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Abstract

Progress in Multiple Object Tracking (MOT) has been

historically limited by the size of the available datasets. We

present an efficient framework to annotate trajectories and

use it to produce a MOT dataset of unprecedented size. In

our novel path supervision the annotator loosely follows the

object with the cursor while watching the video, providing

a path annotation for each object in the sequence. Our ap-

proach is able to turn such weak annotations into dense box

trajectories. Our experiments on existing datasets prove

that our framework produces more accurate annotations

than the state of the art, in a fraction of the time. We fur-

ther validate our approach by crowdsourcing the PathTrack

dataset, with more than 15,000 person trajectories in 720

sequences1. Tracking approaches can benefit training on

such large-scale datasets, as did object recognition. We

prove this by re-training an off-the-shelf person matching

network, originally trained on the MOT15 dataset, almost

halving the misclassification rate. Additionally, training

on our data consistently improves tracking results, both on

our dataset and on MOT15. On the latter, we improve the

top-performing tracker (NOMT) dropping the number of ID

Switches by 18% and fragments by 5%.

1. Introduction

Progress in vision has been fueled by the emergence of

datasets of ever-increasing scale. An example is the surge

of Deep Learning thanks to ImageNet [26, 44]. The scaling

up of datasets for Multiple Object Tracking (MOT) how-

ever has been limited due to the difficulty and cost to an-

notate complex video scenes with many objects. As a con-

sequence, MOT datasets consist of only a couple dozens of

sequences [18, 29, 35] or are restricted to the surveillance

scenario [53]. This has hindered the development of fully

learned MOT systems that can generalize to any scenario.

In this paper, we tackle these issues by introducing a fast

1We provide our dataset at http://www.vision.ee.ethz.ch/

˜smanenfr/pathtrack.

Figure 1: This sequence is heavily crowded with similarly-looking

people. Annotating such sequences is typically time-consuming

and tedious. In our path supervision, the user effortlessly follows

the object while watching the video, collecting path annotations.

Our approach produces dense box trajectory annotations from such

path annotations.

and intuitive way to annotate trajectories in videos and use

it to create a large-scale MOT dataset.

Objects can be annotated at different levels of detail. The

cheapest way is to provide video-level object labels [39] or

action labels [4]. On the other end of the spectrum, sophis-

ticated methods [38, 30, 3, 46, 2] produce pixel-accurate

segmentations of objects. Per-frame bounding box annota-

tions lie in between these extremes. We call this the tra-

jectory annotation task. The common approach to it is to

annotate a sparse set of boxes and interpolate between them

linearly [55] or with shortest-paths [47]. This is expensive,

e.g. it cost tens of thousands of dollars to annotate the VI-

RAT dataset [49].

The typical annotation pipeline involves the user idly

watching the video in-between manual annotations. This

is arguably a waste of time. In this paper, we present path

supervision as a more productive alternative. In it, the an-

notator follows the object with the cursor while playing the

video, collecting a path annotation, c.f . Fig. 1. Hence,

watching time is efficiently turned into annotation time. Our

experiments show that these paths are fast to annotate, al-

most in real time.
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Table 1: Comparison of PathTrack with other popular MOT datasets.

Dataset
Train Test Total Classes

(P = Person,

C = Car)

Camera

(S=Static

M=Moving)

Scene-type

label

Camera-

movement

label# seqs
Duration

(mins)
# tracks # seqs

Duration

(mins)
# tracks # seqs

Duration

(mins)
# tracks

Virtual KITTI [17] - - - - - - 5* 4* 261* C* car-mounted

KITTI [18] 21 13 29 18 - 50 30 - C + P car-mounted

MOT15 [29] 11 6 500 11 10 721 22 16 1221 P S+M

MOT16 [35] 7 4 512 7 4 830 14 8 1342 C+P** S+M

PathTrack

(ours)
640 161 15,380 80 11 907 720 172 16,287 P S+M ✓ ✓

* [17] provides 10 different conditions (e.g. different angles, lighting conditions) for each of the 5 sequences. Sequences are virtually rendered.
** [35] provides a rich set of labels, such as whether an object is an occluder or a target is riding a vehicle.

Path annotations are approximate and do not provide the

scale of the object. So recovering full box trajectories from

them is far from trivial. We alleviate these problems by

using object detections, since our goal is to generate large

MOT datasets, for which we know the class of interest. Our

optimization produces an accurate box trajectory for each

path annotation, by linking detections in a global optimiza-

tion. Our approach is presently the fastest way to annotate

MOT trajectories for any annotation quality.

Since our annotation approach is intuitive, we could

crowd source a large-scale dataset with Amazon Mechan-

ical Turk (AMT) [1]. This PathTrack dataset is our sec-

ond major contribution: a large MOT dataset of more than

15,000 person trajectories in 720 sequences, 30 times more

than currently available ones [29]. Its focus lies on a large-

scale and diverse training set, aimed to initiate a new gen-

eration of fully data-driven MOT systems. We show its

potential by learning better detection-association models

for MOT, which substantially improves the top-performing

tracker in MOT15, i.e. NOMT [9]. In summary, our contri-

butions are:

– A novel approach to produce full box trajectories from

path annotations. It is currently the fastest way to an-

notate trajectories for any annotation quality and it spe-

cially shines for quick quantity-over-quality data col-

lection strategies, ideal for training data.

– The novel PathTrack MOT dataset, which includes

the collection and annotation of 720 challenging se-

quences. It focuses on providing abundant training

data to learn data-driven trackers. We show its poten-

tial by improving the top tracker on MOT15 [29].

– Insights into collection of training data for MOT. Our

experiments show that the MOT community can still

benefit from more training data and a saturation point

has not yet been reached. Furthermore, quantity seems

to be more important than quality when learning to link

detections into trajectories.

2. Related work

There is quite some work on multimedia annotation [11].

The most related works annotate objects in videos and can

generate datasets for MOT training and evaluation.

Trajectory annotation in videos We focus on frame-

works aimed at annotating persons with the purpose of gen-

erating tracking datasets. Of less relevance to us are those

that work on videos with only a few people, such as [50, 36].

The naive way to annotate trajectories is to indicate the ob-

ject location in every frame. This is inefficient as objects

tend to move little between frames. Hence, VIPER-GT

[34] and LabelMe video [55] propose to linearly interpolate

boxes between annotated keyframes. There is also a family

of methods that learn an appearance model from a sparse

set of box annotations. VATIC [49] uses this appearance

model to define a graph on which it performs a shortest-

path interpolation between manual annotations with Dy-

namic Programming [6]. The shortest-path interpolation al-

lows for larger time gaps without manual annotations, as-

suming that the object is clearly visible, and it can be effi-

cient [51]. A VATIC improvement [48] incorporated active

learning to decide which frames to annotate, to maximize

the gain coming with such frames [40]. [10] built on top

of shortest-path interpolation by updating the optimization

weights with each extra annotation. Recently, [19] recon-

structed annotated boxes and interpolated the final trajecto-

ries in 3D space. Based on the aforementioned approaches,

multiple annotation tools have been developed [23, 8, 37].

Some gamify the annotation process [12]. As an alternative

to trajectory supervision, some works aim to automatically

discover and track objects in video collections, e.g. [27].

Compared to previous approaches, we annotate large

quantities of videos with the minimum effort possible and

prefer quantity over quality in our training data, which have

shown success in other tasks.

Path supervision Pointing at objects comes very natu-

ral and has often been used in human-computer interaction

[21, 22], yet it only recently gained popularity in Computer

Vision. In parallel with our work, [33] found path annota-

tions promising for action localization in videos. Compared

to [33, 52], we annotate dozens of people in highly-crowded

sequences, ideal for MOT purposes. Also recently, [5] and

[22] used point supervision to segment objects in images

and videos, resp. [22] uses multiple points to segment, by it-

eratively re-ranking a collection of thousands of object pro-

posals, called Click Carving.
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We are the first to propose a trajectory annotation frame-

work based on linking detections with path supervision and

use it to generate a large MOT dataset.

Tracking datasets There is a corpus of video datasets that

provide frame-level [15, 20] or pixel-level annotations [38].

[25] and [41] are the largest datasets for single object track-

ing. Most large-scale MOT datasets are restricted to surveil-

lance videos [13, 45, 53, 43], since they depict smooth and

quasi-linear trajectories that are easy to annotate. More re-

lated to ours, KITTI [18] is collected from a car-mounted

camera and focuses on pedestrians and vehicles. Parts of

this dataset have been reproduced and rendered virtually,

to show the potential of virtual datasets [17]. [29, 35] have

become the standard benchmarks for MOT, containing com-

plex pedestrian scenes with static or moving cameras. Com-

pared to these datasets, ours exhibits more diverse scenes

and camera movement and is 33 times larger. Tab. 1 shows

a quantitative comparison.

3. Trajectory annotation with path supervision

In this section, we describe our annotation framework:

we formalize path supervision in Sec. 3.1 and then detail

how we leverage it to infer accurate trajectories in Sec. 3.2.

In Sec. 3.3 we show how to incorporate box supervision.

3.1. Path supervision

A path annotation of an object i consists of an (x, y)-

coordinate pi(t) that lies inside its bounding box at frame

id t. Path annotations are intuitive and efficient to obtain

by watching each object independently while following its

location with the mouse cursor, c.f . Fig. 1. Our results show

that annotating paths is only 33% slower than watching the

video in real time. We say that a video has path supervision

if a human annotator has provided a path annotation for the

objects of interest. The following section explains how we

use these annotations to obtain accurate box trajectories.

3.2. From path supervision to full box trajectories

While path supervision is intuitive and efficient, it comes

with its own set of challenges: a) It offers no information

about the spatial extent of the object. b) The relative po-

sition of the path annotation inside the object is unknown.

We partially solve these two problems by drawing on the

success of object detection, since our final goal is to gener-

ate large MOT datasets and we know what kind of objects

we want to annotate. Object detection is gaining maturity

for objects of primary interest, so it is natural to use it as an

established technique. Each detection is represented with a

box and a confidence score at a given frame.

Our goal is to infer the trajectories T of the objects in

the sequence, given the set of input path annotations P and

object detections D. This problem is similar to the tracking-

by-detection data association problem, but with additional

information from path supervision: the number of objects,

their time span and their rough location are given. Our op-

timization considers the following intuitive forces:

1. Path potential: Detections should be assigned to tra-

jectories with compatible path annotations.

2. Video-content potential: Confident detections should

be used and affine detections should be encouraged to

have the same label. We say that two detections are

affine if they are likely to belong to the same object in

different frames, according to the content of the video.

3. Trajectory constraint: Trajectories have a single lo-

cation per frame. Therefore, at most one detection can

be assigned to one trajectory at any given frame.

We include these conditions in a two-step optimization. We

first relax the trajectory constraint and label each detection

with a provisional trajectory. This clusters the detections

according to their corresponding trajectory, c.f . Fig. 2b. We

can assume that a final trajectory can be constructed with

detections from its cluster, and will not contain detections

from another cluster. This detection pre-labeling step is de-

tailed in Sec. 3.2.1. At this point each cluster is might in-

clude false positives, which violate the trajectory constraint.

So, in a second step, we find the most probable trajectory in

each cluster in a detection linkage step, see Fig. 2c. We

describe this step in Sec. 3.2.2.

3.2.1 Detection pre-labeling

The goal of this step is to assign a path annotation label

yi to each detection di. Dropping the trajectory constraint

allows us encode the path and video-content potentials in a

global discrete energy minimization framework. Intuitively,

we will assign path annotations to compatible object detec-

tions, assigning affine detections to the same cluster. The

optimal label assignment Y∗ is that which minimizes:

minimize
Y

∑

i∈D

U(yi) +
∑

(i,j)∈E

W (yi, yj) (1)

where the unary potential U(yi) is the cost of assigning la-

bel yi to detection i and the pairwise potential W (yi, yj)
the cost of assigning different labels to detections i and j
according to their affinity. For computational reasons, we

limited to a temporal window of 4 seconds, which did not

worsen the empirical results. Fig. 2b illustrates a typical

pre-labeling result. We now describe the potentials we use.

As aforementioned, we do not assume the path annota-

tions to be pixel-accurate center annotations. Instead we

assume that they frequently lie in the bounding box of the

object, a much weaker restriction. Therefore, our unary po-

tential encourages assigning a label y to a detection di if the
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a) Original graph d) Final trajectoriesb) Detection pre-labeling c) Detection linkage

Figure 2: Overview of our pipeline. a) We take path annotations (p1,p2,p3) and object detections as input. b) We pre-label each detection

with a potential path candidate, creating detection clusters (G1, G2, G3). c) For each cluster, we compute the most likely trajectory via ST

shortest paths. Finally, we output full bounding-box trajectories (T1, T2, T3) for each path annotation.

corresponding path annotation py(ti) falls inside the detec-

tion for the corresponding frame ti:

U(yi) =

{

0, if py(ti) ∈ di,

∞, otherwise.
(2)

Indeed our unary only requires a rough location of the path

annotation somewhere inside the bounding box of the ob-

ject. Note that this requirement does not need to be satisfied

in every frame: the path supervision occasionally falling in-

side the object is usually enough to annotate it accurately.

We prune detections which do not contain path annotations.

While the unary potential is based on the path supervi-

sion, the pairwise encodes video content. It discourages

affine detections being assigned to different clusters:

W (yi, yj) =

{

− log aij , if yi 6= yj ,

0, otherwise.
(3)

where aij represents the affinity between detections i and j
and must be decimal number between 0 and 1. This pair-

wise potential is submodular, so the energy function Eq. (1)

can be solved with Graph Cuts [24] efficiently. We now

describe the affinity measure we used.

OF-trajectory affinity measure In our work, we use an

affinity measure based on optical-flow trajectories (OF tra-

jectory). These are obtained by linking pixels through time

using frame-to-frame optical flow and forward-backward

consistency checks [16]. These trajectories are represented

with an (x, y)-position for each frame in their time span. In-

tuitively, two detections that share many OF trajectories are

very likely to belong to the same object. Thus, we define

the affinity between two detections as the intersection-over-

union of their OF-trajectories, in the spirit of [9]. More

details follow in the supplementary material.

So far we have discussed how we pre-assign object de-

tections to path annotations c.f . Fig. 2b. In the following

section, we describe how to obtain the most likely trajectory

for each detection cluster via shortest-paths, c.f . Fig. 2c.

3.2.2 Detection linkage

In this second step, the goal is to infer the final object trajec-

tories. Finding the most probable detection-paths in a set of

detections has been well studied in the MOT literature [31].

We assume that the detection pre-labeling step has labeled

the set of detections appropriately. So each detection can

either be part of its assigned trajectory or a false positive,

but it can not belong to another trajectory. Thus, we pro-

cess each detection-cluster independently Fig. 2c and find

the most probable detection-path in the cluster Fig. 2d.

Let Ti be the final trajectory corresponding to detection-

cluster i. It will be composed of a set of time-sorted

detections x1 to xK . We find the most likely trajectory

by minimizing the sum of detection-confidence costs and

between-detections transition costs [56]. Fig. 3 shows how

this can be intuitively interpreted as finding the shortest-

path in a directed ST-graph where detections are represented

by detection-confidence edges. The optimal detection-path

will have the lowest cost:

minimize
T

K
∑

i=1

C(xi) +

K−1
∑

i=1

W (xi, xi+1) (4)

where C is the detection-confidence cost. Ci follows the

expression log((1 − si)/si), where si is the 0-to-1 score-

confidence of the detection. Importantly, we use the same

transition costs W when linking detections as we used in

step one Eq. (1) for pre-labeling detections. Reusing pair-

wise costs makes the method more efficient. The detection-

confidence costs become negative for confident detections,

encouraging the optimization to include them in the final

position, while the transition costs penalize the association

of detections which are unlikely to be connected. We refer

the reader to [56] for details. The entry and exit nodes, S

and T, are connected only to the earliest and latest detec-

tions in the cluster, respectively, ensuring that the trajectory

has the same time span as its corresponding path annotation.

As result of the optimization we have a sparse detection-

path. Empirically we find the gap between detections to be

small, 0.2 on average in our data. Thus we opt to linearly

interpolate between detections to obtain the final trajectory,

as per standard practice [55].

Until now we have presented our annotation approach

using path supervision. It is useful for quickly annotat-

ing many sequences, particularly interesting for training

data collection. We propose next an extension to incorpo-
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Detection-confidence edges

Transition edges

Enter/exit edges

Figure 3: Over a set of prelabeled detections a min-cost flow network is defined. Each detection is represented by an observation edge with

the confidence cost. ST-shortest paths are computed over this graph, red shadow.

rate additional box annotations, improving trajectories up to

ground-truth quality.

3.3. Incorporating box supervision

We propose a simple yet effective way to extend our

method with box annotations, to achieve ground-truth qual-

ity. Consider the detection-path we used to interpolate a

trajectory. To include a box annotation, we simply add it

to the path and then remove temporally close detections,

those less than half a second away. Interpolating the up-

dated detection-path produces the final trajectory. These

fast updates progressively improve trajectory annotations as

more box annotations are included. Our method is more ac-

curate than the state of the art for any number of updates, as

we show in the experiments.

4. The PathTrack dataset

We use our annotation approach to collect a MOT dataset

of unprecedented size. This PathTrack dataset is an impor-

tant part of our contribution. We first provide an overview

of the dataset in Sec. 4.1. Then, we describe how we crowd-

sourced the annotations in Sec. 4.2. We generate the final

trajectory annotations with our approach, which associates

R-CNN detections [42] with the help of path supervision.

Importantly, we focus on training data in order to encour-

age research in fully data-driven trackers.

4.1. Dataset overview

The PathTrack dataset consists of 720 sequences with a

total of 16,287 trajectories of humans. Focusing on track-

ing humans allows us to collect more data for this specific

class, which is of great interest both in the MOT community

and in practical applications. The sequences are partitioned

in a training set of 640 sequences with 15,380 trajectories

and a test set of 80 sequences with 907 trajectories. Impor-

tantly, we allow a certain amount of noise in the training set

annotations. This noise stems from inaccuracies in the path

supervision and full-trajectory inference and has allowed us

to annotate more sequences for a given time budget. Our

experiments show that we can learn strong appearance mod-

els from large quantities of data even if the annotations are

not perfectly clean (Sec. 5). Indeed, favoring quantity over

quality when collecting training data has also been found

to be beneficial for other tasks [54, 20]. Additional effort

has been made for test annotations to be clean for evalua-

tion purposes. Tab. 1 compares PathTrack with other pop-

ular MOT datasets. Compared to MOT15 [29], our dataset

contains 33 times more sequences and 26 times more trajec-

tory annotations available. We hope that the large scale of

PathTrack encourages research in more data-driven tracking

algorithms.

Dataset diversity MOT datasets typically focus on

surveillance [53], street-scenes [29, 35] or car-mounted

cameras [18, 17]. With PathTrack, we aim to explore track-

ing in new types of sequences. We have thus collected a

diverse set of sequences and we have labeled each one ac-

cording to two criteria: a camera-movement label and one

out of 7 scene labels, c.f . Fig. 4. There is a clear emphasis

in street scenes and moving cameras, due to their challenge,

ubiquity and general interest. But our dataset also allows fo-

cusing on static cameras or sequences with a lot of motion,

such as sports and dancing. These fine-grained categories

can also help to evaluate tracking under different conditions.

Additional statistics that show the diversity of our data are

presented in Fig. 4c. In the following sections, we describe

how we crowdsourced the path annotations and detail in the

supplementary material how we collected the videos.

4.2. Crowdsourcing path annotations

A critical aspect of any annotation framework is whether

it is easy to use. This is an often-overlooked factor that is

vital if we want to crowdsource annotations. Path annota-

tion is intuitive and straightforward. This has allowed us

to crowdsource 16,287 path annotations of PathTrack using

AMT. We now describe our interface and the measures we

took to ensure the quality of our annotations.

Interface Our interface features a video player with

browsing capabilities and a list of the current annotations.

The key difference with other interfaces is that ours records

the path of the object by following the cursor. Additionally,

the user easily can speed up and slow down the video, ac-

cording to the speed of the object. In our measurements,

path annotation was only 30% slower than watching the
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Figure 4: Scene-label distribution in PathTrack. We show in a) the distribution of camera-movement labels. Almost three quarters of the

sequences have been recorded with a moving camera. We show in b) the distribution of scene-type labels and corresponding examples.

More than half of the sequences are street scenes. c) Statistics of PathTrack. Videos are up to 2 minutes long.

video in real time. To further improve our final trajectories,

we also asked the workers to provide a bounding box for

the first and last appearance of each object and a third one

in between. Since some sequences are very long and can

contain dozens of people, the workers were allowed to par-

tially annotate sequences. This also means that some work-

ers received partially annotated videos and had to continue

annotating them. This was not much of a challenge with our

annotation framework. We have received very encouraging

feedback from our workers, validating the ease of use of our

interface and suggesting a potential for gamification. Here

are some examples:

“System was very easy to use and the normal speed

was perfect for tracking each subject.”

“I really enjoyed your hit. I like to do a lot of annota-

tion work on mechanical turk and thought your inter-

face was, once I got used to it, one of the best I have

worked with.”

Qualification process After a short training video,

c.f . supplementary material, each worker was asked to qual-

ify by annotating the TUD-Stadtmitte sequence. The qual-

ification certificate was only provided if the path and box

annotations were similar to the ground truth up to a certain

threshold. This was checked automatically.

Reviewing process If the users are not trained properly or

the interface is cumbersome to use, crowdsourced annota-

tions can be erroneous [49]. So we have made an extensive

effort to review every single video and remove bad annota-

tions. Videos with missing annotations were sent back to

the annotation pool. We revoked the qualification of work-

ers who continuously provided faulty annotations. Interest-

ingly, only 3 out of our 81 workers were revoked, while

previous work had difficulties collecting annotations of suf-

ficient quality [47]. This further confirms that path annota-

tion is an engaging and natural way to annotate trajectories.

5. Experiments

We present our experiments in three parts. First we eval-

uate our annotation framework in Sec. 5.1. We then demon-

strate in Sec. 5.2 its impact on training data collection for

matching detections, which is a key problem of MOT [9]

that is shared by most trackers. We finalize by evaluating

the impact of our data on the Multi Object Tracking task.

5.1. Trajectory annotation efficiency

In this section we evaluate the effectiveness and effi-

ciency of path supervision and compare it to other trajectory

annotation approaches.

Dataset description We evaluate our method on the

MOT15 dataset [29] since it is most similar to our final goal,

the generation of a massive MOT dataset. This dataset con-

sists of 22 sequences, 11 of which belong to the training set.

The sequences are challenging. Pedestrians are frequently

occluded and some sequences have been recorded with a

moving camera. We evaluate on the 521 trajectories of the

training set, for which the ground truth is provided.

State of the art We compare to other existing trajectory

annotation approaches. LabelMe [55] is an effective frame-

work based on linear interpolation between box annota-

tions. The more sophisticated VATIC [49] learns an ap-

pearance model from the box annotation, which it uses for

a shortest-paths interpolation. An additional extension of

VATIC uses active learning to propose to the user which

frame to annotate [48].

Effectiveness of path supervision We first follow the

standard evaluation of trajectory annotation frameworks

[47]. In Fig. 5, we compare the annotation accuracy for

different amounts of box annotations. Except for the ac-

tive learning version of VATIC [48], box annotations are

distributed uniformly in time, e.g., every 10, 5, 1 sec-

onds. The performance of each framework is measured

in terms of how many ground truth boxes are recalled,
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Figure 5: Performance comparison of 3 state-of-the-art trajectory

annotation frameworks and ours. We plot the annotation accuracy

for different box-annotation budgets.

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1.0

Annotation time (hours)

R
ec

al
l

IoU ≥ 0.5

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1.0
IoU ≥ 0.7

Annotation time (hours)

LabelMe

VATIC (alearn)

VATIC

PathTrack (ours)

Figure 6: We compare the efficiency of our method with the state

of the art for 0.5 and 0.7 IoU thresholds. The time measurements

derive from a user study with 91 subjects.

for different Intersection-over-Union (IOU) [14] thresholds.

Fig. 5 demonstrates the effectiveness of our path supervi-

sion: our cheap path supervision improves performance for

any amount of box annotations. Interestingly, the annota-

tion frameworks seem to converge in performance for large

annotation budgets. A problem of this classical comparison

is that it does not take into account the effort required to an-

notate path trajectories, i.e., it assumes that path annotations

can be produced in real time, which is not always the case.

We address evaluate time performance in the next section.

Annotation efficiency We compare the efficiency of path

supervision with previous approaches using a common unit

to measure effort: the annotation time. Our time mea-

surements are based on a user study of 78 AMT workers

and 13 vision-expert annotators. We consider three time-

consuming components: 1) watching the video at least once

to identify the objects, 2) following each trajectory individ-

ually while annotating its boxes or path (for ours) and 3)

the time required to annotate the bounding boxes. Our mea-

surements revealed that box annotations take 5.2 seconds

on average and that path annotations require slowing down

the video by 33% on average. We provide a detailed ex-

planation in the supplementary material. We use these time

measurements to produce Fig. 6, where we compare the ef-

ficiency of our framework with the state of the art. Our

method is efficient, as VATIC [49] and LabelMe [55] re-

spectively require almost twice and three times more time

to obtain our accuracy with only path supervision. We ob-

serve again how all methods converge to the same perfor-

mance for a larger annotation budget, but ours is much more

accurate for very small annotation-budgets.

Overall, our framework is ideal for fast video annotation,

which is desirable for generating large training sets, as we

demonstrate in the next section.

5.2. Person matching

We demonstrated in the previous section that path su-

pervision is an efficient way to obtain accurate annotations

in a short amount of time. We now explore the implica-

tions for a key task in MOT applications: person match-

ing. This key problem consists of determining the likeli-

hood that two detections belong to the same object in dif-

ferent frames Fig. 7a. There is a long tradition of hand-

crafted matching functions in the literature, with Convolu-

tional Neural Networks (CNN) becoming more popular in

the last few years. These models require extensive train-

ing data [26, 54], which we can provide with PathTrack.

Learning tracker-specific components (e.g. entry/exit costs,

mixing coefficients) is outside of the scope of this paper, but

should be possible with our data.

We aim to answer the questions: i) does the tracking

community benefit from more training data?, ii) for a lim-

ited budget, should we prioritize data quantity or quality?

Experimental protocol We base our conclusions on a

person matching network similar to SiameseCNN [28]. The

network takes as input the crops of the two detections, re-

sized to 121x53, and outputs a confidence score that they

belong to the same object. These input crops are stacked,

so the input volume is of 121x53x6. The network has a

simple AlexNet style architecture of 3 convolutional and 2

fully connected layers [28]. In our evaluations, we sam-

ple 2 million training and test samples. Positives are ran-

domly sampled pairs of detections that belong to the same

object up to 6 seconds away. For each positive we sample

a negative pair belonging to another trajectory in the same

video. We use a learning rate of 0.001. In our experiments,

we train this network with different data sources and com-

pare their test accuracies. Accuracy refers to the percentage

of properly classified pairs. We evaluate on the test set of

PathTrack, for which the ground truth annotation is clean.

Impact of training data In Fig. 7b we evaluate how the

accuracy evolves as more training data becomes available.

The left extreme corresponds to training on the 521 trajecto-

ries of the MOT15, which yields an accuracy of 78%. Train-

ing on the full 15,380 trajectories of PathTrack we improve

the accuracy by 10%, almost halving the misclassification

rate. This clearly shows the potential of PathTrack. More-
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Figure 7: We show in a) qualitative results of our person matcher on PathTrack. False positives are even challenging for humans. b)

Evolution of matching accuracy for different amounts of training trajectories. Training on the 15,380 trajectories of PathTracks results in

an accuracy of 88%, reducing the misclassification rate by 45%, compared to MOT15. c) Person-matching accuracy for different annotation

times using path supervision (blue) or exhaustive LabelMe annotation (red). A high-quantity annotation strategy with our path supervision

provides the best accuracy for the same annotation-time budget.

over, we observe a certain effect of diminishing returns, but

have not reached a plateau. If we use context features (e.g.

relative distance, size) [28] in the network, we also see an

improvement when using our data, from 84% to 90%. This

shows that our data is useful to learn data-driven MOT.

Quantity-over-quality annotation When collecting and

annotating data for training purposes, a vital question is

whether we should coarsely annotate a large amount of

data or precisely annotate a small amount of data. That is,

whether we should follow a quantity or a quality strategy.

We estimate that it would take 22h to perfectly annotate the

11 videos in the training set of the MOT Challenge with

LabelMe [55]. We reach this number by counting only the

number of windows necessary to obtain an accuracy larger

than 0.95 IoU. This represents the high-quality strategy. We

compare this with a high-quantity strategy, in which, for the

same annotation time, we annotate 140 videos of PathTrack

with our framework, with path supervision and 3 boxes per

trajectory. We show the results in Fig. 7b. A high quantity

approach boosts the final accuracy from 78% to 85%. In-

terestingly, we can also use our method to quickly annotate

the MOT 15 training set and train a model with exactly the

same accuracy c.f . Fig. 7b. These results further showcase

the benefit of our framework, which is ideal for fast annota-

tion of large datasets. Other works [54, 20] have also found

a quantity strategy to be advantageous to train deep models.

5.3. Multi Object Tracking

In the previous section we demonstrated how we can

train strong person-matching models with PathTrack. We

now evaluate what impact this improvement has on MOT

performance. We first use a standard tracker based on

Linear Programming (LP) [56, 32] and evaluate it on the

test set of PathTrack with the standard CLEAR MOT met-

rics [7]. In Tab. 2a We compare the performance of this

tracker with two different person-matching models: one

Table 2: We show in a) how training on PathTrack improves all

metrics compared to training on MOT15. We use in b) our person-

matcher (TRID) to improve the top method in MOT15.

(a) Tracking results on PathTrack

LP Tracker trained on MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Switch ↓

MOT15 [29] 24.5 81.4 44.2% 19.2% 42,502 37,720 1,827

PathTrack (ours) 27.6 81.5 47.3% 18.2% 40,614 36,508 1,576

(b) Tracking results on MOT15

Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Switch ↓ Frag ↓

NOMTwSDP [9] 55.5 76.6 39.0% 25.8% 5,594 21,322 427 701

+ TRID (ours) 55.7 76.5 40.6% 25.8% 6,273 20,611 351 667

trained on MOT15 and the other on our data. Training on

PathTrack substantially improves all the metrics. We fur-

ther show the potential of PathTrack by improving the top-

performing tracker in MOT15 [9] with our person-matching

model c.f . Tab. 2b. More specifically, we use our discrimi-

native person matcher to further link their trajectory results

through occlusions, improving the number of ID Switches

by 18% with 5% less fragments. Low-level details about

the trackers are presented in the supplementary material.

6. Conclusion

In this work, we propose a new framework to annotate

trajectories in videos using path supervision, with the goal

of generating massive MOT datasets. In the path supervi-

sion paradigm, the user annotates the position of the ob-

jects of interest with the cursor while watching the video.

Our user study shows that this operation is efficient. We

show in our experiments that we can quickly generate large

datasets with our path supervision. We use our approach to

annotate PathTrack, a crowdsourced MOT dataset 33 times

larger than currently available ones. We improve current

person-matching deep models using our data and that this

has an impact on MOT accuracy. We release PathTrack to

promote research in richer tracking models.
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