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Abstract

This work proposes Recurrent Neural Network (RNN)

models to predict structured ‘image situations’ – actions

and noun entities fulfilling semantic roles related to the ac-

tion. In contrast to prior work relying on Conditional Ran-

dom Fields (CRFs), we use a specialized action prediction

network followed by an RNN for noun prediction. Our sys-

tem obtains state-of-the-art accuracy on the challenging re-

cent imSitu dataset, beating CRF-based models, including

ones trained with additional data. Further, we show that

specialized features learned from situation prediction can

be transferred to the task of image captioning to more ac-

curately describe human-object interactions.

1. Introduction

Recognition of actions and human-object interactions in

still images has been widely studied in computer vision.

Early datasets and approaches focused on identifying a rel-

atively small number of actions, such as 10 in PASCAL

VOC [7] and 40 in the Stanford Dataset [30]. Newer and

larger datasets such as MPII Human Pose [19] have en-

larged the number of action classes to around 400. The

COCO-A [21] and HICO [4] datasets aim to recognize in-

teractions between multiple humans, and humans and ob-

jects, expanding the scope of recognition to outputs such

as human-riding-bicycle, human-repairing-bicycle, human-

riding-horse, etc.

Of late, the focus has shifted to predicting even more

structured outputs, tackling higher-level questions such as

who is doing what and with which object. The recently in-

troduced imSitu Dataset [33] generalizes the task of action

recognition to ‘situation recognition’ — the recognition of

all entities fulfilling semantic roles in an instance of an ac-

tion performed by a human or non-human actor. Given a

particular action, situations are represented by a set of rele-

vant (semantic role: noun entity) pairs. An example image

and associated situation from imSitu are shown in Fig. 1,

where “a woman arranging flowers in a vase on the counter-

top” is represented by Action: arranging, {(Agent: woman),

(Item: flowers), (Tool: vase), (Place: countertop)}. As an-
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Figure 1: Each image in imSitu is labeled with an action verb (orange),

and each verb is associated with a unique set of semantic roles (bold black)

which are fulfilled by noun entities present in the image (green). Each

image has multiple annotations to account for the intrinsic ambiguity of the

task. Our approach first uses the fusion network of [16] to predict the action

verb. Then it feeds the verb and a visual feature from a separate network

into an RNN to predict the noun roles in a fixed sequence conditioned on

the action.

other example, “A horse rearing outside” can be mapped to

Action: rearing, {(Agent: horse), (Place: outside)}. imSitu

consists of 504 actions, 1,700 semantic roles, and 11,000

noun entities resulting in around 200,000 unique situations.

Along with the dataset, Yatskar et al. [33, 32] also intro-

duced Conditional Random Field (CRF) models to predict

situations given an image. In our work, we propose and

train Recurrent Neural Networks (RNNs) to predict such

situations and outperform the previously state of the art

CRFs.

Our use of RNNs for situation prediction is motivated

by their popularity for tasks like image caption genera-

tion, where they have proven to be successful at captur-

ing grammar and forming coherent sentences linking mul-

tiple concepts. The standard framework for caption genera-

tion involves feeding high-level features from a CNN, often

trained for image classification on ImageNet [22], into an

RNN that proceeds to generate one word of the caption at a

time [11, 26, 27, 6, 34]. Situation recognition involves the

prediction of a sequence of noun entities for a particular ac-

tion, so it can be viewed as a more structured version of the
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captioning task with a grammar that is fixed given an action.

Figure 1 gives an overview of our best proposed system.

First, we predict the action verb using the specialized action

recognition architecture of [16], which fuses features from

a detected person box with a global representation of the

image. Conditioned on the action, we treat the prediction

of noun entities as a sequence generation problem and use

an RNN. Details of our model, along with several baselines,

will be given in Section 2. Through extensive experiments

(Section 3) we found that using separate networks for pre-

dicting the action verb and the noun entities produces higher

accuracy than jointly training a visual representation for the

two tasks. Finally, in Section 4 we explore how knowl-

edge gained from situation prediction can obtain meaning-

ful improvements for image captioning on the MSCOCO

dataset [15] through feature transfer.

2. The Situation Prediction Task and Methods

Situations are based on a discrete set of action verbs

V , noun entities N , and semantic roles R. Each verb

v ∈ V is paired with a unique frame f ∈ F derived from

FrameNet [8], a lexicon for semantic role labeling. A frame

is a collection of semantic roles Rv ⊂ R which are asso-

ciated with the verb v. For example, the semantic roles

{Agent, Item, Tool, Place} ⊂ R are associated with the verb

arranging. In an instantiation of an action in an image, each

semantic role is fulfilled by some noun n ∈ N∪{∅}, where

∅ indicates that the value is either not known or does not ap-

ply. The set of nouns N is derived from WordNet [17]. An

instance of an action v in an image I forms a realized frame

F(I,v) in which each semantic role is associated with some

noun n, i.e.F(I,v) = {(ri, ni) : ri ∈ Rv, ni ∈ N∪{∅}, i =
1, · · · , |Rv|}. Finally, a situation S is the pair of action and

realized frame for that action, S = {v, F(I,v)}. The task of

situation prediction is to predict an action verb and its asso-

ciated realized frame given an image. Though each image

is annotated with a single verb, multiple situations might

be applicable for an image due to the choice of nouns used

to form a realized frame. For example, one might use the

term countertop instead of kitchen as the noun associated

with the semantic role of Place in Fig. 1. To account for

this multiplicity, the imSitu dataset provides three indepen-

dently labeled situations per image.

The authors who introduced situtation prediction also

proposed a CRF-based approach for the task [33]. They

decompose the structured prediction of a situation, S =
{v, F(I,v)}, over the verb v and semantic role value pairs

(r, n) in the realized frame F(I,v). They learn a potential

functionψv(v; θ) for every verb, and a potential function for

every verb, semantic role, noun entity tuple ψr(v, r, n; θ)
(v ∈ V , r ∈ Rv , n ∈ N ∪ {∅}), where θ denotes the pa-

rameters of the deep neural network used to predict these

potentials. The probability of a particular situation S given

input image I can thus be represented by:

p(S|I; θ) =
1

Z
· ψv(v|I; θ) ·

∏

(ri,ni)
ri∈Rv,ni∈N∪{∅}

ψr(v, ri, ni|I; θ). (1)

The CRF normalization constant Z required for computing

the loss during training is obtained by predicting the poten-

tials for all valid tuples found in the training set and then

summing them. The potentials are predicted using a fully

connected layer on top of the fc7 layer of the VGG-16 net-

work [23]. During inference time, all valid tuples are scored

and ranked. A difficulty with this approach is the large num-

ber of potentials that need to be predicted: 504 for all pos-

sible verbs and 121,381 for all valid verb, semantic role,

noun entity tuples. Further, this model does not explicitly

account for the fact that nouns are shared across semantic

roles, though it is possible that the deep neural network im-

plicitly learns such representations. In order to explicitly

enforce the sharing of information and reduce the number

of parameters, the follow-up work by Yatskar et al. [32]

further decomposes the potentials as a tensor product over

verbs, semantic roles, and noun entities. This makes for a

complex model, details of which can be found in [32].

We take an alternate view of situation prediction by ob-

serving that given a verb v, the set of semantic roles Rv

associated with it is fixed. For example, given the verb

arranging, we know that we have to predict relevant noun

entities for the semantic roles of Rarranging={Agent, Item,

Tool, Place} (see Fig. 1). Conditioned on a given verb, if we

assume some arbitrary but fixed ordering over these seman-

tic roles, we can reduce the problem to that of sequential

prediction of noun entities corresponding to the semantic

roles. We decompose p(S|I; θ) as:

p(S|I; θ) = p
(

v, (r1, n1), · · · , (r|Rv|, n|Rv|)|I; θ
)

(2)

= p
(

v, n1, · · · , n|Rv||I; θ
)

(3)

= p(v|I; θ)

|Rv|
∏

t=1

p (nt|v, n1, · · · , nt−1, I; θ) . (4)

Note that if an arbitrary but fixed ordering is chosen for

semantic roles belonging to every verb, then Eq. (3) fol-

lows from Eq. (2) as the correspondence of nouns to roles

is implicit. In our implementation, we use the semantic role

ordering provided in the dataset, which was derived from

FrameNet [8]. We explore the sensitivity of methods to the

specific ordering in the experiments of Section 3, and find

that the accuracy is affected only to a very small degree.

We represent each p (nt|v, n1, · · · , nt−1, I; θ) in Eq. (4)

with a softmax over all the noun entities in the training

dataset, referred to as the noun vocabulary. This is a

standard formulation first introduced for natural language

translation [24] and widely adopted for image caption-

456



Figure 2: The four approaches used for action and noun entity prediction: a) The baseline no-vision model, which only tries to predict noun entities

n1, · · · , n4 in the chosen arbitrary but fixed semantic role ordering, given the ground truth verb v. b) Training an RNN which takes image features as input

and predicts action, followed by noun entities, c) Training a VGG-16 network for action prediction, and feeding its features to the RNN that predicts nouns

associated with the semantic roles, and d) Using separate networks for action and noun entity prediction. Bold colored text (orange and green) indicates

training targets.

ing [15, 26, 27, 29]. Similar to these works, we use a soft-

max classification loss with the corresponding ground truth

noun entity as the target at every prediction step.

It is worth pointing out that both formulations, those of

CRF-based structured prediction (Eq. (1)) and sequential

prediction (Eq. (4)), are equally powerful in their represen-

tational abilities as both model the joint probability of the

verb and noun entities in a proposed situation. At inference

time, in the CRF approach of [32, 33], all valid tuples of

verb and noun entities are evaluated and the most likely one

is reported, while in our sequential approach, we perform

approximate inference by selecting the most likely noun en-

tity at each step. Despite this limitation, we obtain satis-

factory empirical results (we also experimented with beam

search but did not see an improvement).

Next, we present the progression of models we devel-

oped, starting with a language-only baseline and ending in

our highest-performing method illustrated in Figure 1.

A) No vision, RNN for Nouns. In order to verify that se-

quential situation prediction can actually work and that an

RNN can memorize the specific ordering of semantic roles

for each verb, we propose a basic language-only model that

only tries to predict noun entities given the ground truth

verb. This model also acts as a strong baseline by exploit-

ing bias in the dataset labeling as it does not use any vi-

sual feature input. This model is depicted in Fig. 2a. The

ground truth verb is fed in at the first time step. Note that

it is essential to feed in the verb at the first time step as the

ordering and number of semantic roles for which noun en-

tities are produced is decided by the choice of verb. At the

following time step, the RNN tries to predict the noun en-

tity associated with the first semantic role in the arbitrarily

selected but fixed ordering, and so on, until a noun entity is

predicted for each semantic role for that verb. In line with

prior work [24, 26], we feed in the initial verb and the output

of the previous time step as a one-hot vector through a word

embedding layer. As will be discussed in the next section,

this RNN can indeed memorize the arbitrary semantic role

ordering to make noun entity predictions in the appropriate

order.

B) Shared network, RNN for Actions & Nouns. The next

natural step is to extend the above no-vision model to use

image features and predict the action as well. This model is

shown in Fig. 2b. After consuming the fc7 image features

from a VGG-16 network at the first time step, the model

predicts the action at the second time step and then contin-

ues on to predict noun entities. The noun vocabulary (space

of all noun entities) is extended with that of possible actions

to allow the prediction of both. Note that we use the ground

truth action as input during training and the predicted action

during testing. At inference time, we enforce that only an

action can be predicted at the second time step, followed by

noun entities only thereafter.

C) Shared network, Actions classifier, RNN for Nouns.

Since situation recognition has such a strong up-front de-

pendence on the action verb, the next question we want to

explore is whether we can improve performance by break-

ing off the action prediction into a specialized task, instead

of treating it the same as the other roles. It also helps

that imSitu has many fewer verbs (504) than noun enti-

ties (11K), giving us enough data to train a dedicated action

classifier. Accordingly, our second model predicts actions

using a separate fully-connected classification layer on top

of the fc7 layer of the VGG-16 network as shown in Fig. 2c.

At the first step of the RNN, we feed in the one-hot repre-

sentation of the action (at training time, we use the ground

truth action and at test time, the predicted action). At the

second time step, we feed in the fc7 image features to the

RNN to predict noun entities. Our experiments will inves-

tigate how to train the VGG network to get the highest ac-
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curacy for the overall task. One option is to train it solely

for action prediction and another is to jointly train it for

both action and noun prediction. Interestingly, our results

in Section 3 will show that the former strategy works better.

D) Separate networks, Actions classifier, RNN for

Nouns. The lack of success of joint training leads to the

question of whether we can do even better by not sharing

parameters between action and noun entity prediction. Ac-

cordingly, our final model decouples the two tasks and uses

two separate networks that are independently fine-tuned, as

depicted in Fig. 2d. For predicting actions, we use the fea-

ture fusion network of [16] which obtained state-of-the-art

performance on the HICO dataset [4]. This network (called

Fusion in the following) combines local features from de-

tected human boxes and global features from the whole im-

age to make predictions that are then pooled. It defaults

to the full image in case no human is detected in the im-

age. As a large number of images in the imSitu dataset

feature humans, this is a reasonable choice of architecture.

Along with a vanilla RNN for predicting noun entities, we

will also report experiments with an attention model based

on [29] which consumes image features through a soft at-

tention module at each time step. Note that instead of the

fc7 features, the attention-based RNN uses the conv5 fea-

ture map.

3. Situation Prediction Experiments

Implementation Details. We use the simplified Long-

Short Term Memory (LSTM) cell [9, 35] as our RNN

model. We use a single-layer LSTM and with input and hid-

den layer sizes of 512. We did not observe any significant

improvement by using larger layer sizes or more layers. The

imSitu dataset has a total of 504 actions and 11,790 noun

entities, leading to an LSTM output layer size of 11,790

in the case of models A, C, and D and 11,790+504 in the

case of model B. We train all our RNNs with Adam [13]

using an initial learning rate of 4e-4, decayed by a factor

of 10 every 28,800 iterations using a batch size of 64. For

noun entity prediction, we first train the RNN for 60k iter-

ations. We then turn on fine-tuning for the CNN with an

initial learning rate of 1e-5 and use Adam with the same

learning rate decay scheme for an additional 100k itera-

tions. The Fusion network [16] is trained using stochas-

tic gradient descent with momentum using a learning rate

of 5e-5 for 70k iterations. Person boxes are detected using

the Faster-RCNN [20] with a confidence threshold of 0.8.

Similar to [16], we use a weighted loss during action pre-

diction, unless otherwise specified. The weight for a class

is inversely proportional to its frequency in the training set.

Using weighted loss or beam search for noun entity predic-

tion did not help. We only train on the imSitu train set of

75k images. During training, we evaluate the model on the

dev set of 25k images and retain the best-performing model.

Finally, we evaluate the best model on the imSitu test set of

25k images. All hyperparameters are tuned on the dev set.

Metrics. We evaluate performance on action verb predic-

tions (verb), and (semantic role: noun entity) pair predic-

tions (value, value-all) as well as the average across all mea-

sures (mean), as proposed in [32]. Value-all measures the

percentage of predictions for which all of the (semantic role:

noun entity) pairs of an action verb matched with at least 1

of the 3 ground truth (GT) annotations, while Value mea-

sures the percentage of pairs which matched at least one of

the three GT annotations. We report accuracy at top-1, top-

5 action verb predictions and given the GT verb. Similar

to [32], we also report performance on examples with ten or

fewer samples in the imSitu training set (rare setting).

Results. We report results on the full dev set in Table 1.

Section I of the table presents results from prior work of

Yatskar et al. [33, 32]. Their baseline, a method they call

the Discrete Classifier, restricts its output space to the 10

most frequent realized frames for each verb. The Image Re-

gression CRF uses the formulation of Eq. (1) with an out-

put space of 121,381 for (verb, semantic role, noun entity)

tuples + 504 for actions, while Tensor Composition CRF

uses a tensor-based potential decomposition in an attempt

to reduce the number of parameters. The authors had to

combine the potentials produced by both models in order to

improve performance, leading to the Tensor Comp. + Reg.

CRF method. Finally, by using five million web-sourced

images based on semantic querying [32] in addition to the

75k train set images, they were able to slightly improve per-

formance.

Our baseline presented in Section II of Table 1, corre-

sponding to the architecture of Fig. 2a, shows that RNNs

can indeed memorize an arbitrary ordering of semantic roles

for each verb and produce relevant noun entities in the cor-

rect and corresponding order. Further, by simply exploiting

the labeling bias, it beats the Discrete Classifier baseline by

a large margin, given the ground truth action verb.

Section III shows results from our next model (Fig. 2b),

which tries to predict both the action and noun entities us-

ing the same RNN. It improves the value metric by over

16% given the ground truth verb over our no-vision base-

line model, by using information from visual features.

Section IV reports the results of separating the action

prediction parameters from those of the noun entity predict-

ing RNN (see Fig. 2c). We see a large improvement in ac-

tion verb prediction accuracy (26.52% to 35.35%) as long as

we first fine-tune the network for the action task. By simply

using features from the network trained for action predic-

tion, we only observe a very small drop in the value metric

given ground truth verbs, as compared to jointly fine-tuning

for verb and noun entity prediction (68.98% to 68.44%).

Here, we also try predicting the noun entities in a reversed

order so as to determine whether the order affects perfor-
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top-1 predicted verb top-5 predicted verbs ground truth verbs
mean

verb value value-all verb value value-all value value-all

I)

Discrete Classifier [33] 26.4 4.0 0.4 51.1 7.8 0.6 14.4 0.9 13.2

Image Regression CRF [33] 32.25 24.56 14.28 58.64 42.68 22.75 65.90 29.50 36.32

Tensor Composition CRF [32] 31.73 24.04 13.73 58.06 42.64 22.70 68.73 32.14 36.72

Tensor Comp. + Image Reg. CRF [32] 32.91 25.39 14.87 59.92 44.50 24.04 69.39 33.17 38.02

Above + Extra 5M Images [32] 34.20 26.56 15.61 62.21 46.72 25.66 70.80 34.82 39.57

II) Baseline RNN Method

Fig. 2a No Vision, RNN for Nouns - - - - - - 52.12 17.62 -

III) Joint Prediction – VGG jointly fine-tuned for Action and Noun Prediction

Fig. 2b VGG, RNN for Actions & Nouns 26.52 20.08 11.80 52.37 38.32 20.90 68.27 32.67 33.87

Fig. 2c

IV)

VGG, Actions class., RNN for Nouns 23.04 17.65 10.70 44.63 33.18 18.83 68.98 33.73 31.34

Joint Prediction – VGG fine-tuned for Action Prediction Only

VGG, Actions class., RNN for Nouns 35.35 26.80 15.77 61.42 44.84 24.31 68.44 32.98 38.74

VGG, Actions class., RNN for Nouns (reversed) 35.35 26.82 15.60 61.42 44.92 24.25 68.56 32.84 38.72

Joint Prediction – VGG fine-tuned for Action Prediction first, then jointly with Noun Prediction

VGG, Actions class., RNN for Nouns 34.76 26.29 15.46 60.31 44.31 24.30 68.82 33.42 38.46

V)

Action Prediction Only

VGG, Actions class. (no weighted loss) 34.43 - - 61.06 - - - - -

VGG, Actions class. 35.35 - - 61.42 - - - - -

Fusion (no weighted loss) 35.53 - - 63.04 - - - - -

Fusion 36.11 - - 63.11 - - - - -

Noun Prediction Only

VGG+RNN for Nouns - - - - - - 68.57 33.12 -

VGG+RNN for Nouns, VGG fine-tuned (ft) - - - - - - 70.48 35.56 -

VGG+RNN with Attention for Nouns - - - - - - 69.31 33.67 -

VGG+RNN with Attention for Nouns (ft) - - - - - - 69.87 34.69 -

Fig. 2d

VI)
Separate Action and Noun Prediction

Fusion for Actions, VGG+RNN for Nouns (ft)
36.11 27.74 16.60 63.11 47.09 26.48 70.48 35.56 40.40

henceforth ref. to as Fusion, VGG+RNN

Table 1: Situation prediction results on the full imSitu dev set (see text for detail).

top-1 predicted verb top-5 predicted verbs ground truth verbs
mean

verb value value-all verb value value-all value value-all

Image Regression CRF [33] 32.34 24.64 14.19 58.88 42.76 22.55 65.66 28.96 36.25

Tensor Comp. + Image Reg. CRF [32] 32.96 25.32 14.57 60.12 44.64 24.00 69.20 32.97 37.97

Above + Extra 5M Images [32] 34.12 26.45 15.51 62.59 46.88 25.46 70.44 34.38 39.48

Fusion, VGG+RNN 35.90 27.45 16.36 63.08 46.88 26.06 70.27 35.25 40.16

Table 2: Situation prediction results on the full imSitu test set.

top-1 predicted verb top-5 predicted verbs ground truth verbs
mean

verb value value-all verb value value-all value value-all

Image Regression CRF [33] 20.61 11.79 3.07 44.75 24.85 5.98 50.37 9.31 21.34

Tensor Comp. + Image Reg. CRF [32] 19.96 11.57 2.30 44.89 25.26 4.87 53.39 10.15 21.55

Above + Extra 5M Images [32] 20.32 11.87 2.52 47.07 27.50 6.35 55.72 12.28 22.95

Fusion, VGG+RNN 22.07 12.96 3.37 47.83 27.89 6.85 56.38 13.79 23.89

Table 3: Situation prediction results on the rare portion of the imSitu test set. Along with better verb prediction accuracy, our method also produces more

accurate role values given GT verbs, indicating better generalization probably due to the use of shared parameters and word embeddings.

mance. We clearly see that this has very little effect on accu-

racy (0.1-0.2%). However, we cannot rule out that some op-

timal ordering of semantic roles might exist for every verb.

We find that joint fine-tuning, either from the start or later, is

detrimental for action verb prediction, leading us to the final

models of Sections V and VI, which use separate networks

for action and noun entity prediction.

In Section V of Table 1, we compare various methods of

separately predicting actions and noun entities. The Fusion

network of [16] outperforms the VGG-16 network at action

prediction and using a weighted softmax loss helps in both

cases. By using a stand-alone action prediction network, we

obtain a top-1 and top-5 accuracy of 36.11% and 63.11%

in contrast to the previous best of 32.91% and 59.92%

from [33], respectively. Even the method from [33] that

uses an additional 5 Million images only obtains 34.20%

and 62.21% accuracies, respectively.

Apart from using LSTMs for predicting noun entities, we
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Erasing - (Agent : man), (Erased : word), (Source : blackboard), (Place : ∅)

Talking - (Agent : woman), (Listener : woman), (Place : office)

Figure 3: Predicted situations and attention maps associated with pro-

duced noun entities. In the top row, attention focuses on the correct re-

gions. In the bottom example, attention cannot distinguish between the

Agent and Listener women instances.

also try using the soft attention-based architecture of Xu et

al. [29]. The attention-based RNN works better, as long

as we do not fine-tune the underlying VGG-16 network.

Turning on fine-tuning makes the simple LSTM architec-

ture work better, in line with results obtained on image cap-

tioning [27]. Figure 3 shows some predicted situations and

associated attention maps. Qualitatively, attention produces

plausible results in simple cases, but is unable to make fine

distinctions, e.g., between multiple instances of a noun en-

tity in different roles (bottom row of the figure).

Finally, we combine our best action prediction and our

best noun entity prediction networks to propose our final

method referred to as Fusion, VGG+RNN (Fig. 2d) in Sec-

tion VI of Table 1. We beat the previous state-of-the-art

method trained on the imSitu train set on every metric. Ad-

ditionally, we also beat the method trained on the extra 5M

images, except on the value given ground truth verb metric,

on which we lag by just 0.32%.

Table 2 compares our best-performing method against

the previous work on the full imSitu test set. We observe

a trend similar to that on the imSitu dev test. We improve

upon both the top-1 and top-5 verb prediction accuracies

by around 3% and by 1% (value) and 2.3% (value-all) on

noun entity prediction given ground truth verbs, for meth-

ods trained on the imSitu train set.

Most interestingly, Table 3 shows that we also do well

on the rare portion of the imSitu test set. We improve upon

the top-1 and top-5 verb prediction accuracies by around

2% and by 3% respectively. We improve by 3% (value)

and 3.5% (value-all) on noun entity prediction given ground

truth verbs, for methods trained on the imSitu train set.

We believe that embedding nouns in a common continu-

ous space during input to RNNs helps to overcome the lack

of data and aids in generalization more effectively than the

‘semantic augmentation’ with additional data in the previ-

ous method [32].

Finally, Figure 4 shows some correctly and incorrectly

predicted situations on the imSitu test set by our best-

performing method. While most of the mistakes are due

to incorrect action predictions, we observe that mistakes are

often reasonable, e.g., ‘arresting’ instead of ‘misbehaving’

in the bottom row, middle image. By analyzing the verb

prediction results, we find that we obtain the worst perfor-

mance on bothering, intermingling, and imitating, which

are very contextual and semantic in nature, while those with

a clear visual nature such as erupting, shearing, and taxiing

obtain high accuracies. The worst noun prediction perfor-

mance is obtained in cases where multiple nouns can ful-

fill semantic roles, such as distributing, prying, repairing;

while ballooning, taxiing, scoring obtain high accuracies.

4. Application to Image Captioning

One of the key motivations of proposing the task of im-

age situation prediction was to better understand and learn

the semantic content of images, beyond mere action recog-

nition [33]. A more structured and nuanced understanding

of image semantics is expected to help high-level reasoning

tasks such as image captioning and Visual Question An-

swering (VQA) [3]. In this work, we try to leverage our

new state-of-the-art models for action verb and noun entity

recognition to improve image captioning performance on

the MSCOCO dataset [15].

We modify an off-the-shelf image captioning model,

NeuralTalk2 [1], by providing it features from our networks

as an additional input, as shown in Figure 5. The vanilla

NeuralTalk2 network takes in fc7 features from a VGG-16

network as input to an RNN through an image embedding

layer Wi. It then proceeds to output words of the caption

one by one till the <END> token is predicted or a maxi-

mum length (typically 16) is reached. We feed in features

from networks trained on imSitu at the second time step,

similar to the method proposed in [31]. We try two types

of features: fc7 features from the VGG-16 network used for

noun entity prediction (green network in Fig. 2) and fc7 fea-

tures from the VGG-16 network trained for action verb pre-

diction (VGG, fc for Actions of Section IV of Table 1). We

use features from the VGG-16 network for action prediction

instead of the better performing Fusion network because the

former produces features from the whole image, while the

latter produces features for each detected person box.

Implementation Details and Results. We use a single-

layer LSTM with 512 hidden units and input size of 512.

We train our captioning networks on the MSCOCO split of

Karpathy et al. [11] which has 113,287 training, 5k vali-

dation, and 5k test images. We train the RNN and VGG-

16 CNN using Adam, with an initial learning rate of 4e-4

and 1e-5 respectively. We train the baseline network in the

following recommended stages [1, 27]: 1) Fine-tune RNN

only for 100k iterations, 2) Fine-tune RNN and VGG-16

network for 150k iterations. As shown in Table 4, this base-

line (NeuralTalk2) obtains a CIDEr score of 93.0 on the test
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1)      Verb: glowing 

Agent Place 

candle 

2)      Verb: igniting 

Agent Item Tool Place 

person candle match 

GT)     Verb: glowing 

Agent Place 

candle 

1)      Verb: deflecting 

Agent Deflec- 
tedItem 

Desti- 
nation 

Place 

soccer 
player 

soccer 
ball 

field 

Predictions Predictions 

∅ 

∅ 

∅ 

GT)      Verb: browsing 

Agent GoalItem Place 

woman book bookshop 

Predictions 

2)      Verb: shelving 

Agent Item Destination Place 

woman book shelf library 

GT)      Verb: misbehaving 

Agent Place 

boy walkway 

1)      Verb: arresting 

Agent Suspect Place 

policeman boy sidewalk 

Predictions 

2)      Verb: grieving 

Agent Place 

child cemetery 

Predictions 

GT)      Verb: leaning 

Agent Item Against Place 

woman head hand office 

1)      Verb: studying 

Agent Place 

woman desk 

2)      Verb: phoning 

Agent Tool Place 

woman telephone office 

Predictions 

GT)      Verb: celebrating 

Agent Occasion Place 

people parade river 

1)      Verb: celebrating 

Agent Occasion Place 

people outside 

2)      Verb: parading 

Agent Place 

people street 

∅ 

GT)      Verb: scoring 

Agent Place 

soccer player field 

2)      Verb: scoring 

Agent Place 

soccer player field 

1)      Verb: browsing 

Agent GoalItem Place 

woman book bookshop 

∅ 

Figure 4: Correct (top row) and wrong (bottom row) predictions on the imSitu test set. One of the three groundtruth labels (GT) is shown to the top right

of each image. The top 2 predictions (as numbered) are shown below the ground truth. Mistakes can be due to incorrect action verb prediction (bottom row

first two images) or incorrect noun entity prediction (bottom right image).

 w1
 w3  wN

<START>

 We  We   We

 w2

 w1    wN-1 w2

<END>

 We

  wN
VGG
fc7

imSitu
fc7

 We  Wr Wi  Word
Embedding

Figure 5: The modified NeuralTalk2 [1] recurrent neural network that ac-

cepts the fc7 feature vector from the networks trained on the imSitu sit-

uation prediction task at time step 2. All units with the same color share

weights. Bold words w1, · · · ,wN are targets at training time.

Methods B@1 B@2 B@3 B@4 M C S

LRCN [6] 62.8 44.2 30.4 21.0 - - -

img-gLSTM [10] 64.7 45.9 31.1 21.4 20.4 67.7 -

NIC [26]†,Σ 66.6 46.1 32.9 24.6 - - -

img-gLSTM [10] 67.0 49.1 35.8 26.4 22.7 81.3 -

Hard-Attention [29] 71.8 50.4 35.7 25.0 23.0 - -

Soft-Attention [29] 70.7 49.2 34.4 24.3 23.9 - -

ATT-FCN [34]Σ 70.9 53.7 40.2 30.4 24.3 - -

NeuralTalk2 [1] (Ours) 70.8 53.7 40.1 30.1 24.5 93.0 17.3

Image + Actions (Ours) 71.5 54.6 40.9 30.9 24.7 94.5 17.6

Image + Nouns (Ours) 71.5 54.6 41.1 31.1 24.8 95.2 17.7

Table 4: Caption generation model performance on the COCO test set

(5000 images) of Karpathy et al. [11]. B@N, M, C, and S indicate

BLEU@N [18], METEOR [14], CIDEr [25], and SPICE [2] respectively.

† indicates a different split of 4000 images and Σ indicates an ensemble of

models. Bold values indicate the highest value for metrics obtained using

a single model.

set. We then modify the baseline model to accept an addi-

tional imSitu-based feature as input, as shown in Fig. 5 and

fine-tune the whole RNN+CNN for another 100k iterations.

Beam search of 2 and 3 was found to help the baseline and

improved model respectively (recall that it did not help in

situation prediction). We see that feeding in imSitu-based

features improves the CIDEr score by 2.2 points. Feeding

features from the network that produces noun entity predic-

tions (Image+Nouns) works better than features from the

action prediction network (Image+Actions). Similar im-

provements are also observed on the held-out MSCOCO

test set as shown in Table 5. Note that competing methods

listed in that table use ensembles and improved architec-

tures to obtain better captioning performance.

While the quantitative improvements afforded by our ad-

ditional semantic features are small (and automatic caption-

ing metrics have well-known limitations [2]), we have qual-

itatively observed that our captions can describe interac-

tions with objects more accurately, as can be seen from im-

ages and captions in the top row of Figure 6. For example,

we can correctly identify that a person is holding a baseball

bat instead of a frisbee, or a hairbrush instead of a phone.

When our model goes wrong (Figure 6, bottom row), it is

prone to hallucinating interactions with people.

5. Conclusion

This paper framed the recently introduced task of situa-

tion recognition as sequential prediction and conducted an

extensive evaluation of RNN-based models on the imSitu

dataset [33]. Our most important findings are below.

• RNNs-based methods are a straightforward fit for the

task and work quite well.

• Accurate action prediction is one of the main keys to

beating the CRF methods of [32, 33], which do not train

an explicit action classifier but predict actions jointly
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Methods
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

ATT-FCN [34]Σ 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8

OriolVinyals [27]Σ 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6

MSR Captivator [5]? 71.5 97.0 54.3 81.9 47.0 71.0 38.0 61.0 24.8 33.9 52.6 68.0 93.1 93.7

Q.Wu [28]? 72.5 89.2 55.6 80.3 41.4 69.4 30.6 58.2 24.6 32.9 52.8 67.2 91.1 92.4

NeuralTalk2 [1] (Ours) 70.6 87.9 53.2 77.8 39.2 66.1 29.0 54.7 24.2 32.4 51.9 66.0 88.1 89.1

Image + Actions (Ours) 71.1 88.6 53.9 79.0 40.1 67.7 30.1 56.7 24.4 33.0 52.3 66.8 90.1 90.7

Image + Roles (Ours) 71.2 88.7 54.0 79.4 40.3 68.2 30.2 57.2 24.6 33.2 52.4 67.0 90.7 91.8

Table 5: Caption generation model performance on the COCO test2014 online leaderboard. We list results that have been published and highlight our

implemented baseline and methods. Note that the top methods use ensembles, better model architectures, and other engineering tricks such as scheduled

sampling, beyond the scope of this work. The c5 test setting uses 5 reference captions and c40 uses 40 reference captions. Σ indicates an ensemble of

models, ? indicates unspecified if ensemble.

VGG: A man sitting on a couch with a cat
VGG+imSitu: A man sitting on a chair 
with a cell phone
GT: An old man is trying to use his cell 
phone

VGG: A woman is holding a 
frisbee in a park
VGG+imSitu: A young girl is 
holding a baseball bat on a field
GT: A girl with a bat standing in 
a field

VGG: A man with a beard and a tie
VGG+imSitu: A man is holding a pair of 
scissors
GT: A person holding a pair of scissors 
open intently

VGG: A herd of elephants walking across a lush green field
VGG+imSitu: A group of people standing around a large elephant
GT: A herd of elephants walking across a grass covered field

VGG: A truck is parked on the side of the road
VGG+imSitu: A man standing next to a blue truck
GT: A truck is parked on the side of a street

VGG: A woman holding a cell phone in her hand
VGG+imSitu: A woman is brushing her hair in a 
bathroom
GT: A little girl is brushing her hair in a bathroom

VGG: A man and a woman are playing a video game
VGG+imSitu: Two men standing in front of a kitchen counter
GT: A man and a woman are playing video games

Figure 6: Sample images from COCO test set of Karpathy et al. [11] for which adding imSitu features provided the largest gain (top row) and largest drop

(bottom row) in CIDEr scores. We also show one of the five ground truth captions that is most similar to the produced captions. We notice that adding

imSitu features helps identify and better describe interactions with objects. At the same time, in some of the failure cases, it hallucinates interactions with

humans or misidentifies actions.

with all the other roles. Further, we found that train-

ing a separate action classifier that does not share pa-

rameters with noun entity prediction works best. This

suggests that the representations needed to predict ac-

tions and nouns may be different in non-trivial ways, as

it was difficult to fine-tune them jointly.

• Weakly-supervised attention gives minor improvements

but is hard to fine-tune, limiting its absolute accuracy.

This is consistent with findings from captioning [27].

Qualitatively, we found this form of attention to have

limited ability to distinguish between entities, indicating

the need for advanced attention mechanisms [12].

• We have preliminary evidence that situations can help

improve captioning quality, though the improvement is

currently small. In the future, we will explore better

methods to integrate the external knowledge provided

by the imSitu dataset into captioning.

A limitation of the RNN-based models over CRF-based

models is that they cannot produce outputs for verbs unseen

at train time as they are unaware of the semantic role or-

dering associated with the verb. We believe that this can be

fixed by making the RNN also output semantic roles, which

will be explored in future work.
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