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Abstract

Unsupervised learning with generative adversarial net-

works (GANs) has proven hugely successful. Regular GANs

hypothesize the discriminator as a classifier with the sig-

moid cross entropy loss function. However, we found that

this loss function may lead to the vanishing gradients prob-

lem during the learning process. To overcome such a prob-

lem, we propose in this paper the Least Squares Genera-

tive Adversarial Networks (LSGANs) which adopt the least

squares loss function for the discriminator. We show that

minimizing the objective function of LSGAN yields mini-

mizing the Pearson χ2 divergence. There are two benefits

of LSGANs over regular GANs. First, LSGANs are able to

generate higher quality images than regular GANs. Second,

LSGANs perform more stable during the learning process.

We evaluate LSGANs on LSUN and CIFAR-10 datasets and

the experimental results show that the images generated by

LSGANs are of better quality than the ones generated by

regular GANs. We also conduct two comparison experi-

ments between LSGANs and regular GANs to illustrate the

stability of LSGANs.

1. Introduction

Deep learning has launched a profound reformation and

even been applied to many real-world tasks, such as image

classification [7], object detection [27] and segmentation

[18]. These tasks obviously fall into the scope of supervised

learning, which means that a lot of labeled data are pro-

vided for the learning processes. Compared with supervised

learning, however, unsupervised learning tasks, such as

generative models, obtain limited impact from deep learn-

ing. Although some deep generative models, e.g. RBM

[8], DBM [28] and VAE [14], have been proposed, these

models face the difficulty of intractable functions or the dif-

ficulty of intractable inference, which in turn restricts the

effectiveness of these models.

Recently, Generative adversarial networks (GANs) [6]

have demonstrated impressive performance for unsuper-

vised learning tasks. Unlike other deep generative models

which usually adopt approximation methods for intractable

functions or inference, GANs do not require any approxi-

mation and can be trained end-to-end through the differen-

tiable networks. The basic idea of GANs is to simultane-

ously train a discriminator and a generator: the discrimina-

tor aims to distinguish between real samples and generated

samples; while the generator tries to generate fake samples

as real as possible, making the discriminator believe that

the fake samples are from real data. So far, plenty of works

have shown that GANs can play a significant role in var-

ious tasks, such as image generation [21], image super-

resolution [16], and semi-supervised learning [29].

In spite of the great progress for GANs in image gener-

ation, the quality of generated images by GANs is still lim-

ited for some realistic tasks. Regular GANs adopt the sig-

moid cross entropy loss function for the discriminator [6].

We argue that this loss function, however, will lead to the

problem of vanishing gradients when updating the genera-

tor using the fake samples that are on the correct side of the

decision boundary, but are still far from the real data. As

Figure 1(b) shows, when we use the fake samples (in ma-

genta) to update the generator by making the discriminator

believe they are from real data, it will cause almost no er-

ror because they are on the correct side, i.e., the real data

side, of the decision boundary. However, these samples are

still far from the real data and we want to pull them close

to the real data. Based on this observation, we propose the

Least Squares Generative Adversarial Networks (LSGANs)

which adopt the least squares loss function for the discrim-
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Figure 1. Illustration of different behaviors of two loss functions. (a): Decision boundaries of two loss functions. Note that the decision

boundary should go across the real data distribution for a successful GANs learning. Otherwise, the learning process is saturated. (b):

Decision boundary of the sigmoid cross entropy loss function. The orange area is the side of real samples and the blue area is the side of

fake samples. It gets very small errors for the fake samples (in magenta) when updating G as they are on the correct side of the decision

boundary. (c): Decision boundary of the least squares loss function. It penalizes the fake samples (in magenta), and as a result, it forces

the generator to generate samples toward decision boundary.

inator. The idea is simple yet powerful: the least squares

loss function is able to move the fake samples toward the

decision boundary, because the least squares loss function

penalizes samples that lie in a long way on the correct side

of the decision boundary. As Figure 1(c) shows, the least

squares loss function will penalize the fake samples (in ma-

genta) and pull them toward the decision boundary even

though they are correctly classified. Based on this prop-

erty, LSGANs are able to generate samples that are closer

to real data.

Another benefit of LSGANs is the improved stability of

learning process. Generally speaking, training GANs is a

difficult issue in practice because of the instability of GANs

learning [25]. Recently, several papers have pointed out that

the instability of GANs learning is partially caused by the

objective function [2, 19, 24]. Specifically, minimizing the

objective function of regular GAN suffers from vanishing

gradients, which makes it hard to update the generator. LS-

GANs can relieve this problem because LSGANs penalize

samples based on their distances to the decision boundary,

which generates more gradients to update the generator. Re-

cently, Arjovsky et al. [2] have proposed a method to eval-

uate the stability of GANs learning by excluding batch nor-

malization [11]. Following this method for evaluating the

stability, we find that LSGANs are also able to converge to

a relatively good state without batch normalization.

Our contributions in this paper can be summarized as

follows:

• We propose LSGANs which adopt least squares loss

function for the discriminator. We show that minimiz-

ing the objective function of LSGAN yields minimiz-

ing the Pearson χ2 divergence.

• We evaluate LSGANs on LSUN and CIFAR-10

datasets and the experimental results demonstrate that

LSGANs can generate more realistic images than reg-

ular GANs. Two comparison experiments for evalu-

ating training stability are also conducted to prove the

stability of LSGANs.

• We apply conditional LSGANs to the Chinese char-

acter generation. We evaluate it on a handwritten Chi-

nese character dataset with 3740 classes. The proposed

model is able to generate readable Chinese characters.

The rest of this paper is organized as follows. Section 2

briefly reviews related work of generative adversarial net-

works. The proposed method is introduced in Section 3,

and experimental results are presented in Section 4. Finally,

we conclude the paper in Section 5.

2. Related Work

Generative Adversarial Networks (GANs) were pro-

posed by Goodfellow et al. [6], who explained the the-

ory of GANs learning based on a game theoretic scenario.

Showing the powerful capability for unsupervised tasks,

GANs have been applied to many specific tasks, like im-

age generation [4], image super-resolution [16], text to im-

age synthesis [26], and image to image translation [12]. By

combining the traditional content loss and the adversarial

loss, super-resolution generative adversarial networks [16]

achieve state-of-the-art performance for the task of image

super-resolution. Reed et al. [26] proposed a model to syn-

thesize images given text descriptions based on the con-

ditional GANs [20]. Isola et al. [12] also used the condi-

tional GANs to transfer images from one representation to

another. In addition to unsupervised learning tasks, GANs

also show the potential for semi-supervised learning tasks.

Salimans et al. [29] proposed a GAN-based framework for

semi-supervised learning, in which the discriminator not

only outputs the probability that an input image is from real
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data but also outputs the probabilities of belonging to each

class.

Despite the great successes GANs have achieved, im-

proving the quality of generated images is still a challenge.

A lot of works have been proposed to improve the qual-

ity of images for GANs. Radford et al. [25] first intro-

duced convolutional layers to GANs architecture, and pro-

posed a network architecture called deep convolutional gen-

erative adversarial networks (DCGANs). Denton et al. [5]

proposed another framework called Laplacian pyramid of

generative adversarial networks (LAPGANs). They con-

structed a Laplacian pyramid to generate high-resolution

images starting from low-resolution images. Further, Sali-

mans et al. [29] proposed a technique called feature match-

ing to get better convergence. The idea is to make the gen-

erated samples match the statistics of the real data by min-

imizing the mean square error on an intermediate layer of

the discriminator.

Another critical issue for GANs is the stability of learn-

ing process. Many works have been proposed to address

this problem by analyzing the objective functions of GANs

[2, 3, 19, 23, 24]. Viewing the discriminator as an energy

function, [33] used an auto-encoder architecture to im-

prove the stability of GANs learning. To make the genera-

tor and the discriminator be more balanced, Metz et al. [19]

created a unrolled objective function to enhance the gen-

erator. Che et al. [3] incorporated a reconstruction mod-

ule and use the distance between real samples and recon-

structed samples as a regularizer to get more stable gradi-

ents. Nowozin et al. [23] pointed out that the objective of

the original GAN [6] which is related to Jensen-Shannon

divergence is a special case of divergence estimation, and

generalized it to arbitrary f-divergences [22]. Arjovsky et

al. [2] extended this by analyzing the properties of four dif-

ferent divergences or distances over two distributions and

concluded that Wasserstein distance is nicer than Jensen-

Shannon divergence. Qi [24] proposed the Loss-Sensitive

GAN whose loss function is based on the assumption that

real samples should have smaller losses than fake samples

and proved that this loss function has non-vanishing gradi-

ent almost everywhere.

3. Method

In this section, we first review the formulation of GANs

briefly. Next, we present the LSGANs along with their ben-

efits in Section 3.2. Finally, two model architectures of LS-

GANs are introduced in 3.3.

3.1. Generative Adversarial Networks

The learning process of the GANs is to train a discrim-

inator D and a generator G simultaneously. The target of

G is to learn the distribution pg over data x. G starts from

sampling input variables z from a uniform or Gaussian dis-

tribution pz(z), then maps the input variables z to data

space G(z; θg) through a differentiable network. On the

other hand, D is a classifier D(x; θd) that aims to recog-

nize whether an image is from training data or from G. The

minimax objective for GANs can be formulated as follows:

min
G

max
D

VGAN(D,G) = E
x∼pdata(x)[logD(x)]

+E
z∼pz(z)[log(1−D(G(z)))].

(1)

3.2. Least Squares Generative Adversarial Net
works

Viewing the discriminator as a classifier, regular GANs

adopt the sigmoid cross entropy loss function. As stated in

Section 1, when updating the generator, this loss function

will cause the problem of vanishing gradients for the sam-

ples that are on the correct side of the decision boundary,

but are still far from the real data. To remedy this problem,

we propose the Least Squares Generative Adversarial Net-

works (LSGANs). Suppose we use the a-b coding scheme

for the discriminator, where a and b are the labels for fake

data and real data, respectively. Then the objective func-

tions for LSGANs can be defined as follows:

min
D

VLSGAN(D) =
1

2
E
x∼pdata(x)

[

(D(x)− b)2
]

+
1

2
E
z∼pz(z)

[

(D(G(z))− a)2
]

min
G

VLSGAN(G) =
1

2
E
z∼pz(z)

[

(D(G(z))− c)2
]

,

(2)

where c denotes the value that G wants D to believe for fake

data.

3.2.1 Benefits of LSGANs

The benefits of LSGANs can be derived from two aspects.

First, unlike regular GANs which cause almost no loss for

samples that lie in a long way on the correct side of the de-

cision boundary (Figure 1(b)), LSGANs will penalize those

samples even though they are correctly classified (Figure

1(c)). When we update the generator, the parameters of the

discriminator are fixed, i.e., the decision boundary is fixed.

As a result, the penalization will make the generator to gen-

erate samples toward the decision boundary. On the other

hand, the decision boundary should go across the manifold

of real data for a successful GANs learning. Otherwise, the

learning process will be saturated. Thus moving the gener-

ated samples toward the decision boundary leads to making

them be closer to the manifold of real data.

Second, penalizing the samples lying a long way to the

decision boundary can generate more gradients when up-

dating the generator, which in turn relieves the problem of
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(a) (b)
Figure 2. (a): The sigmoid cross entropy loss function. (b): The

least squares loss function.

vanishing gradients. This allows LSGANs to perform more

stable during the learning process. This benefit can also be

derived from another perspective: as shown in Figure 2, the

least squares loss function is flat only at one point, while the

sigmoid cross entropy loss function will saturate when x is

relatively large.

3.2.2 Relation to Pearson χ2 Divergence

In the original GAN paper [6], the authors has shown
that minimizing Equation 1 yields minimizing the Jensen-
Shannon divergence:

C(G) = KL

(

pdata

∥

∥

∥

∥

pdata + pg

2

)

+KL

(

pg

∥

∥

∥

∥

pdata + pg

2

)

− log(4).

(3)

Here we also explore the relation between LSGANs and

f-divergence. Consider the following extension of Equation

2:

min
D

VLSGAN(D) =
1

2
E
x∼pdata(x)

[

(D(x)− b)2
]

+
1

2
E
z∼pz(z)

[

(D(G(z))− a)2
]

min
G

VLSGAN(G) =
1

2
E
x∼pdata(x)

[

(D(x)− c)2
]

+
1

2
E
z∼pz(z)

[

(D(G(z))− c)2
]

.

(4)

Note that adding the term E
x∼pdata(x)[(D(x) − c)2] to

VLSGAN(G) does not change the optimal values since this term

does not contain parameters of G.

We first derive the optimal discriminator D for a fixed G

as below :

D∗(x) =
bpdata(x) + apg(x)

pdata(x) + pg(x)
. (5)

The proof of Equation 5 can be found in the Appendix.

In the following equations we use pd to denote pdata for

simplicity. Then we can reformulate VLSGAN(G) in Equation

4 as follows:

3×3 deconv, 256, stride=1, BN

3×3, deconv, 256, stride=2, BN

fc, 7×7×256, BN

z, 1024

3×3 deconv, 256, stride=2, BN

3×3 deconv, 256, stride=1, BN

3×3 deconv, 128, stride=2, BN

3×3 deconv, 64, stride=2, BN

3×3 deconv, 3, stride=1

fc, 1

5×5 conv, 512, stride=2, BN

5×5 conv, 256, stride=2, BN

least squares loss

5×5 conv, 128, stride=2, BN

5×5 conv, 64, stride=2

(a) (b)
Figure 3. Model architecture. “K × K, conv/deconv, C, stride =

S” denotes a convolutional/deconvolutional layer with K×K ker-

nel, C output filters and stride = S. The layer with BN means that

the layer is followed by a batch normalization layer. “fc, N” de-

notes a fully-connected layer with N output nodes. The activation

layers are omitted. (a): The generator. (b): The discriminator.

2C(G) = Ex∼pd

[

(D∗(x)− c)2
]

+ Ez∼pz

[

(D∗(G(z))− c)2
]

= Ex∼pd

[

(D∗(x)− c)2
]

+ Ex∼pg

[

(D∗(x)− c)2
]

= Ex∼pd

[

( bpd(x) + apg(x)

pd(x) + pg(x)
− c

)

2

]

+ Ex∼pg

[

( bpd(x) + apg(x)

pd(x) + pg(x)
− c

)

2

]

=

∫

X

pd(x)
( (b− c)pd(x) + (a− c)pg(x)

pd(x) + pg(x)

)

2

dx

+

∫

X

pg(x)
( (b− c)pd(x) + (a− c)pg(x)

pd(x) + pg(x)

)

2

dx

=

∫

X

(

(b− c)pd(x) + (a− c)pg(x)
)

2

pd(x) + pg(x)
dx

=

∫

X

(

(b− c)(pd(x) + pg(x))− (b− a)pg(x)
)

2

pd(x) + pg(x)
dx.

(6)

If we set b− c = 1 and b− a = 2, then

2C(G) =

∫

X

(

2pg(x)− (pd(x) + pg(x))
)2

pd(x) + pg(x)
dx

= χ2
Pearson(pd + pg‖2pg),

(7)

where χ2
Pearson is the Pearson χ2 divergence. Thus minimiz-

ing Equation 4 yields minimizing the Pearson χ2 divergence

between pd + pg and 2pg if a, b, and c satisfy the condtions

of b− c = 1 and b− a = 2.

3.2.3 Parameters Selection

One method to determine the values of a, b, and c in Equa-

tion 2 is to satisfy the conditions of b−c = 1 and b−a = 2,

such that minimizing Equation 2 yields minimizing the
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(a) Generated images (112× 112) by LSGANs.

(b) Generated images (112× 112) by DCGANs.

(b) Generated images (64× 64) by DCGANs (reported in [25]).
Figure 4. Generated images on LSUN-bedroom.

Pearson χ2 divergence between pd + pg and 2pg . For ex-

ample, by setting a = −1, b = 1, and c = 0, we get the

following objective functions:

min
D

VLSGAN(D) =
1

2
E
x∼pdata(x)

[

(D(x)− 1)2
]

+
1

2
E
z∼pz(z)

[

(D(G(z)) + 1)2
]

min
G

VLSGAN(G) =
1

2
E
z∼pz(z)

[

(D(G(z)))2
]

.

(8)

Another method is to make G generate samples as real

as possible by setting c = b. For example, by using the

0-1 binary coding scheme, we get the following objective

functions:

min
D

VLSGAN(D) =
1

2
E
x∼pdata(x)

[

(D(x)− 1)2
]

+
1

2
E
z∼pz(z)

[

(D(G(z)))2
]

min
G

VLSGAN(G) =
1

2
E
z∼pz(z)

[

(D(G(z))− 1)2
]

.

(9)

In practice, we observe that Equation 8 and Equation 9

show similar performance. Thus either one can be selected.

In the following sections, we use Equation 9 to train the

models.

3.3. Model Architectures

The first model we have designed is shown in Figure

3, which is motivated by the VGG model [30]. Com-

pared with the architecture in [25], two stride=1 deconvo-

lutional layers are added after the top two deconvolutional

layers. The architecture of the discriminator is identical to

the one in [25] except for the usage of the least squares

loss function. Following DCGANs, ReLU activations and

LeakyReLU activations are used for the generator and the

discriminator, respectively.

The second model we have designed is for tasks with lots

of classes, for example, Chinese characters. For Chinese

characters, we find that training GANs on multiple classes

is not able to generate readable characters. The reason is

that there are multiple classes in the input, but only one

class in the output. As stated in [9], there should be a deter-

ministic relationship between input and output. One way to

solve this problem is to use the conditional GANs [20] be-

cause conditioning on the label information creates the de-

terministic relationship between input and output. However,

directly conditioning on the one-hot encoding label vector

with thousands of classes is infeasible in terms of memory

cost and computational time cost. We use a linear mapping

layer to reduce the dimensionality of the label vector. For

2798



(a) Church outdoor. (b) Dining room.

(c) Kitchen. (d) Conference room.

Figure 5. Generated images on different scene datasets.

the generator, the label vector is concatenated to the noise

input layer. For the discriminator, the label vector is con-

catenated to all the convolutional layers and fully-connected

layers. The layers to be concatenated are determined empir-

ically.

4. Experiments

In this section, we first present the details of datasets and

implementation. Next, we present the results of the qualita-

tive evaluation and quantitative evaluation about LSGANs.

Then we compare the stability between LSGANs and regu-

lar GANs by two comparison experiments. Finally, we eval-

uate LSGANs on a handwritten Chinese character dataset

which contains 3740 classes.

4.1. Datasets and Implementation Details

We evaluate LSGANs on three datasets: LSUN [32],

CIFAR-10 [15], and HWDB1.0 [17]. The implementation

of our proposed models is based on a public implementa-

tion of DCGANs1 using TensorFlow [1]. For LSUN, the

learning rate is set to 0.001. For CIFAR-10 and HWDB1.0,

the learning rate is set to 0.0002. Following DCGANs, β1

for Adam optimizer is set to 0.5. Our implementation is

available at https://github.com/xudonmao/LSGAN.

4.2. Qualitative Evaluation

We train LSGANs and DCGANs with the same network

architecture (Figure 3) and same resolution (112× 112) on

LSUN-bedroom dataset. The generated images by the two

methods are presented in Figure 4. Compared with the im-

ages generated by DCGANs, the texture detail (e.g., the

textures of beds) of the images generated by LSGANs is

more exquisite and the images generated by LSGANs looks

sharper.

We also train LSGANs on four other scene datasets in-

cluding church, dining room, kitchen, and conference room.

The results of LSGANs trained on these four scene datasets

are shown in Figure 5.

1https://github.com/carpedm20/DCGAN-tensorflow
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(a) LSGANs: without BN in G using Adam. (b) Regular GANs: without BN in G using Adam.

(c) LSGANs: without BN in G and D using RMSProp. (d) Regular GANs: without BN in G and D using RMSProp.

Figure 6. Comparison experiments by excluding batch normalization (BN).

4.3. Quantitative Evaluation

4.3.1 Inception Score on CIFAR-10

We train LSGANs and DCGANs with the same network ar-

chitecture on CIFAR-10 and use the models to randomly

generate 50, 000 images for calculating the inception scores

[29]. The evaluated inception scores of LSGANs and DC-

GANs are shown in Table 1. As we observe that the incep-

tion scores vary for different trained models, the reported

inception scores in Table 1 are averaged over 10 different

trained models for both LSGANs and DCGANs. For this

quantitative evaluation of inception score, LSGANs show

comparable performance to DCGANs.

Method Inception Score

DCGAN (reported in [10]) 6.16
DCGAN 6.22

LSGAN (ours) 6.47
Table 1. Inception scores on CIFAR-10.

4.3.2 Human Subjective Study

To further evaluate the performance of LSGANs, we con-

duct a human subjective study using the generated bedroom

images (112 × 112) from LSGANs and DCGANs with the

same network architectures. We randomly construct image

pairs, where one image is from LSGANs and the other one

is from DCGANs. We ask Amazon Mechanical Turk an-

notators to judge which image looks more realistic. With

4,000 votes totally, DCGANs get 43.6% votes and LSGANs

get 56.4% votes. LSGANs get 12.8% more votes than DC-

GANs.

4.4. Stability Comparison

As stated in Section 3.2.1, one benefit of LSGANs is the

improved stability. Here we present two comparison ex-

periments to compare the stability between LSGANs and

regular GANs.

One is to follow the comparison method in [2]. Based

on the network architecture presented in [25], two architec-

tures are designed to compare the stability. The first one is

to exclude the batch normalization for the generator (BNG

for short), and the second one is to exclude the batch nor-

malization for both the generator and discriminator (BNGD

for short). As pointed out in [2], the selection of optimizer

is critical to the model performance. Thus we evaluate the

two architectures with two optimizers, Adam [13] and RM-

SProp [31]. In summary, we have four training settings: (1)

BNG with Adam, (2) BNG with RMSProp, (3) BNGD with

Adam, and (4) BNGD with RMSProp.

We train the above models on the LSUN-bedroom

dataset using regular GANs and LSGANs separately and

have the following four major observations. First, for BNG

with Adam, there is a chance for LSGANs to generate rela-

tively good quality images. We test 10 times, and 5 of those

succeeds to generate relatively good quality images. But for

regular GANs, we never observe successful learning. Reg-

ular GANs suffer from a severe degree of mode collapse.

The generated images by LSGANs and regular GANs are

shown in Figure 6. Second, for BNGD with RMSProp, as

Figure 6 shows, LSGANs generate higher quality images

than regular GANs which have a slight degree of mode col-

lapse. Third, LSGANs and regular GANs have similar per-

formances for BNG with RMSProp and BNGD with Adam.

Specifically, for BNG with RMSProp, both LSGANs and

regular GANs are able to generate relatively good images.

For BNGD with Adam, both have a slight degree of mode

collapse. Last, RMSProp performs more stable than Adam

since regular GANs learn to generate relatively good images

for BNG with RMSProp, but fail to learn with Adam.

Another experiment is to evaluate on a Gaussian mixture

distribution dataset, which is designed in literature [19].

We train LSGANs and regular GANs on a 2D mixture of
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Step 0 Step 5k Step 15k Step 25k Step 40k Target

Regular 

GANs

LSGANs

Figure 7. Dynamic results of Gaussian kernel estimation for LSGANs and regular GANs. The final column shows the real data distribution.

Real

Generated

Real

Generated

Figure 8. Generated images of handwritten Chinese characters by LSGANs. For row 1 and row 2, the images in the same column belong

to the same class of characters. Row 3 and row 4 are also with this condition. The generated characters are readable.

8 Gaussian dataset using a simple network architecture,

where both the generator and the discriminator contain three

fully-connected layers. Figure 7 shows the dynamic results

of Gaussian kernel density estimation. We can see that reg-

ular GANs suffer from mode collapse starting at step 15k.

They generate samples around a single valid mode of the

data distribution. But LSGANs learn the Gaussian mixture

distribution successfully.

4.4.1 Suggestions in Practice

During the learning processes of LSGANs for tasks which

are difficult to train, we observe that LSGANs learn to gen-

erate good quality images successfully at the first several

training epochs, but sometimes suffer from mode collapse

at last. Although LSGANs may suffer from mode collapse

at last, we can still select a good model in the middle of the

training process. We also observe that the quality of gener-

ated images by LSGANs may shift between good and bad

during the training process. Based on the above two obser-

vations, we suggest to keep a record of generated images at

every thousand or hundred iterations and select the model

manually by checking the image quality.

4.5. Handwritten Chinese Characters

We also train a conditional LSGAN model (described

in Section 3.3) on a handwritten Chinese character dataset

which contains 3740 classes. LSGANs learn to generate

readable Chinese characters successfully, and some ran-

domly selected characters are shown in Figure 8. We have

two major observations from Figure 8. First, the generated

characters by LSGANs are readable. Second, we can get the

correct labels of the generated images through label vectors,

which can be used for further applications such as data aug-

mentation.

5. Conclusions and Future Work

In this paper, we have proposed the Least Squares Gen-

erative Adversarial Networks (LSGANs). The experimen-

tal results show that LSGANs generate higher quality im-

ages than regular GANs. Two comparison experiments for

evaluating the stability are also conducted and the results

demonstrate that LSGANs perform more stable than regu-

lar GANs. Furthermore, we propose a conditional LSGAN

model for Chinese character generation, which is evalu-

ated on a handwritten Chinese character dataset with 3740
classes. Based on the present findings, we hope to extend

LSGANs to more complex datasets such as ImageNet in the

future. Instead of pulling the generated samples toward the

decision boundary, designing a method to pull the gener-

ated samples toward the real data directly is also worth our

further investigation.
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