribution is an energy function that relates

behavioral patterns to trajectories assigned to them. We use

it to infer global patterns and to guide a multi-target tracking

algorithm in a non-Markovian fashion.

Our second contribution is an unsupervised training

scheme. Given input trajectories from any source, it iterates

between learning patterns that maximize our energy func-

tion, and improving the trajectories by linking the detec-

tions that were the part of the original ones in a potentially

different way so as to maximize the same energy. When

the original trajectories come from annotated ground truth

data, the patterns are simply learned for them without fur-
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ther iterations. The top row of Fig. 1 depicts this process.

At run-time, previously leared patterns are used to improve

the trajectories produced by the original algorithm or any

other, as depicted by the bottom row of Fig. 1. We show that

this approach consistently improves performance on multi-

ple challenging datasets by 7% and 5% on average in super-

vised and unsupervised fashion respectively. This is mostly

attributable to the reduction in identity switches between

objects following different patterns. Our code is made pub-

licly available 1.

2. Related Work

We briefly review data association and behavioral mod-

eling techniques and refer the interested reader to [86, 55]

for more details. We also discuss the metrics we use for

MOT evaluation and their sensitivity to identity switches.

2.1. MOT as Data Association

Finding the right trajectories linking the detections, or

data association, has been formalized using various models.

For real-time performance, data association often relies ei-

ther on matching locally between existing tracks and new

targets [28, 53, 6, 23, 62] or on filtering techniques [65, 75].

The resulting algorithms are fast but often perform less well

than batch optimization methods, which use a sequence of

frames to associate the data optimally over a whole set of

frames, rather than greedily in each following frame.

Batch optimization can be formulated as a shortest path

problem [14, 70], network flow problem [96], generic

linear programming [39], integer or quadratic program-

ming [52, 20, 83, 73, 26, 94, 59]. A common way to re-

duce the computational burden is to group reliable detec-

tions into short trajectory fragments known as tracklets and

then reason on these tracklets instead of individual detec-

tions [41, 77, 56, 50, 11].

However, whether or not tracklets are used, making the

optimization problem tractable when looking for a global

optimum limits the class of possible objective functions.

They are usually restricted to functions that can be defined

on edges or edge pairs in a graph whose nodes are individ-

ual detections or tracklets. In other words, such objective

functions can be used only to impose relatively local con-

straints. To impose global constraints, the objective func-

tions have to involve multiple objects and long time spans.

They are optimized using gradient descent with exploratory

jumps [63], inference with a dynamic graphical model [23],

or iterative groupings of shorter tracklets into longer trajec-

tories [49, 31, 5]. However, this comes at the cost of losing

any guarantee of global optimality.

By contrast, our approach is designed for batch optimiza-

tion and finding the global optimum, while using an ob-

1https://github.com/maksay/ptrack cpp

jective function that is rich enough to express the relation

between global trajectories and non-linear motion patterns.

The method of [24] advocates the same philosophy but for

the very different activity recognition task.

2.2. Using Behavioral Models

A number of works incorporate human behavioral mod-

els into tracking algorithms to increase their reliability. For

example, the approaches of [68, 2] model collision avoid-

ance behavior to improve tracking, the one of [92] uses be-

havioral model to predict near future target locations, and

the one of [71] encodes local velocities into the affinity

matrix of tracklets. These approaches boost the perfor-

mance but only account for very local interactions, instead

of global behaviors that influence the whole trajectory.

Many approaches to inferring various forms of global

patterns have been proposed over the years [72, 42, 58,

69, 95, 35, 87, 21, 47, 54]. However, the approaches

of [13], [3], [48], and [7] are the only ones we know of that

attempt to use these global patterns to guide the tracking.

The method of [13] is predicated on the idea that behav-

ioral maps describing a distribution over possible individual

movements can be learned and plugged into the tracking al-

gorithm to improve it. However, even though the maps are

global, they are only used to constrain the motion locally

without enforcing behavioral consistency over the whole

trajectory. In [7], an E-M-based algorithm is used to model

the scene as a Gaussian mixture that represents the expected

size and speed of an object at any given location. While the

model can detect global motion anomalies and improve ob-

ject detection, the motion pattern information is not used

to improve the tracking explicitly. In [48], modeling the

optical flow helps to detect anomalies but only when the

crowd is dense enough. In [3], global behavioral patterns

are learned as vector fields on the floor. However, when

used for tracking in high-density crowds, they are converted

to to local Markovian transition probabilities, thereby loos-

ing their global nature.

Vehicle motion is more structured than the human kind

and behavioral models often take into account speed limits

or states of the traffic lights [97, 43, 34, 38, 82]. Neverthe-

less, they retain enough similarities with human motion that

we can represent patterns in the same way for both.

2.3. Quantifying Identity Switches

In this paper, we aim for globally consistent tracking

by preventing identity switches along reconstructed trajec-

tories, for example when trajectories of different objects

are merged into one or when a single trajectory is frag-

mented into many. We therefore need an appropriate metric

to gauge the performance of our algorithms.

The set of CLEAR MOT metrics [15] has become a de-

facto standard for evaluating tracking results. Among these,
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Figure 2. (a) Given a set of high-confidence detections D, and a set of allowed transitions E , we seek to find: (b) trajectories of the objects,

represented by transitions from T ; (c) a set of behavioural patterns P , which define where objects behaving in a particular way are likely

to be found; an assignment A of each individual detection to a pattern, specifying which pattern did the object in this detection follow.
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Figure 3. Effect of identity switches on the tracking metrics. The

thick lines represent ground-truth trajectories and the thin dotted

ones recovered trajectories. The trajectory fragments that count

positively are shown in green and those that count negatively in

red. The formulas at the top of the figure depict graphically how

the MOTA and IDF1 scores are computed. Top: Three ground-

truth trajectories, with the bottom two crossing in the middle. The

four recovered trajectories feature an identity switch where the two

real trajectories intersect, missed detections resulting in a frag-

mented trajectory and therefore another identity switch at the top,

and false detections at the bottom left. When using MOTA, the

identity switches incur a penalty but only very locally, resulting

in a relatively high score. By contrast, IDF1 penalizes the recov-

ered trajectories over the whole trajectory fragment assigned to the

wrong identity, resulting in a much lower score. Bottom: The last

two thirds of the recovered trajectory are fragmented into individ-

ual detections that are not linked. MOTA counts each one as an

identity switch, resulting in a negative score, while IDF1 reports a

more intuitive value of 0.3.

Multiple Object Tracking Accuracy (MOTA) is the one that

is used most often to compare competing approaches. How-

ever, it has been pointed out that MOTA does not properly

account for identity switches [10, 94, 12], as depicted on

the left side of Fig. 3. More adapted metrics have therefore

been proposed. For example, IDF1 is computed by match-

ing trajectories to ground-truth so as to minimize the sum

of discrepancies between corresponding pairs [74]. Unlike

MOTA, it penalizes switches over the whole trajectory frag-

ments assigned to the wrong identity, as depicted by the

right side of Fig. 3. Furthermore, unlike Id-Aware met-

rics [94, 10], it does not require knowing the true identity

of the objects being tracked, making it more widely appli-

cable. In Section 6.4, we report results both in terms of

MOTA and IDF1, to highlight the drop in identity switches

our method brings about.

3. Formulation

In this section, we formalize the problem of discovering

and using behavioral patterns to impose global constraints

on a multi-object tracking algorithm. In the following sec-

tions we will use it to estimate trajectories given the patterns

and to discover the patterns given ground-truth trajectories.

3.1. Detection Graph

Given a set of high-confidence detections D =
{1, . . . , L} in consecutive images of a video sequence, let

V = D ∪ {I,O}, where I and O denote possible trajectory

start and end points and each node v ∈ D is associated with

a set of features that encode location, appearance, or other

important properties of a detection. Let E ⊂ V2 be the set

of possible transitions between the detections. G = (V, E)
can then be treated as a detection graph of which the desired

trajectories are subgraphs. As depicted by Fig. 2, let

• T ⊂ E be a set of edges defining objects’ trajectories.

• P be a set of patterns, each defining an area where ob-

jects behaving in a specific way are likely to be found,

plus an empty pattern ∅ used to describe unusual be-

haviors. Formally speaking, patterns are functions that

associate to a trajectory made of an arbitrary number of

edges a score that denotes how likely it is to correspond

to that specific pattern, as discussed in Section 3.3.

• A be a set of assignments of individual detections in D
into patterns, that is, a mapping A : D → {1, . . . , Np},

where Np is the total number of patterns.

Each trajectory t ∈ T must go through detections
via allowable transitions, begin at I , and end at O.
Here we abuse the notation t ∈ T to express that all
edges (I, t1), (t1, t2), · · · , (t|t|, O) from trajectory t =
(t1, · · · , t|t|) belong to T . Furthermore, since we only con-
sider high-confidence detections, each one must belong to
exactly one trajectory. In practice, this means that potential
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false positives end up being assigned to the empty behavior
∅ and can be removed as a post-processing step. Whether
to do this or not is governed by a binary indicator Re that
is learned. In other words, the edges in T must be such that
for each detection there is exactly one selected edge coming
in and one going out, which we can write as

∀j ∈ D, ∃!i ∈ V, k ∈ V : (i, j) ∈ T ∧ (j, k) ∈ T . (1)

Since all detections that are grouped into the same trajectory
T must be assigned to the same pattern, we must have

∀(i, j) ∈ T : (i ∈ D ∧ j ∈ D) ⇒ A(i) = A(j) . (2)

In our implementation, each pattern p ∈ P\∅ is defined by a

trajectory that serves as a centerline and a width, as depicted

by Fig. 2(c) and 4. However, the optimization schemes we

will describe in Sections 4.1 and 4.2 do not depend on this

specific representation and can be replaced by any other.

3.2. Building the Graph

To build the graph we use trajectories produced by an-

other algorithm, as input. We want to improve these trajec-

tories, therefore we build a graph so that we can obtain new

trajectories and recover from identity switches, fragmenta-

tions, and incorrectly merged input trajectories.

We take the set of detections along these input trajecto-

ries to be our high-confidence detections D and therefore

the nodes of our graph. We take the edges E to be pairs of

nodes that are either i) consecutive in the original trajecto-

ries, ii) within ground plane distance D1 of each other in

successive frames, iii) the endings and beginnings of input

trajectories within distance D2 and within Dt frames, iv) or

whose first node is I or second node is O.

3.3. Objective Function

Our goal is to find the most likely trajectories formed by

transitions in T ∗, patterns P ∗, and mapping linking one to

the other A∗, given the image information and any a priori

knowledge we have. In particular, given a set of patterns

P ∗, we look for the best set of trajectories that match these

patterns. Conversely, given a set of known trajectories T ∗,

we learn a set of patterns, as discussed in Section 4.

To formulate these searches in terms of an optimization

problem, we introduce an objective function C(T, P,A)
that reflects how likely it is to observe the objects moving

along the trajectories defined by T , each one correspond-

ing to a pattern from P = {p1 · · · , pNp
} given the assign-

ment A. Ideally, C should be the proportion of trajectories

that correctly follow the assigned patterns. To compute it in

practice, we take our inspiration from the MOTA and IDF1

scores described in Section 2.3. They are written in terms of

ratios of the lengths of trajectory fragments that follow the

ground truth to total trajectory lengths. We therefore take

our objective function to be a similar ratio, but instead of

ground truth trajectories we use patterns. More formally:

wp

cp

{

i

j

pi

pj

n(i, j, p) = +

m(i, j, p) = + {

Figure 4. For a pattern p defined by centerline cp, shown as a thick

black line, with width wp, and an edge (i, j), we compute func-

tions n(i, j, p) and m(i, j, p) introduced in Section 3.3 and shown

in green and blue, respectively, as follows: n(i, j, p) is the to-

tal length of the edge and the corresponding length of the pattern

centerline, measured between the points pi and pj , which are the

points on the centerline closest to i and j. If both i and j are within

the pattern width wp from the centerline, we take m(i, j, p) to be

the sum of two terms: the length in the pattern along the edge, that

is, the distance between pi and pj , plus the length in the edge along

the pattern, that is, the length of the projection of (pi, pj) onto the

line connecting i and j. Otherwise m(i, j, p) = 0 to penalize the

deviation from the pattern.

C(T, P,A) =

∑
t∈T

M(t, pA(t1))

∑
t∈T

N(t, pA(t1))
, (3)

N(t, p) = n(I, t1, p) + n(t|t|, O, p) +
∑

1≤j≤|t|−1

n(tj , tj+1, p),

M(t, p) = m(I, t1, p) +m(t|t|, O, p) +
∑

1≤j≤|t|−1

m(tj , tj+1, p),

where n(i, j, p) is the sum of the total length of edge (i, j)
and of the length of the corresponding pattern centerline,

while m(i, j, p) is the sum of lengths of aligned parts of

the pattern and the edge. Fig. 4 illustrates this computation

and we give the mathematical definitions of m and n in the

supplementary material.

As a result, N(t, p) is the sum of the lengths of trajec-

tory and assigned pattern while M(t, p) measures the length

of parts of trajectory and pattern that are aligned with each

other. Note that the definition of Eq. (3) is very close to

that of the metric IDF1 introduced in Sec. 2.3. It is largest

when each person follows a single pattern for as long as

possible. This penalizes identity switches because the tra-

jectories that are erroneously merged, fragmented, or jump

between objects are unlikely to follow any specific pattern.

In Eq. (3), we did not explicitly account for the fact that

the first vertex i of some edges can be the special entrance

vertex, which is not assigned to any behavior. When this

happens we simply use the pattern assigned to the second

vertex j. From now on, we will replace A(i) by A(i, j) to

denote this behavior. We also adapt the definitions of m and

n accordingly to properly handle those special edges.

4. Computing Trajectories and Patterns

In this section, we describe how we use the objective

function C of Eq. (3) to compute trajectories given patterns
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and patterns given trajectories. The resulting procedures

will be the building blocks of our complete MOT algorithm,

as described in Section 5.

4.1. Trajectories

Let us assume that we are given a precomputed set of
patterns P ∗, then we look for trajectories and corresponding
assignment as

T
∗
, A

∗ = argmax
T,A

C(T, P ∗
, A) . (4)

To solve this problem, we treat the motion of objects
through the detection graph G introduced in Section 3.1 as
a flow. Let o

p
ij ∈ {0, 1} be the number of objects transi-

tioning from node i to j in a trajectory T assigned to pattern
p ∈ P ∗. It relates to P ∗ and T according to:

o
p
ij = I(((i, j) ∈ T ) ∧ (P ∗

A(i,j) = p)) . (5)

Using these new binary variables, we reformulate con-
straints (1) and (2) as

∀i ∈ D ∪O
∑

(i,j)∈E,p∈P∗

o
p
ij = 1 ,

∀j ∈ D, p ∈ P
∗

∑

(i,j)∈E

o
p
ij =

∑

(j,k)∈E

o
p
jk . (6)

This lets us rewrite our cost function as

C(T, P ∗
, A) =

∑
(i,j)∈T,p∈P∗

m(i, j, p)opij

∑
(i,j)∈T,p∈P∗

n(i, j, p)opij
, (7)

which we maximize with respect to the flow variables o
p
ij

subject to the two constraints of Eq. (6). This is an integer-

fractional program, which could be transformed into a Lin-

ear Program [22]. However, solving it would produce non-

integer values that would need to be rounded. To avoid this

we propose a scheme based on the following observation:

Maximizing
a(x)
b(x) with respect to x when b(x) is always pos-

itive can be achieved by finding the largest α such that an

x satisfying a(x)− αb(x) ≥ 0 can be found. Furthermore,

α can be found by binary search. We therefore take a to be

the numerator or Eq. (7), b its denominator, and x the vector

of o
p
ij variables. In practice, given a specific value of α, we

do this by running a Integer Linear Program solver [33] un-

til it finds a feasible solution. When α reaches its maximum

possible value, that feasible solution is also the optimal one.

We provide implementation details in the supplementary.

4.2. Patterns

In the previous section, we assumed the patterns known
and used them to compute trajectories. Here, we reverse the
roles. Let us assume we are given a set of trajectories T ∗.
We learn the patterns and corresponding assignments as

P
∗
, A

∗ = argmax
P,A

C(T ∗
, P,A) ,

subject to P ⊂ P, |P | ≤ αp,
∑

p∈P

M(p) ≤ αc , (8)

where αc, αp are thresholds and M : P → R+. The pur-

pose of the additional constraints is to limit both the num-

ber of patterns being used by αp and their spatial extent by

αc, to prevent over-fitting. In our implementation, we take

M(p) = lpwp, where lp is the length of the pattern center-

line and wp is its width. P is a set of all admissible patterns,

which we construct by combining all possible ground-truth

trajectories as centerlines with each width from a predefined

set of possible pattern widths.

To solve the problem of Eq. (8), we look for an assign-
ment between our known ground truth trajectories T ∗ and
all possible patterns P and retain only patterns associated to
at least one trajectory. To this end, we introduce auxiliary
variables atp describing the assignment A∗ : T ∗ → P , and
variables bp denoting if at least one trajectory is matched to
pattern p. Formally, this can be written as

atp ∈ {0, 1} , ∀t ∈ T
∗
, p ∈ P ,

bp ∈ {0, 1} , ∀p ∈ P ,
∑

p∈P

atp = 1 , ∀t ∈ T
∗
,

atp ≤ bp , ∀t ∈ T
∗
, p ∈ P . (9)

Given that C is defined as the fraction from Eq. (3), we use
an optimization scheme similar to the one described at the
end of Sec. 4.1, where we perform binary search to find the
optimal value of α such that there exists a feasible solution
for constraints of Eq. (9) as well as:

∑

t∈T∗

∑

p∈P

(m(t, p)− αn(t, p))atp ≥ 0 ,

∑

p∈P

bp ≤ αp ,
∑

p∈P

bpM(p) ≤ αc . (10)

5. Non-Markovian Multiple Object Tracking

Given that we can learn patterns from a set trajectories,

we can now enforce long-range behavioral patterns when

linking a set of detections. This is in contrast to approaches

enforcing local smoothness constraints, that is, Markovian.

If annotated ground-truth trajectories T ∗ are available,

we use them to learn the patterns as described in Sec. 4.2.

Then, at test time, we use the linking procedure of Sec. 4.1.

If no such training data is available, we can run an E-

M-style procedure, very similar to the Baum-Welch algo-

rithm [37]: We start from a set of trajectories computed

using a standard algorithm, use them to compute a set of

patterns, then use the set of patterns to improve trajectories,

and iterate. In practice, this yields results that are very sim-

ilar to the supervised case in terms of accuracy but much

slower because we have to run through many iterations.
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Name Annotated length, s FPS Trajectories

Duke 5100 60 7000+

Town 180 2.5 246

ETH 360 4.16 352

Hotel 390 2.5 175

Station 3900 1.25 12362

Rene 30 of 300 30 27
Table 1. Dataset statistics. The number of trajectories is calculated

as a total sum of number of trajectories in each test set on which

we evaluated. All test sets were approximately 1min long.

This alternate optimization is the key to making the com-

putation tractable and making its components replaceable.

More specifically, each iteration of our unsupervised ap-

proach involves i) finding a set of patterns P i given a set of

trajectories T i−1, ii) finding a set of trajectories T i given a

set of patterns P i, as described in Sec. 4.2 and 4.1.

In practice, for a fixed maximum number of patterns αc,
this scheme converges after few iterations. Since the opti-
mal αc is unknown a priori, we start with a small αc, per-
form 5 iterations, increase αc, and repeat until we reach a
predefined maximum number of patterns. To select the best
trajectories without reference to ground truth, we define

ĨDF1(T
i) =

1

2
(C(T i

1 , P
i
2 , AT i

1
→P i

2

) + C(T i
2 , P

i
1 , AT i

2
→P i

1

)) ,

where T i
1 and T i

2 are time-disjoint subsets of T i, P i
1 and P i

2

are patterns learned from T i
1 and T i

2. AT i
1
→P i

2

and AT i
2
→P i

1

are such assignments of trajectories to the patterns learned

on another subset that maximize ĨDF1(T
i).

In effect, ĨDF1 is a valid proxy for IDF1 due to the many

similarities between our cost function and IDF1 outlined in

Sec. 3.3. In the end, we select the trajectories that maximize

ĨDF1. Using such cross-validation to pick the best solution

in E-M models is justified in [1].

6. Evaluation

In this section, we demonstrate the effectiveness of our

approach on several datasets, using both simple and sophis-

ticated approaches to produce the initial trajectories, which

we then improve as discussed in Section 5.

In the remainder of this section, we first describe the

datasets and the tracking algorithms we rely on to build the

initial graphs. We then discuss the experimental protocol.

Finally, we present our experimental results.

6.1. Datasets

We use Duke [74], Town [51, 9], Station [98],

MOT16 [61], ETH and Hotel [67] datasets for people

tracking. We use Rene [40] for vehicle-tracking, and pro-

vide additional results on [79] data. Textual description of

the datasets is available in supplementary materials. Dataset

statistics are shown in Table 1. These datasets share several

characteristics that make them well suited to test our ap-

proach in challenging conditions. First, they feature real-

life behaviors as opposed to random and unrealistic mo-

tions acquired in lab settings. Second, many of them feature

frame rate below 5 frames per second, which is representa-

tive of outdoor surveillance setups but makes tracking more

difficult.

6.2. Baselines

As discussed in Section 3.2, we use as input to our sys-

tem trajectories produced by recent MOT algorithms. In

Section 6.4, we will show that imposing our pattern con-

straints systematically results in an improvement over the

numerous baselines listed below.

On various datasets we compare to the follow-

ing approaches: two highest-ranking approaches of

2DMOT2015 [51] with publicly available implementation

at the time of writing, namely MDP [88] and SORT [16];

ECCV 2016 MOT Challenge winner DM [80, 81]; various

other 2DMOT2015 top scoring methods [23, 76, 84, 44, 91,

46, 85, 93] to which we will refer by the name that appears

in the official scoreboard [51]. Finally, we use RNN [62]

and KSP [14] as simple baselines that do not use appear-

ance information, and compare with BIPCC [74] as a base-

line provided for Duke dataset. We provide the textual de-

scription in supplementary materials.

Top scoring methods from the 2DMOT2015 benchmark

on the Town dataset rely on a people detector that is not al-

ways publicly available. We therefore used their output to

build the detection graph, and report their results only on

Town. For all others, the available code accepts a set of de-

tections as input. To compute them, we used the publicly

available POM algorithm of [30] to produce probabilities of

presence in various ground locations and we kept those with

probability greater than 0.5. This proved effective on all

our datasets. For comparison purposes, we also tried using

SVMs trained on HOG features [25] and deformable part

models [29]. While their performance was roughly simi-

larly to that of POM on Town, it was much worse when the

people are far away or seen from above. For cars, we used

background subtraction followed by blob detection.

6.3. Experimental Protocol

The data is split one minute long validation and test se-

quences, and the rest is used for training. Results are aver-

aged for all test intervals which we select in a leave-one-out

fashion. We follow this protocol for most of the sequences

since the shortest sequence is only 3 minutes long. Two

exceptions are Duke, in which we trained and validated us-

ing provided training data, and evaluated on the whole test

sets of 10 and 25 minutes in batch mode to show the abil-

ity of our approach to handle long sequences, and Rene, in

which we had 30 seconds of annotated data. Training data
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Figure 5. IDF1 and MOTA scores for various methods on the

Town dataset. Our approach almost always improves IDF1. We

provide the actual numbers in the supplementary material.

K
SP

 [1
4]

M
D
P 

[8
6]

R
N
N
 [6

1]

SO
R
T 

[1
6]

0.3
0.4
0.5
0.6
0.7
0.8

ID
F
1

K
SP

 [1
4]

M
D
P 

[8
6]

R
N
N
 [6

1]

SO
R
T 

[1
6]
0.3
0.4
0.5
0.6
0.7
0.8

M
O
T
A

Original

OUR-unsupervised

Figure 6. IDF1(left) and MOTA(right) scores on the Rene dataset.

trajectories were used to learn the patterns of Section 4.2.

Validation data trajectories were used to optimize values of

the hyperparameters D1, D2, Dt, Re, αc, αp introduced in

Sections 4.1, 4.2, using coordinate ascent.

For the sake of fairness, we trained MDP and RNN, the

trainable baselines of Section 6.2, similarly and using the

same data. However, for RNN we obtained better results

using the provided model, pre-trained on the 2DMOT2015

training data, and we report these results.

Since for some approaches we only had results in the

form of bounding boxes and had to estimate the ground

plane location based on that, this resulted in large errors fur-

ther away from the camera. For this reason, we evaluated

MOTA and IDF1 assuming that a match happens when the

reported location is at most at 3 meters from the ground

truth location. We also provide results for the traditional 1

meter distance in the supplementary material and they are

similar in terms of method ordering. For the Station and

Rene datasets, we did not have the information about the

true size of the floor area, as we only estimated the homog-

raphy between the image and ground plane. That is why we

used a distance that is 10% of the size of the tracking area.

6.4. Results

IDF1 and MOTA. Here we report summarized results for

multiple approaches and datasets. Detailed breakdown and

Approach ∆IDF1
s ∆IDF1

u ∆MOTAs ∆MOTAu

KSP 0.16 0.15 -0.01 -0.01

MDP 0.05 0.02 0.03 -0.01

RNN 0.04 0.03 0.00 -0.02

SORT 0.04 0.02 0.06 0.00
Table 2. IDF1 and MOTA improvement, delivered by our ap-

proach, averaged over all datasets. The 2nd and 4th columns cor-

respond to the supervised case, the 3rd and 5th to the unsupervised

one. Since IDF1 scores range from 0 to 1, these represent signif-

icant improvements.

additional results on the [79] dataset is available in supple-

mentary materials. Comparison on Duke and MOT16 is

also available on MOTChallenge benchmark [51].

For Duke dataset, our supervised approach achieves

+1.1% IDF on all Easy sequences combined, with improve-

ments on 7 out of 8 sequences up to 3.7%, and one drop of

0.5%. It achieves +0.5% IDF on all Hard sequences com-

bined, with improvements on 7 out of 8 sequences up to 8%,

and one drop of 0.2%. The unsupervised approach achieves

+0.9% IDF on all ”trainval-mini” sequences combined, with

improvements on 7 out of 8 sequences up to 4.2%, and one

drop of 0.1%. Improvements are shown with respect to [74].

Examples of learned patterns are shown in Fig. 9.

Fig. 5 shows results of methods with published results

on the Town sequence. For the 4 methods for which there

is a publicly available implementation— KSP, MDP, RNN,

SORT—we computed trajectories on various datasets and

evaluated the improvement brought by our approach. These

results are reported in Table 2 for people and Fig. 6 for cars.

As shown in Fig. 5, our supervised method improves all

the tracking results in IDF1 terms on Town except one that

remains unchanged. The same can be said of the unsuper-

vised version of our method except for one that it degrades

by 0.01. Recall that IDF1 ranges from 0 to 1. A 0.01 im-

provement is therefore equivalent to a 1% improvement and

our algorithm delivers a significant performance increase.

Similarly, Fig. 6 depicts original and improved car-tracking

results on Rene, but only in the unsupervised case owing to

the short length of the manually annotated sequence, which

we needed for evaluation purposes.

In Tab. 2, we average improvement in people-tracking

results brought by our approach for four baselines. We ob-

serve a consistent improvement in IDF1 terms in both the

supervised and unsupervised cases. As could be expected,

the improvement is much less clear in MOTA terms because

our method modifies the set of input detections minimally

while MOTA is more sensitive to the detection quality than

to identity switches. Fig. 7 depicts some of the results.

Finally, we used the output of DM on the two MOT16

sequences as input to the supervised and unsupervised ver-

sions of our algorithm, as discussed above. We obtained a

37% and 25% drop in identity switches, 4% and 1% drop

in number of fragmented trajectories, and 0.1% and 4% in-
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(a) (b) (c) (d) (e) (f)
Figure 7. Examples of learned patterns, denoted by their centerline in white, with some erroneous trajectories found by various baselines

in red. White bounding boxes for people following the trajectories are shown. Improved trajectories found by our approach in green.

Area in blue shown pattern widths, helping understand to which patterns trajectories are assigned. (a) Town dataset, EAMTT [76] merges

trajectories going in opposite directions, but (b) correct pattern assignment helps to fix that; (c) Using only affinity information, KSP is

prone to multiple identity switches of cars going in different directions; (d) Our approach correctly recovers all trajectories, including one

with the turn; (e) On Station dataset our approach recovers mostly correct trajectories, but trajectories of two different people in the lower

left corner going in the same general direction are merged; (f) ETH dataset, due to low visibility using flow and feature point tracking is

hard, and MDP fragments a single trajectory into two, but our approach fixes that (not shown). Best viewed in color.

(a) (b) (c)

Figure 8. Example of unsupervised optimization. (a) Four peo-

ple are tracked using KSP. Trajectories are shown as solid black

lines, bounding boxes are white. Tracks feature several identity

switches. (b) First, alternating scheme finds a single pattern, in

white, that explains as many trajectories as possible, it is the left-

most trajectory. Given this pattern, next step is the tracking. Tra-

jectories in blue are the ones assigned to this pattern, trajectories

in red are assigned to no pattern. One identity switch is fixed. (c)

After several iterations, we look for the best two patterns. Right-

most trajectory is picked as the second pattern. Fitting trajectories

to the best two patterns allows to fix the remaining fragmented

trajectory. Trajectories assigned to the second pattern in green.

(a) (b)

Figure 9. Examples of learned patterns on Duke dataset shown in

green. (a) Some sequences contain highly non-linear patterns with

turns, and our method successfully recovers them. An example of

trajectory assigned to no pattern is shown in red. (b) A sequence

with high number of patterns - each pattern goes in both direc-

tions. In such cases our model can incorrectly split an unexpected

trajectory into two parts, each of which follows one pattern.

crease in MOTA, compared to the published results. Un-

fortunately, MOT’16 benchmark does not provide the IDF1

numbers which is why we don’t report them for DM.

Component evaluation and computational burden eval-

uation are described in more details in the supplementary

material. In the first experiment, we measured the impor-

tance of having a non-Markovian model and learning the

patterns. To do so, we replaced our learned patterns, which

are often relatively straight, by a pencil of lines traversing

the scene in all directions. This clearly degraded the results

but not as much as replacing our patterns by a simple lo-

cal smoothness term. In other words, the non-Markovian

global constraints provided by the straight lines were still

more powerful than the Markovian smoothness term.

Second, we assessed the influence of various terms on

our method’s runtime. All people tracking results reported

in Figs. 5, 6 and Tab. 2 ran at an average speed of 0.906 fps

for the supervised case on a 4 core 2.5Hz machine. The un-

supervised computation is much slower, requiring hours for

dataset of containing several hundred trajectories. However,

this remains practical, as it can be run overnight, and once

the patterns have been learned, the system can run in the

supervised mode that can be sped up limiting the density of

the graph through parameter D1 and/or decreasing the num-

ber of binary search iterations. Using 5 instead of 10 didn’t

affect the IDF1 by more than 1% in our experiments.

7. Conclusion

In this work we have proposed an approach to track-

ing multiple objects under global, non-Markovian behav-

ioral constraints. It allows us to estimate global motion pat-

terns using input trajectories, either annotated ground truth

or ones from any sources, to guide tracking and improve

upon a wide range of state-of-the-art approaches.

Our optimization scheme is generic and allows for a

wide range of definitions for the patterns, beyond the ones

we have used here. In the future, we plan to work with more

complex patterns, account for appearance, and handle cor-

relations between objects’ behavior.
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