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Abstract

In many computer vision tasks, we expect a particular

behavior of the output with respect to rotations of the input

image. If this relationship is explicitly encoded, instead of

treated as any other variation, the complexity of the prob-

lem is decreased, leading to a reduction in the size of the

required model.

In this paper, we propose the Rotation Equivariant Vector

Field Networks (RotEqNet), a Convolutional Neural Net-

work (CNN) architecture encoding rotation equivariance,

invariance and covariance. Each convolutional filter is ap-

plied at multiple orientations and returns a vector field rep-

resenting magnitude and angle of the highest scoring ori-

entation at every spatial location. We develop a modified

convolution operator relying on this representation to ob-

tain deep architectures. We test RotEqNet on several prob-

lems requiring different responses with respect to the in-

puts’ rotation: image classification, biomedical image seg-

mentation, orientation estimation and patch matching. In

all cases, we show that RotEqNet offers extremely compact

models in terms of number of parameters and provides re-

sults in line to those of networks orders of magnitude larger.

1. Introduction

In many real life problems, such as overhead (aerial or

satellite) or biomedical image analysis, there are no domi-

nant up-down or left-right relationships. For example, when

detecting cars in aerial images, the object’s absolute orienta-

tion is not a discriminant feature. If the absolute orientation

of the image is changed, e.g. by following a different flight-

path, we would expect the car detector to score the exact

same values over the same cars, just in their new position on

the rotated image, independently from their new orientation

along the image axes. In this case, we say that the problem

is rotation equivariant: rotating the input is expected to re-

sult in the same rotation in the output. On the other hand,

if we were confronted with a classification setting in which

we are only interested in the presence or absence of cars in
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Figure 1. Desirable behaviors with respect to rotation of the inputs:

(left) equivariance in segmentation; (center) invariance in classifi-

cation; (right) covariance in absolute orientation estimation. g45 is

an operator that rotates the input image by 45
◦.

the whole scene, the classification score should remain the

same, no matter the absolute orientation of the input scene.

In this case the problem is rotation invariant. The more gen-

eral case would be rotation covariance, in which the output

changes as a function of the rotation of the input, with some

predefined behavior. Taking again the cars example, a ro-

tation covariant problem would be to retrieve the absolute

orientation of cars with respect to longitude and latitude: in

this case, a rotation of the image should produce a change

of the predicted angle.

Throughout this article we will make use of the terms

equivariance, invariance and covariance of a function f(·)
with respect to a transformation g(·) in the following sense:

- equivariance: f(g(·)) = g(f(·)),

- invariance: f(g(·)) = f(·),

- covariance: f(g(·)) = g′(f(·)),

where g′(·) is a second transformation, which is itself a

function of g(·). With the above definitions, equivariance

and invariance are special cases of covariance. We illustrate

these properties in Fig. 1.

In this paper, we propose a CNN architecture that natu-

rally encodes these three properties: RotEqNet. In the fol-

lowing, we will recall how CNNs achieve translation invari-

ance, before discussing our own proposition.

1.1. Dealing with translations in CNNs

The success of CNNs is partly due to the translation

equivariant nature of the convolution operation. The con-

volution of an image x ∈ R
M×N×d with a filter w ∈
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Figure 2. Example of the first two layers of RotEqNet. Each layer learns only three canonical filters (red squares) and replicates them

across six orientations. The output of the first block are three vector field maps, which are further convolved by vector field filters in the

second block (OP: orientation pooling; SP: spatial pooling).

R
m×n×d, written y = w ∗ x, is obtained by applying the

same scalar product operation over all overlapping m × n
windows (unit stride) on x. If x undergoes an integer trans-

lation in the horizontal and vertical directions by (p, q) pix-

els, the same pixel neighborhoods in x will exist in the

translated x, but again translated by (p, q) pixels. There-

fore, any operation involving fixed neighborhoods such as

the convolution is translation equivariant.

A crucial consequence of learning convolution weights

is a drastic reduction in the number of parameters. Without

the translation equivariance assumption, each local window

would have a different set of weights. Forcing weights to be

shared across locations, known as weight tying, reduces the

number of learnable parameters proportionally to the num-

ber of pixels in the image and hardcodes translation equiv-

ariance within the model. This fact is vital for the applica-

bility of deep neural networks to images [18].

1.2. Incorporating rotation equivariance in CNNs

RotEqNet shows similar advantageous characteristics

when dealing with rotations: by encoding equivariance, we

are able to strongly reduce the number of parameters while

keeping similar or better accuracy across different tasks.

However, applying the exact same reasoning of weight

tying for rotations is not straightforward. To follow the

same logic, one should apply R rotated versions of each

convolutional filter, resulting in R feature maps per filter.

The dimensionality of subsequent filters would therefore in-

crease with R, strongly increasing model size and require-

ments for runtime memory usage.

One way of reducing the size of the model while keep-

ing rotation equivariance would be to propagate only the

maximum value occurring across R feature maps. However,

deeper layers would have no information about the orienta-

tion of features at previous layers.

We propose a trade-off between these two approaches by

keeping the maximum value across the R feature maps, but

in the form of a 2D vector field that captures its magnitude

and orientation and propagates it through all the layers of

the network.

2. Related work

Two families of approaches explicitly account for rota-

tion invariance or equivariance: 1) those that transform the

representation (image or feature maps) and 2) those that ro-

tate the filters. RotEqNet belongs to the latter.

1) Rotating the inputs: Jaderberg et al. [14] propose the

Spatial Transformer layer, which learns how to crop and

transform a region of the image (or a feature map) before

passing it to the next layer. This transforms relevant regions

into a canonical form, improving the learning process by

reducing geometrical appearance variations in subsequent

layers. TI-pooling [16] inputs several rotated versions of

a same image to the same CNN and then performs pool-

ing across the different feature vectors at the first fully con-

nected layer. Such scheme allows another subsequent fully

connected layer to choose among rotated inputs to perform

classification. Cheng et al. [5] employ in every minibatch

several rotated versions of the input images. Their represen-

tations after the first fully connected layer are then encour-

aged to be similar, forcing the CNN to learn rotation invari-

ance. Henriques et al. [11] warp the images such that the

translation equivariance inherent to convolutions is trans-

formed into rotation and scale equivariance.

On the one hand, these methods have the advantage of

exploiting conventional CNN implementations, since they

only act on data representations. On the other hand, they

can only consider global transformations of the input im-

ages. While this is well suited for tasks such as image
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classification, it limits their applicability to other problems

(e.g. semantic segmentation), where the local relative ori-

entation of certain objects with respect to surroundings is

what matters. Instead, RotEqNet is based on specific CNN

building blocks designed to deal with local orientation in-

formation. Therefore, RotEqNet can approach diverse tasks

such as classification, fully convolutional semantic segmen-

tation, detection and regression.

It is worth mentioning that standard data augmentation

strategies belong to this first family. They rely on random

rotations and flips of the training samples [24]: given abun-

dant training samples and enough model capacity, a CNN

might learn that different orientations should score the same

by learning equivalent filters at different orientations [19].

Unlike this, RotEqNet is well suited for problems with lim-

ited training samples that can profit from reduced model

sizes, since the behavior with respect to rotations is hard-

coded and it does not need to be learned.

2) Rotating the filters: Gens and Domingos [10] tackle

the problem of the exploding dimensionality (discussed in

Sec. 1.2) by applying learnable pooling operations and sam-

pling the symmetry space at each layer. This way, they

avoid applying the filters exhaustively across the (high di-

mensional) feature maps by selectively sampling few rota-

tions. By doing so, only the least important information is

lost from layer to layer. Cohen et al. [6, 7] use a smaller

symmetry group, composed of a flipping and four 90◦ ro-

tations and perform pooling within the group. They apply

it only in deeper layers, since they found that pooling in

the early layers discards important information and harms

the performance. Instead of explicitly defining a symme-

try group, Ngiam et al. [21] pool across several untied fil-

ters, thus letting the network learn the type of invariance.

Sifre et al. [23] use hand crafted wavelets that are separable

in the roto-translational space, allowing for more efficient

computations. Another approach to avoid the dimensional-

ity explosion is to limit the depth of the network: Sohn et

al. [26] and Kivinen et al. [15] propose such a scheme with

Restricted Boltzmann Machines (RBM), while Marcos et

al. [20] consider supervised CNNs consisting of a single

convolutional layer.

These works find a compromise between the compu-

tational resources required and the amount of orientation

information kept throughout the layers, by either keeping

the model shallow or accounting for a limited amount of

orientations. With RotEqNet, we avoid such compromise

by pooling multiple orientations and passing forward both

the maximum magnitude and the orientation at which it

occurred. This modification allows to build deep rotation

equivariant architectures, in which deeper layers are aware

of the dominant orientations. At the same time, the dimen-

sionality of feature maps and filters is kept low by discard-

ing information about non-maximum orientations, thus re-

ducing memory requirements.

The most similar approaches to RotEqNet are the re-

cently proposed Harmonic Networks (H-Nets) [29] and Ori-

ented Response Networks (ORN) [31], both of which use

an enriched feature map explicitly capturing the underlying

orientations. They do so by using either complex circular

harmonics (H-Nets) or the full vector of oriented responses

(ORN). H-Nets offer a very compact feature map, but are

limited to learning filters that are a combination of circular

harmonic wavelets. On the other hand, ORN allows to learn

arbitrary filters, but relies on a much less compact represen-

tation of the feature maps, leading to heavier models both

in terms of size and memory requirements. RotEqNet pro-

vides the best of both worlds: the compactness of the for-

mer with the flexibility of the latter. These properties make

it particularly suitable to address problems characterized by

limited training samples, as we will see in the experiments.

3. Rotation equivariant vector field networks

We focus on achieving rotation equivariance by perform-

ing convolutions with several rotated instances of the same

canonical filter (see Fig. 2). The canonical filter w is ro-

tated at R different evenly spaced orientations.In the exper-

iments (Sec. 4) we deal with problems requiring either full

invariance, equivariance or covariance, so we use the inter-

val α = [0◦, 360◦]. However, this interval can be adapted

to a known range of tilts. The output of the filter w at a spe-

cific location consists of the magnitude of the maximal acti-

vation across the orientations and the corresponding angle.

If we convert this polar representation into Cartesian coor-

dinates, each filter w produces a vector field feature map

z ∈ R
H×W×2, where the output of each location consists

of two values [u, v] ∈ R
2 implicitly encoding the maximal

activation in both magnitude and direction. Since the fea-

ture maps have become vector fields, from this moment on

the filters must also be vector fields, as seen in the right part

of Fig. 2.

The advantage of representing z in Cartesian coordinates

is that the horizontal and vertical components [u, v] are or-

thogonal, and thus a convolution of the two vector fields

can be computed on each component independently using

standard convolutions (see Eq. (5)).

3.1. RotEqNet building blocks

RotEqNet requires specific building blocks to handle

vectors fields as inputs and/or outputs (Fig. 2). In the fol-

lowing, we present our reformulation of traditional CNN

blocks to account for both vector field activations and fil-

ters. The implementation1 is based on the MatConvNet [27]

toolbox2.

1Will be made available at http://github.com/di-marcos/RotEqNet
2http://www.vlfeat.org/matconvnet
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3.1.1 Rotating convolution (RotConv)

Given an input image with m/2 zero-padding x ∈

R
H+m/2×W+m/2×d, we apply the filter w ∈ R

m×m×d at

R orientations, corresponding to the angles:

αr =
360

R
r ∀r = 1, 2 . . . R. (1)

Each one of these rotated versions of the canonical filters

(highlighted by red squares in Fig. 2) is computed by re-

sampling w with bilinear interpolation after rotation of αr

degrees around the filter’s center.

w
r = gαr

(w), (2)

where gα is the α degrees rotation operator. Interpolation is

always required unless only rotations of multiples of 90◦ are

considered. In practice, this means that the rotation equiv-

ariance will only be approximate.

Since the rotation can force weights near the corners

of the filter to be relocated outside of its spatial support,

only the weights within a circle of diameter m pixels are

used to compute the convolutions. The output tensor y ∈

R
H×W×R consists of R feature maps computed as:

y
(r) = (x ∗wr) ∀r = 1, 2 . . . R, (3)

where (∗) is the convolution operator. The tensor y encodes

the roto-translation output space such that rotation in the

input corresponds to a translation across the feature maps.

Note that only the canonical filter w is actually stored in the

model. During backpropagation, gradients corresponding

to each rotated filter ∇wr are aligned back to the canonical

form and added:

∇w =
∑

r

g−αr
(∇w

r). (4)

This block can be applied on conventional CNN feature

maps (left side of Fig. 2) or on vector field feature maps

(right side of Fig. 2). In the second case it is computed on

each component independently and the resulting 3D tensors

added:

(z ∗w) = (zu ∗wu) + (zv ∗wv), (5)

where subscripts u and v denote the horizontal and vertical

components.

It is important to note that the image rotation operator

gα requires an additional step when w ∈ R
m×m×2 is a 2D

vector field. The components of wr = gαr
(w) have to be

computed as:

w
r
u = cos(αr)gαr

(wu)− sin(αr)gαr
(wv) (6)

w
r
v = cos(αr)gαr

(wv) + sin(αr)gαr
(wu) (7)

3.1.2 Orientation pooling (OP):

Given the output 3D tensor y, the role of the orientation

pooling is to convert it to a 2D vector field z ∈ R
H×W×2.

This avoids the exploding dimensionality problem by only

keeping information about the maximally activating orien-

tation of w. First, we extract a 2D map of the largest ac-

tivation magnitudes, ρ ∈ R
H×W , and their corresponding

orientations, θ ∈ R
H×W . Specifically, for activations lo-

cated at [i, j]:

ρ[i, j] =max
r

y[i, j, r], (8)

θ[i, j] =
360

R
argmaxr y[i, j, r]. (9)

This can be treated as a polar representation of a 2D vec-

tor field as long as ρ[i, j] ≥ 0 ∀i, j, a condition that is

met when using any function on y that returns non-negative

values prior to the OP. We employ the common Recti-

fied Linear Unit (ReLu) operation, defined as ReLu(x) =
max(x, 0), to ρ, as it provides non-saturating, sparse non-

linear activations offering stable training. Then, this repre-

sentation can be transformed into Cartesian coordinates as:

u = ReLu(ρ) cos(θ) (10)

v = ReLu(ρ) sin(θ) (11)

with u,v ∈ R
H×W . The 2D vector field z is then built as:

z =

[

1

0

]

u+

[

0

1

]

v (12)

3.1.3 Spatial pooling (SP) for vector fields

Max-pooling is commonly used in CNNs to obtain some

invariance to small deformations and reducing the size of

the feature maps. This is done by downsampling the input

feature map x ∈ R
M×N×d to xp ∈ R

M
p
×

N
p
×d. This oper-

ation is performed by taking the maximum value contained

in each one of the C non-overlapping p × p regions of x,

indexed by c. It is computed as xp[c] = maxi∈c x[i], which

can be expressed as:

yp[c] = y[j], where j = argmaxi∈c y[i]. (13)

This allows us to define a max-pooling for vector fields as:

zp[c] = z[j], where j = argmaxi∈c ρ[i], (14)

where ρ is a standard scalar map containing the magnitudes

of the vectors in z.

3.1.4 Batch normalization (BN) for vector fields

BN [13] normalizes every feature map in a mini-batch to

zero mean and unit standard deviation. It improves conver-

gence by training with stochastic gradient descent.
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In our case, since working with vector fields of magni-

tude and orientation of activations, BN should only normal-

ize magnitudes of the vectors to unit standard deviation. It

would not make sense to normalize the angles, since their

values are already bounded and changing their distribution

would alter important information about relative and global

orientations. Given a vector field feature map z and its map

of magnitudes ρ, we compute batch normalization as:

ẑ =
z

√

var(ρ)
. (15)

3.2. Computational considerations

Although RotEqNet allows for smaller models, they

might require a higher count of convolutions than a com-

parable standard CNN. For instance, with the architecture

used for MNIST-rot in Sec. 4, a standard CNN requires

4× more filters per layer to saturate performance, com-

pared to RotEqNet. At the same time, RotEqNet requires

R/4 = 4.25× (for R = 17) more convolutions. This re-

sults in RotEqNet saving 10× in model memory, 2× in data

memory at a price of requiring just 1.5× more comput-

ing time. This is because, although the convolution count

is higher, the number of feature maps per convolution is

smaller. Less feature maps mean smaller convolution filters

and the possibility to use larger mini batches, both factors

contributing to a faster training.

4. Experiments

We explore the performance of RotEqNet on datasets

where the orientation of the patterns of interest is arbitrary.

This is very often the case in biomedical and abovehead

imaging, since the orientation of the camera is usually not

correlated with the patterns of interest. We apply RotEqNet

to problems from these two fields, as well to MNIST-rot, a

randomly rotated handwritten digit recognition benchmark.

We also perform a study on the trade-off between invari-

ance and accuracy in a synthetic patch matching problem.

These case studies allow us to analyze the performance of

RotEqNet in problems requiring equivariance, covariance

and invariance to rotations and to analyze the effectiveness

of RotEqNet to perform accurately with very small model

architectures and limited training samples.

4.1. Invariance: MNIST­rot

MNIST-rot [17] is a variant of the original MNIST digit

recognition dataset, where a random rotation between 0◦

and 360◦ is applied to each 28×28 digit image. The training

set is also considerably smaller than the standard MNIST,

with 12k samples, from which 10k are used for training

and 2k for validation. The test set consists of 50k samples.

Since we aim at predicting the correct label independently

from the rotation, this problem requires rotation invariance.

Type Size

Input 28× 28

RotConv, 9× 9, 6 filt.

2× 2 SP 14× 14× 6

RotConv, 9× 9× 6, 16 filt.

2× 2 SP 7× 7× 16

RotConv 9× 9× 16, 32 filt.

2× 2 SP 1× 1× 32

Fully 1× 1× 32, 128 filt.

connected 1× 1× 128

FC, Softmax 1× 1× 128, 10 filt.

Output 1× 1× 10

Table 1. Network architecture used on the MNIST-rot dataset.

Layer parameters are in white and variables are shaded in gray.

Model: We test four CNN models with the same archi-

tecture, but different number of filters per layer. The largest

model we used is shown in Table 1 and involves 100k pa-

rameters. The models are trained for 90 epochs, starting

with a learning rate of 0.1 and reducing it gradually to

0.001. The weight decay is kept constant at 0.01. We use

a dropout rate of 0.7 in the fully connected layer and batch

normalization before every convolutional layer. The num-

ber of orientations is set to R = 17.

Test time data augmentation: We observe an impor-

tant contribution of data augmentation at test time, a tech-

nique often used with approximately invariant or equivari-

ant CNNs [9, 12]. In particular, we input to the network

several rotated versions of the same image using fixed an-

gles between 0◦ and 90◦. Rotation-based data augmentation

at test time might seem counter-intuitive in a rotation invari-

ant model, but the different rotations coupled to resampling

of images and filters (cf. Sec. 3.1.1) will produce slightly

different activations. The final prediction is given by the

average of such scores. We report results obtained with and

without this type of augmentation.

Comparison to data augmented training: In order to

disentangle the contributions of data augmentation and

RotEqNet, we trained the RotEqNet model and a standard

CNN with the same architecture and 10× more parameters.

In Tab. 4.1, we show the results for these models trained on

both MNIST-rot and 10k digits from the original MNIST,

with and without data augmentation. We observe how both

methods complement each other.

Method Error rate (in %)

SVM [17] 10.38±0.27

TIRBM [26] 4.2

H-Net [29] 1.69

ORN [31] 1.54

TI-pooling [16] 1.2

RotEqNet (Ours) 1.09

RotEqNet, only scalar field 2.01

RotEqNet, test-time augmentation 1.01

Table 2. Error rate on the MNIST-rot dataset trained on the train-

val subset.
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Train on MNIST Train on MNIST-rot

No augm. Augm. No augm. Augm.

CNN 57% 2.3% 4.9% 2.2%
RotEqNet 20% 1.1% 1.4% 1.1%

Table 3. Results on MNIST and MNIST-rot using a standard CNN

or RotEqNet, with and without data augmentation.

10
4

10
5

10
6

10
7

Number of learnable parameters

1

2

3

4

T
e

s
t

e
rr

o
r,

 %

TI Pooling

TI Pooling (with data augmentation)

RotEqNet (ours)

RotEqNet (with data augmentation)

Figure 3. Performance of RotEqNet and TI-Pooling on MNIST-rot

with respect to the number of parameters.

Results: We first studied the behavior of RotEqNet with

respect to the total number of parameters and compared it

to the state-of-the-art TI-pooling [16]. Figure 3 shows the

results for both methods trained on the training set with dif-

ferent model sizes. The latter was achieved by varying the

number of filters per layer, keeping the same architecture.

RotEqNet requires approximately two orders of magnitude

less parameters to obtain the same accuracy as TI-Pooling.

We report the test error in Table 2. RotEqNet obtains

an error of 1.09%, a small improvement with respect to the

state-of-the-art TI-pooling [16], but with almost 100× less

parameters. Test-time data augmentation further reduces

the error to 1.01%, thus improving significantly over TI-

Pooling and over the more recent H-Net [29] and ORN [31].

4.2. Equivariance: ISBI 2012 Challenge

This benchmark [1] involves segmentation of neuronal

structures in electron microscope (EM) stacks [3]. In this

problem we need to precisely locate the neuron membrane

Type Size

Input 512× 512

RotConv, 9× 9, N filt.

OP, 2× 2 SP 256× 256×N × 2

RotConv, 9× 9, 2N filt.

OP, 2× 2 SP 128× 128×2N×2

RotConv 9× 9×2N×2, 3N filt.

OP, 2× 2 SP 64× 64×3N×2

RotConv, OP 9× 9×3N×2, 4N filt.

Upsample and stack 512× 512× 10N

RotConv fully 1× 1× 10N × 2, 5N filt.

connected 512× 512× 5N

RotConv 9× 9×5N×2, 4N filt.

OP 512× 512× 4N

Fully 1× 1×4N×2, 8N filt.

connected 512× 512× 8N

FC, Normalize 1× 1× 8N , 3 filt.

Output 512× 512× 3

Table 4. Network architecture used with ISBI 2012 challenge data.

Layer parameters are in white and variables are shaded in gray.

boundaries. Therefore, a rotation of the inputs should lead

to the same rotation in the output, making the ISBI 2012

problem a good candidate to study rotation equivariance.

The data consist of two EM stacks of drosophila neu-

rons, each composed of 30 images of size 512 × 512 pix-

els (Fig. 4a). One stack is used for training and the other

for testing. The ground truth for the training stack consists

of densely annotated binary images (Fig. 4b). The ground

truth for the test stack is private and the results are to be

submitted to an evaluation server 3.

(a) (b) (c) (d)
Figure 4. Example validation image (#30) of the ISBI 2012 chal-

lenge. (a) Image (190 × 130 pixels). (b) Membrane ground

truth. (c) The pre-processed 3-class ground truth: black is non-

membrane, yellow is membrane center, red is membrane border

and blue is non-class. (d) Probability map produced by RotEqNet.

Model: We transform the original binary problem into a

three class segmentation problem: 1) non-membrane, 2)

central membrane pixels and 3) external membrane pixels.

Pixels in the membrane but not belonging to either 2) or

3) are considered to be unlabeled (Fig. 4c). This way, we

can assign a higher penalization to the non-membrane pix-

els next to the membrane and a lower one to those in the

middle of the cells. The central membrane scores are used

as the final binary prediction (Fig. 4d).

Since we are dealing with a dense prediction problem

with spatial autocorrelation at different resolution levels, we

apply three RotConv blocks with spatial pooling. We then

upsample the output of each block to the size of the original

image, before concatenating them and applying two more

RotConv blocks. Table 4 shows the architecture. The pa-

rameter N is used to change the size of the model. We

evaluated the results with N = 2 and with an ensemble of

three models, with N = [1, 2, 3].

Comparison to data augmented training: we evaluated

the RotEqNet model (N = 2) and an equivalent stan-

dard CNN with 10× more parameters on 5 held out vali-

dation images. RotEqNet seems not to profit as much from

data augmentation as its standard CNN counterpart, but im-

proves the CNN solution in all the cases considered, as il-

lustrated in Table 4.2.

3http://brainiac2.mit.edu/isbi challenge/
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No augm. Augm.

CNN 0.9232 0.9572

RotEqNet 0.9726 0.9790

Table 5. ISBI results on the validations set using a standard CNN

or RotEqNet, with and without data augmentation.

Method Rand. Thin Inf. Thin # params.

CUMedVision [4] 0.9768 0.9886 -

IAL MC/LMC [2] 0.9826 0.9894 -

DIVE [9] 0.9685 0.9858 5.7M

PolyMtl [8] 0.9689 0.9861 11M

U-Net [22] 0.9728 0.9866 33M

RotEqNet (N = 2) 0.9599 0.9806 30k

RotEqNet, 3 models 0.9712 0.9865 100k

Table 6. Scores on the held out test set of the ISBI 2012 Challenge.

Results: A detailed explanation on the evaluation metrics

used in the challenge can be found on the ISBI 2012 chal-

lenge website3, as well as in [1]. The winners of the chal-

lenge were Chen et al. [4], although Beier et al. [2] have the

highest scores at the time of writing. These two works rely

on complex post-processing pipeline. Our rotation equiv-

ariant prediction provides results comparable to other state-

of-the-art methods only relying on the raw CNN softmax

output [8, 9, 22] (see Table 6).

4.3. Covariance: car orientation estimation

Estimating car orientations from above-head imagery re-

quires rotation covariant models. We use the dataset pro-

vided by the authors of [11], which is based on Google

Map images. It is composed by 15 tiles, where cars’ bound-

ing boxes and corresponding orientations come from man-

ual annotation. We implement our approach in similarly

to [11]. We crop a 48×48 square patch around every car,

based on the bounding box center point. We then use these

crops for both training and testing of the model. As in [11],

we use the cars in the first 10 images (409 cars) for training

and those in the last 5 images (209 cars) for testing. We

did not use the cars whose center was nearer than 38 pixels

from the image border, in order to avoid artifacts.

Type Size

Input 48× 48

RotConv 11× 11, 3 filt.

OP 38× 38× 4× 2

RotConv 11× 11× 3× 2, 6 filt.

OP 28× 28× 6× 2

RotConv 11× 11× 6× 2, 3 filt.

OP, 2× 2 SP 9× 9× 3× 2

RotConv fully 9× 9× 3× 2, 1 filt.

connected (FC1) 1× 1× 21

FC2, Hardcoded 1× 1× 21, 2 filt.

Output 1× 1× 2

Table 7. Architecture of the car orientation estimation net-

work.Parameters are in white and variables are shaded in gray.
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Figure 5. Distribution of the errors in the test set (top). Exam-

ples (bottom) of correctly and incorrectly identified orientations.

Ground truth arrows in green (thin) and predictions in red (thick).

Model: We want to learn a covariant function with re-

spect to rotations, since a rotation by ∆α◦ in the input im-

age results in a change by ∆α◦ in the predicted angle. In

particular, we train on sine and cosine of α◦, since they

are continuous with respect to ∆α◦. The network’s archi-

tecture is illustrated in Table 7. For the output we use a

tanh non-linearity, followed by a normalization of the out-

put vector to unit-norm. The first fully connected layer

(FC1) is a RotConv block with a single filter (R = 21)

not followed by by an Orientation Pooling, meaning that

the subsequent feature vector has 21 dimensions instead of

just one. We can expect this vector to undergo a circular

shift when the input image is subject to a rotation. We

hardcode the two mappings of the following layer (FC2)

to [sin(360/R), sin(2 · 360/R), . . . sin(R · 360/R)] and

[cos(360/R), cos(2 · 360/R), . . . cos(R · 360/R)]. This en-

sures that there will be no preferred orientations inherited

from a biased training set. The weight decay and learning

rate are 10−2 and 5 · 10−3 respectively, for the 80 epochs.

All the filters were initialized from a normal distribution

with zero mean and σ = 10−3. The final models corre-

spond to the average of the weights of the last 30 epochs.

Results: Table 8 reports the average test error. The use of

RotEqNet substantially improves the results, outperforming

by more than 20% the previous state-of-the-art method [11].

In Fig. 5, we show the error distribution in the test set for

the hybrid model. Note how most samples, 82.7%, are pre-

dicted with less than 15◦ of orientation error, while most of

the contribution to the total error comes from the 6.7% of

samples with errors larger than 150◦, in which the front of

the car has been mistaken with the rear.

Method Avg. error (◦) # params

CNN [11] 28.87 27k

Warped-CNN [11] 26.44 27k

RotEqNet (Ours) 24.07 5k

RotEqNet (Ours) 20.46 9k

Table 8. Mean error in the prediction of car orientations.
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Sensitivity to R: In order to study the sensitivity of

RotEqNet to the number of angles R, we trained the model

using R = 21 and tested it for different values (see Fig-

ure 6). We observed relatively small changes in the test

error for R > 17.
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Figure 6. Error (left y-axis, blue) vs computational time (right y-

axis, red) for the number of filters considered. The vertical dashed

line denotes R = 17.

4.4. Invariance 2: robustness in patch matching

Patch matching is widely used in many image process-

ing and computer vision problems, such as registration, 3D

reconstruction and inpainting. The aim is to find matching

pairs of patches (e.g. the same features in the two different

images of the same object). In this setting, the differences in

orientation are often considered to be a nuisance. Although

handcrafted features such as SIFT are still widely used as

baselines to measure similarity, recent works have shown

that learning ad-hoc features with siamese CNNs [25, 30]

can perform substantially better.In the following, we apply

RotEqNet to analyze how this problem can benefit from a

tunable amount of rotation invariance.

Depending on the problem at hand, one might have a

prior on how much rotation invariance is required. Al-

though CNN-based descriptors are more robust to relative

rotations between matching pairs than SIFT, they still tend

to perform poorly for large angular differences [25].

To showcase how RotEqNet allows to tune the amount of

rotation invariance, we trained a siamese network with three

RotConv blocks, with 3, 6 and 32 filters of size 9×9 respec-

tively, totaling 40k parameters. The last fully connected

block provides 32 scalar features. We trained it on 20k sam-

ples from the Notredame dataset [28] with a distance-based

objective function [25, 30].

After training, the number of bins in the last Orientation

Pooling layer can be modified, thus yielding multiple de-

scriptors per sample. For instance, if the number of bins is

set to 4, one 32-dimensional descriptor will be produced for

each quadrant, thus resulting in a 128-dimensional descrip-

tor for the patch. We analyze robustness in patch matching

by increasing the rotation of the patches and the number of

bins, and compare our results to those obtained by SIFT and

the features from a pre-trained VGG network [25]. We use

patches extracted from an urban photograph that are then

paired to a shifted (by one pixel) and rotated version of

itself. Results in Fig.7 show that RotEqNet with a single

bin is much more robust to rotations than VGG and SIFT

descriptors, even when the main orientation assignment is

used. As a trade-off, it performs slightly worse for small ro-

tations. However, by increasing the number of bins we can

invert this tendency and improve the matching accuracy for

small angles (and trade off accuracy on large rotations): us-

ing two bins (i.e. a 64-dimensional descriptor), we clearly

outperform the baselines on small angles and still have 60%

of correct matches for rotations around 45◦ (compared to

less than 10% for SIFT and VGG).
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Figure 7. Matching accuracy vs. rotation applied to one of the

elements in each matching pair in a synthetic dataset. RotEqNet

allows to trade-off some accuracy at small rotations for more ro-

bustness by changing the number of bins in the last Orientation

Pooling layer.

5. Limitations and future work

Forcing the Orientation Pooling block to choose the most

activating orientation could result in exacerbating noise

when there is no main orientation on either the input or the

filter. This is because the arbitrarily chosen orientation can

have a big impact on the output, and how it will interact with

filters in the following layer, but no meaning. This problem

is amplified by the use of scalar products between the vector

elements of the filter and its input, which assumes that the

orientation of these vectors is relevant. This issue could be

improved by using a custom similarity metric between vec-

tor elements such that symmetries in the filters or the input

are taken into account.

6. Conclusion

We have presented a new way of hard-coding into CNNs

predefined behaviors with respect to rotations. This is

achieved by applying each filter at different orientations and

extracting a vector field feature map, encoding the maxi-

mum activation in terms of magnitude and angle.

Experiments on classification, segmentation, orientation

estimation and matching show the suitability of this ap-

proach for solving a wide variety of problems that are in-

herently rotation equivariant, invariant or covariant. These

results suggest that taking into account only the dominant

orientations is sufficient to tackle successfully a range of

problems.
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