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Abstract

This paper proposes a network architecture to perform

variable length semantic video generation using captions.

We adopt a new perspective towards video generation where

we allow the captions to be combined with the long-term

and short-term dependencies between video frames and

thus generate a video in an incremental manner. Our ex-

periments demonstrate our network architecture’s ability

to distinguish between objects, actions and interactions in

a video and combine them to generate videos for unseen

captions. The network also exhibits the capability to per-

form spatio-temporal style transfer when asked to gener-

ate videos for a sequence of captions. We also show that

the network’s ability to learn a latent representation allows

it generate videos in an unsupervised manner and perform

other tasks such as action recognition.

1. Introduction

What does the mention of a video evoke in a listener’s

mind? A long sequence of images (frames) with multiple

changing scenes which are temporally and spatially linked

to each other. Making a machine generate such an entity is a

highly involved task as it requires the machine to learn how

to coordinate between the long-term and short-term correla-

tions existing between the various elements of a video. This

is the primary motivation behind our work where we take

the first steps towards semantic video generation with cap-

tions generating variable length videos one frame at a time.

There have been efforts in the recent past which attempt

to perform unsupervised video generation [26, 16] in gen-

eral, without any specific conditioning on captions. How-

ever, from an application perspective, it may not be very

useful as there doesn’t exist any semantic control over what

will be generated at run time. In this work, we propose an

approach that attempts to provide this control and stream-

lines video generation by using captions.

Since a video can be arbitrarily long, generation of such

videos necessitates a step-by-step generation mechanism.

∗Equal Contribution

Therefore, our model approaches video generation itera-

tively by creating one frame at a time, and conditioning the

generation of the subsequent frames by the frames gener-

ated so far. Also, every frame is itself an amalgamation of

several objects moving and interacting with each other. In

order to generate such frames, we follow a recurrent atten-

tive approach similar to [3], which focuses on one part of

the frame at each time step for generation, and completes

the frame generation over multiple time steps. By itera-

tively generating the frame over a number of time-steps

in response to a given caption, our network adds caption-

driven semantics to the generated video. A key advantage

of following such an approach is the possibility to generate

videos with multiple captions and thus change the contents

of the video midway according to the new caption.

In order to achieve the aforementioned objectives, the

proposed network is required to not only account for the lo-

cal correlations between any two consecutively generated

frames but also has to ensure that the long-term spatio-

temporal nature of the video is preserved so that the gener-

ated video is not just a loosely coupled set of frames but ex-

hibits a holistic portrayal of the given caption. In this work,

we adopt a fresh perspective in this direction, by devising

a network that learns these long-term and short-term video

semantics separately but simultaneously. To create a frame

based on a caption, instead of trivially conditioning the gen-

eration on the caption text, we introduce a soft-attention

over the captions separately for the long-term and short-

term contexts. This attention mechanism serves the crucial

role of allowing the network to selectively combine the var-

ious parts of the caption with these two contexts and hence,

significantly improves the quality of the generated frame.

Experiments show that the network, when given multiple

captions, is even able to transition between scenes transfer-

ring the spatio-temporal semantics it has learned thus far,

dynamically during generation.

This paper makes the following contributions: (1) A

novel methodology that can perform variable length seman-

tic video generation with captions by separately and simul-

taneously learning the long-term and short-term context of

the video; (2) A methodology for selectively combining in-
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formation for conditioning at various levels of the architec-

ture using appropriate attention mechanisms; and (3) A net-

work architecture which learns a robust latent representa-

tion of videos and is able to perform competently on tasks

such as unsupervised video generation and action recogni-

tion. The results obtained on standard datasets that earlier

efforts have used for such efforts are very promising, and

support the claims of this work.

2. Related Work

Recent years have witnessed the emergence of genera-

tive models like Variational Autoencoders (VAEs) [8], Gen-

erative Adversarial Networks (GANs) [1] and other meth-

ods such as using autoregression [25]. Earlier generative

models based on methods such as Boltzmann Machines

(RBMs) [19, 17] and Deep Belief Nets [4] were always con-

strained by issues such as intractability of sampling. Recent

methods have enabled learning a much more robust latent

representation of the given data [12, 13, 3, 30] and are help-

ing improving the performance of several supervised learn-

ing tasks [10, 29, 28].

Previous approaches for image generation have extended

VAEs and GANs to generate images based on captions by

conditioning them with textual information [11, 15]. Our

approach also constitutes a variant of Conditional VAE [20]

but differs in that in our paper, we use it to generate videos

(earlier efforts only generated images) from captions with

the capability to generate videos of arbitrary lengths. Fur-

ther, our approach is distinct in that it incorporates captions

by learning an attention-based embedding over them by

leveraging long-term and short-term dependencies within

the video to generate coherent videos based on captions.

The proposed methodology draws some similarity with

past methods [26, 16] that perform unsupervised video gen-

eration (but without captions), with all of them using GANs.

Vondrick et al. [26] use a convolutional network with a frac-

tional stride as the generator and a spatio-temporal convolu-

tional network as a discriminator in a two-stream approach

where the background and the foreground of a scene are

processed separately. Saito et al. [16] introduced a network

called Temporal GAN where they use a 1D deconvolutional

network to output a set of latent variables, each correspond-

ing to a separate frame and an image generator which trans-

lates them to a 2D frame of the video. However, in addition

to not incorporating caption-based video generation, these

approaches suffer from the drawback of not being scal-

able in generating arbitrarily long videos. Our approach,

by approaching video generation frame-by-frame and utiliz-

ing the long-term and short-term context separately, effec-

tively counters these limitations of earlier work. Besides,

our approach learns to focus on separate objects/glimpses

in a frame unlike [6] where the focus is on individual pix-

els, and [26] where network’s attention is divided into just

background and foreground.

In addition to generative modeling of videos, learning

their underlying representations has been used to assist sev-

eral supervised learning tasks such as future prediction and

action recognition. [22] is one of the earliest efforts in learn-

ing deep representations for videos and utilizes Long Short-

Term Memory units (LSTMs) [5] to predict future frames

given a set of input frames. More recent efforts on video

prediction have attempted to factorize the joint likelihood

of the video to predict the future frames [6] or use the first

image of the video with Conditional VAE to predict the

motion trajectories and use them to generate subsequent

frames[27]. We later demonstrate that in addition to the

primary application of semantically generating videos with

attentive captioning, it is possible to make small changes to

our network which enable it to even predict future frames

given an input video sequence.

3. Methodology
The primary focus of our work is to allow video gen-

eration to take place semantically via captions. Generat-

ing a video with variable number of frames given a cap-

tion is very different from generating a single image for

a caption, due to the need to model the temporal context

in terms of the actions and interactions among the objects.

Consider, for example, the caption – “A man is walking on

the grass.” Generating a single image for this caption, ide-

ally, will simply show a man in a walking stance on top

of a grassy ground. However, if we want to generate a se-

quence of frames corresponding to this caption, it necessi-

tates the network to understand how the structure of man

on the grass will transition from one frame to the other in

relation to the motion of walking. In other words, it means

that the network should be able to decouple the fundamen-

tal building blocks of any video, i.e., objects, actions and

interactions, and have the ability to combine them semanti-

cally given a stimulus, which in this case, is a caption. We

now explain how we model our approach to generate vari-

able length videos conditioned on captions and later discuss

the network architecture.

Short-Term
Context

Yk-1

Long-Term
Context

Yk-1,Yk-2,...,Y1

Caption
X

X1,X2,...,Xm

hvideo

hlang
rk-1

sl ss

Next Frame
Yk

z

Soft-Attention
(Long-Term)

Soft-Attention
(Short-Term)

Figure 1. Illustration of the proposed model.
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3.1. Model
Let the random variable Y = {Y1, Y2, · · · , Yn} de-

note the distribution over videos with Y1, Y2, · · · , Yn be-

ing the ordered set of n frames comprising the videos. Let

X = {X1, X2, · · · , Xm} be the random variable for the

distribution over text captions with X1, X2, · · · , Xm be-

ing the ordered set of m words constituting the caption.

P (Y |X) then captures the conditional distribution of gen-

erating some video in Y for a given caption in X . Our ob-

jective is to maximize the likelihood of generating an ap-

propriate video for a given caption. Since we would like

to generate a video for a caption one frame at a time, we

redefine P (Y |X) as:

P (Y |X) =
n
∏

i=1

P (Yi|Yi−1, · · · · · · , Y1, X) (1)

where n is the total number of frames in the video. Genera-

tion of the kth frame, Yk, can therefore be expressed as:

P (Yk|X) = P (Yk|Yk−1, · · · , Y1, X) (2)

thus allowing the generation of a given frame to depend

on all the previously generated frames. The generation can

hence model both short-term and long-term spatio-temporal

context. Yk gathers short-term context, which consists of

the local spatial and temporal correlations existing between

any two consecutive frames, from Yk−1. Yk also obtains its

long-term context from all the previous frames combined to

understand the overall flow of the video. This ensures that

that the overall consistency of the video is maintained while

generating the frame. In order to model this when generat-

ing the kth frame, we define two functions: Uk and Vk:

Uk = g(Yk−1, X) (3)

Vk = h(Yk−1, · · · , Y1, X) (4)

where U and V model the short-term and long-term stim-

ulus respectively for generating Yk. These two functions

are implemented as new layers in our architecture, which is

discussed in subsequent sections. Therefore, we now model

P (Y |X) as P (Y |U, V ) =
∏n

i=1 P (Yi|Ui, Vi).
P (Y |U, V ) is a complex multi-modal distribution that

models the various possibilities of generating a video given

a caption. For example, the same caption “Man walking

on grass” can be generated with a man differing in height,

face and other physiological attributes. Even the way the

man walks can exhibit a wide range of variations. In order

to capture this complex distribution P (Y |U, V ) and avoid

an ‘averaging effect’ over the various possibilities, we use a

variational auto-encoder (VAE) [8]. The VAE introduces a

latent variable z such that the likelihood of any given possi-

bility is governed by the likelihood of sampling a particular

value of z. So, we can define P (Y |U, V ) in terms of z as

(similar to [8]), using normal distribution (denoted by N ):

P (Y |U, V ) = N (f(z, U, V ), σ2 ∗ I) (5)

Using variational inference, a distribution Q(z|Y, U, V )
is introduced that takes values for Y , U and V in the train-

ing phase, and outputs an approximate posterior distribution

over z that is likely to generate the appropriate video given

the long-term and short-term contexts derived from a given

caption. Hence the variational lower bound is:

log P (Y |U, V ) = KL(Q(z|U, V, Y )||P (z|U, V, Y ))

+ Ez∼Q(z|U,V,Y )[log P (Y, z|U, V )

− log Q(z|U, V, Y )]

≥ Ez∼Q(z|U,V,Y )[log P (Y |U, V, z)

+ log P (z|U, V )− log Q(z|U, V, Y )]

= Ez∼Q(z|U,V,Y )[log P (Y |U, V, z))

−KL(Q(z|U, V, Y )||P (z|U, V )] (6)

where Q(z|U, V, Y ) approximates the intractable posterior

P (z|U, V ). z is conditionally independent of U and V with

P (z|U, V ) = P (z) and P (z) is assumed to be N (0, I).
One way to model P (Y |U, V ) for video generation is to

introduce separate latent variables for each of the frames to

be generated. Such an approach does not allow the model to

scale and generate videos with arbitrary number of frames

(since the number of latent variables will then be arbitrary).

Therefore, we propose our model with just a single latent

variable, z to model P (Y |U, V ); the same latent variable

is sampled recurrently to generate every subsequent frame.

Figure 1 shows an illustration of the proposed model. Dur-

ing testing, we sample z ∼ N (0, I) to get a sample (one

video frame) from the distribution P (Y |U, V ). This is then

continued recurrently, allowing us to generate videos with

any user-defined number of frames.

3.2. Latent Representation and Soft Attention for
Captions

Similar to [11], we first pass the given caption through a

bi-directional LSTM lang , as shown in Figure 2, to gen-

erate a word-level latent representation for the caption,

hlang = [hlang
1 , h

lang
2 , · · · , hlang

m ] with h
lang
i denoting the

latent representation for the ith word in the caption (m be-

ing the total number of words in the caption). Since U and

V model different kinds of context for a video, it is reason-

able to say that a caption can trigger U and V differently.

For instance, in the example caption discussed so far, words

like ‘grass’ and ‘walking’ that correspond to elements like

background and motion in a video can trigger its long-term

characteristics; while ‘man’ whose posture changes in every

frame can be responsible for the video’s short-term charac-

teristics. Therefore, we propose the network architecture

to have a separate soft attention mechanism for each of the

contexts over hlang , the latent representation of the caption.

This is described in the next few sections.

3.3. Modeling Long-Term Context using Attention
To model the long-term context, Vk, to generate the

video frame Yk, our network architecture consists of a con-
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Figure 2. Proposed network architecture for attentive semantic video generation with captions. Y = {Y1, Y2, · · · , Yk} denotes the video

frames generated by the architecture, while X = {X1, X2, · · · , Xm} denotes the set of words in the caption.

volutional LSTM, which we call LSTMvideo as shown

in Figure 2. We feed the frames Yk−1, · · · , Y1, gener-

ated so far by the network to LSTMvideo, and compute

hvideo which is the final latent representation learned by

LSTMvideo after processing all the previous frames. This

hvideo is then combined with hlang from the caption via a

soft-attention layer to create the long-term context repre-

sentation sl as shown in Figure 2. The soft-attention mech-

anism receives hlang and hvideo as input, and works by

learning a set of probabilities, A = {α1, α2, · · · , αm} cor-

responding to each word in the caption. The output of the

soft-attention layer is then given by:

sl = attention(hlang, hvideo)

= α1h
lang
1 + α2h

lang
2 + · · ·+ αmhm

lang (7)

where:

αi =
exp

(

vT tanh(uhlang
i + whvideo + b)

)

∑m

j=1 exp
(

vT tanh(uhlang
j + whvideo + b)

)

where v, u, w and b are the network parameters.

3.4. Modeling Short-Term Context using Attention
and Frame Generation

When a frame is generated in a single pass, even though

the model might be able to preserve the overall motion in

the frame, the various objects in the scene suffer from blur-

riness and distortion. In order to overcome this drawback of

one-shot frame generation, we model Uk and propose our

frame generator to have a differentiable recurrent attention

mechanism resembling [2] and [3] to generate frame Yk in

T timesteps (as shown in Figure 2). The attention mech-

anism comprises of a grid of Gaussian filters, whose grid

center, variances and stride are learnt by the network (as in

[3]). For every timestep t, we read a glimpse, rk−1, from

the previous frame, Yk−1, pass it through a small convolu-

tional network (2 convolutional layers with one fully con-

nected layer) and combine it with hlang via soft-attention

(similar to Section 3.3) to create the short-term context rep-

resentation sst . Simultaneously, we also read a glimpse, rt,

from Ykt−1
(also passed through a similar convolutional net-

work), denoting the frame Yk generated after t−1 timesteps.

rt and sst along with sl Section 3.3 are encoded by

LSTMenc to learn the approximate posterior Q. z is then

sampled from Q and decoded using LSTMdec, whose out-

put is sent to a similar deconvolutional network before pass-

ing to a write function to generate content in a region of

interest (learned by the attention mechanism) on the cur-

rent frame of interest, Yk. This is different from [3], and

we found this to be important in generating videos of better

quality. The use of such an LSTM autoencoder architecture

in our model ensures that the region to be attended to next

is conditioned on the regions that have been attended so far.

The information written on different regions in the frame

is accumulated over T timesteps to generate a single frame

Yk. The following equations explain these steps:

rk−1t = conv(read(Yk−1)) (8)

rt = conv(read(Ykt−1
)) (9)

sst = attention(hlang, [rk−1t , h
dec
t−1)] (10)

henc = LSTMenc(r, ss, sl, h
dec
t−1) (11)

z ∼ Q(z|henc) (12)

hdec
t = LSTMdec(z, ss, sl, h

dec
t−1) (13)

Ykt
= Ykt−1

+ write(deconv(hdec
t )) (14)

A major advantage of such a recurrent attention mechanism,

in the context of this work, is that the network learns a single

distribution that can distinguish between different elements

of a frame, and attend to them in each time step. This further

enables the network to dynamically combine these elements

during inference to effectively generate frames.

3.5. Loss Function
As mentioned in the previous sections, we take

P (z|U, V ) = P (z) ∼ N (0, I). This simplifies the empiri-

cal variational bound to (note that we minimize the negative
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of the bound, as in VAEs [8]):

L = −

(

1

S

S∑

s=1

log P (Y |U, V, zs)−KL(Q(z|U, V, Y )||P (z|U, V ))

)

(15)

with

KL(Q(z|U, V, Y )||P (z|U, V )) =
1

2

(

T∑

t=1

µ2

t+σ2

t−log σ2

t

)

−T/2

(16)

where t denotes the time-step over which the frames are

generated as before, and zs denotes the sth sample taken

from the z distribution among a set of total S samples which

are used to compute the likelihood term. The negative like-

lihood term, which is also the reconstruction loss, is com-

puted as the binary pixel-wise cross-entropy loss between

the original video frame and the generated frame. All the

losses here are calculated frame-wise.

4. Experiments and Results

We evaluated the proposed model on datasets of increas-

ing complexity1. We first created a variant of Moving

MNIST dataset (similar to [22, 6]) with videos depicting

a single digit moving across the frame. Each video has

a set of 10 frames, each of size 64 × 64. We added the

28 × 28 sized images of digit from the original MNIST

dataset to each of the frames and varied the initial positions

to make the digit move either up-and-down or left-and-right

across the frames. We then captioned each video based on

the digit and its motion. For instance, a video with cap-

tion ‘digit 2 is going up and down’ contains a sample of 2

from MNIST moving up and down in the video. We sim-

ilarly created a Two-Digit Moving MNIST dataset similar

to [22, 6] where each video contains two randomly chosen

digits moving across the frames going either left-and-right

or up-and-down independently, giving us a dataset contain-

ing 400 combinations. Examples of the captions in this

dataset are ‘digit 1 is moving up and down and digit 3 is

moving left and right’.

To evaluate the proposed network’s performance on a

more realistic dataset, we used the KTH Human Action

Database [18] which consists of over 2000 video sequences

comprised of 25 persons performing 6 actions (walking,

running, jogging, hand-clapping, hand-waving and boxing).

We used the video sequences of walking, running and jog-

ging for our evaluation because in each of these actions, a

person was going either right-to-left or left-to-right which

allowed us to introduce a sense of ‘direction’ in the video

context, and study the proposed model. We uniformly

sampled from the given video sequence and generated our

dataset with each video having 10 frames of size 120×120.

For each of these videos, we manually created captions such

1All the codes, videos and other resources are available at https:

//github.com/Singularity42/cap2vid

as ‘person 1 is walking left-to-right’ or ’person 3 is run-

ning right-to-left’. The information on person number is

obtained from the metadata accompanying the dataset. The

advantage of using the KTH dataset in our context is that

the same set of people perform all the actions as opposed to

other action datasets (such as UCF-101) where the people

performing the actions changes. This allows us to add ap-

propriate captions to the dataset, and study and validate the

performance of our model.

We further performed experiments for unsupervised

video generation using our model without captions. As

it is related to earlier efforts, we show results on UCF-

101 dataset [21] to be able to compare with earlier efforts.

We uniformly sampled the videos from UCF-101 dataset to

generate video sequences for our training dataset with each

video having 10 frames each of size 120× 120× 3. Impor-

tant thing to note here is that although we are training our

network over videos of 10 frames, we can generate videos

with any number of frames (shown in Section 4.4).

We note that in order to generate the first frame of the

video for a caption, we prefixed videos from all datasets

with a start-of-video frame. This frame marks the beginning

of every given video. It contains all 0s resembling the start-

of-sentence tag used to identify the beginning of a sentence

in Natural Language Processing [23].

4.1. Results on Generation with Captions
The results on the Moving MNIST and KTH datasets are

shown in Figure 3, and illustrate the rather smooth genera-

tions of the model. (The results of how one frame of the

video is generated over T time-steps is included in the sup-

plementary material due to space constraints.) In order to

test that the network is not memorizing, we split the cap-

tions into a training and test set. Therefore, if the training

set contains the video having caption as ‘digit 5 is moving

up and down’, the model at test-time is provided with ‘digit

5 is moving left and right’. Similarly, in the KTH dataset,

if the video pertaining to the caption ‘person 1 is walking

from left-to-right’ belongs to the training set, the caption

‘person 1 is walking right-to-left’ is included at test time.

We thus ensure that the network makes a video sequence

from a caption that it has never seen before. The results

show that the network is indeed able to generate good qual-

ity videos for unseen captions. We infer that it is able to dis-

sociate the motion information from the spatial information.

In natural datasets where the background is also prominent,

the network selectively attends to the object over the back-

ground information. The network achieves this without the

need of externally separating the object information from

the background information [26] or external motion trajec-

tories [27]. Another observation is that the object consis-

tency is maintained and the long-term fluidity of the motion

is preserved. This shows that the long-term and the short-

term context is effectively captured by the network archi-
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Figure 3. The results of our network for different datasets to generate videos for a single caption. Number of frames generated is 15.

tecture and they both work in ‘coordination’ to generate the

frames. Also, as mentioned earlier, methodology ensures

that a video can be generated with any number of frames.

An example of a generation with variable length of frames

is shown in Figure 4.

Figure 4. Variable length video generation for caption ‘digit 0 is

going up and down’.

4.2. Results with Spatio-Temporal Style Transfer
We further evaluated the capability of the network archi-

tecture to generate videos where the captions are changed

in the middle. Here, we propose two different settings: (1)

Action Transfer, where the information of the motion that

the object (i.e, digit/person) is performing is changed mid-

way during the generation; and (2) Object Transfer, where

the object information (i.e, digit/person) is changed midway

during the generation. During action transfer, we expect

that the object information remains intact but the motion

that is being performed by the object changes; and during

object transfer, we expect a change in the object informa-

tion with respect to what has been generated so far. Results

for action and object transfer can be seen in Figures 5(a)

and 5(b) respectively. We also go a step ahead and perform

both Action Transfer and Object Transfer together as shown

in Figure 5(c). To test the robustness of the network, we en-

sured that the second caption used in this setup was not used

for training the network.

We note here that when the spatio-temporal transfer hap-

pens, the object position remains the same in all the results,

and the object from the second caption continues its action

from exactly the same position. This is different from the

case when the video is freshly generated using a caption

Captioning Experiment LL KL Total Loss

Without Captioning on

Long-Term Context
65.76 17.97 83.73

Without Captioning on

Short-term Context
72.53 13.56 86.09

With Captioning on Long-

and Short-Term Context
63.55 11.84 75.39

Table 1. Quantitative comparison of loss at the end of training for

different ablation experiments on captioning.

since then the object can begin its motion from any arbi-

trary position. Moreover, the network maintains the context

of the video while changing the object or action. For exam-

ple, in Figure 5(c), the digit 5 with a certain stroke width and

orientation changes to a digit 8 with the same stroke width

and orientation. Similarly, in the natural dataset the type of

the background and its illumination remains the same. The

preservation of motion and context as well as the position is

a crucial result in showcasing the ability of the network to

maintain the long-term and short-term context in generating

videos even when the caption is changed in the middle.

4.3. Ablation Studies

The key contribution of this work has been to condition

the generation of the videos using long-term context (sl)

and short-term context (ss). We perform an ablation study

over the importance of each of these contexts, by removing

them one at a time and training the network. We ensure that

all the other parameters between the two networks remain

the same. The results of removing long-term context are

shown in Figure 6 (a), where the caption is ‘digit 9 moving

up and down’. Compared to Figure 3(a), there are two dis-

tinct effects that can be observed: (1) either the object char-

acteristics (such as the shape of the digit 9) changes over

time; or (2) the object starts to oscillate (instead of follow-

ing the specified motion) because it has failed to capture the

long-term fluid motion over the video, thus supporting the
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Figure 5. Spatio-Temporal style transfer. First caption generates for 7 frames. Second caption continues the generation from the 8th frame.

Figure 6. (a) shows videos when generated without captioning on

Long-term context. (b) shows videos when generated without cap-

tioning on Short-term context.

need for sl in maintaining coherence between the frames.

The results of removing short-term context are shown in

Figure 6 (b). Here we notice a significant deterioration in

the object quality. We infer that as the frame generation

takes place over a number of time-steps, it is essential that

the model, while generating a frame in a given time-step, re-

ceives a strong local temporal stimulus from glimpses of the

previous frame. Table 1 further shows a quantitative anal-

ysis of these experiments, which corroborate that the pro-

posed approach of using a long-term and short-term context

together helps learn a better model for video generation.

In order to further study the usefulness of the attention

mechanism we have on the caption representation, we com-

pared our approach with other ways to condition on the

caption information. We first trained our network where

we conditioned the frame generation directly on one-hot

vectors created separately from the action and object in-

Figure 7. Videos generated using different approaches of condi-

tioning over test-set caption ‘digit 5 is going up and down’

formation present in the captions. We also performed an

experiment where we conditioned on latent vectors ob-

tained by passing the caption through a pre-trained model

of skipthought vectors [9]. The results of the comparison

are shown in Figure 7. It can be observed that the one-

hot vector approach did not respond to the caption at all

and generated random video samples. The approach with

pre-trained skipthought vectors did match the object infor-

mation but couldn’t associate it with the correct motion. In

comparison, our methodology is able to perform extremely

well for the unseen caption.

4.4. Unsupervised Video Generation

The proposed architecture also allows videos to be gen-

erated in an unsupervised manner without captions by mak-

ing some modifications. In order to do this,we remove ss
and sl and the frame generation is conditioned directly on
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Figure 8. Results of unsupervised video generation and compari-

son with results from Temporal-GAN [16].

Experiment Accuracy (%)

Training: Generated, Testing: Original 62.36

Training: Original, Testing: Generated 68.24

Training: Both, Testing: Both 70.95

Table 2. Accuracy on action classification performed with feature

vectors from original and generated videos on the KTH dataset.

rk−1t and hvideo changing equations 11 and 13 to:

henc
t = LSTMenc(r, rk−1t , hvideo, h

dec
t−1) (17)

hdec
t = LSTMdec(z, rk−1t , hvideo, h

dec
t−1) (18)

We show the effectiveness of our architecture to generate

unsupervised videos by training our network on Two-Digit

Moving MNIST dataset and UCF-101 datasets. As men-

tioned earlier, we used UCF-101 in this experiment to be

able to compare with earlier work. (Also, UCF-101 was not

used in other experiments, since it does not have captions

and it’s not trivial to add captions for this dataset.) Re-

sults can be seen in Figure 8 along with a few generations

presented by [16] in their paper for comparison. We can

infer that even in the unsupervised setting, our method pre-

serves the object information throughout the video, whereas

in [16], all the generated videos seem to lose the objectness

towards the later part of the video.

4.5. Quantitative Results
Data programming: Since our network can generate cap-

tion based videos, it can even be employed to artificially

create a labeled dataset [14]. So, we evaluated the real and

generated videos of KTH dataset for action recognition. We

first trained an SVM on features extracted from the gen-

erated videos with action labels corresponding to the cap-

tions, and tested the model on the real videos. We then per-

formed the experiment vice versa. To ensure an indepen-

dent unbiased analysis, we extracted feature vectors using

a 3D spatio-temporal convolutional network [24] trained on

Sports 1M Dataset [7]. As shown in Table 2, we can ob-

serve that the accuracy for the two settings is comparable.

In fact, the highest is achieved on mixing the two datasets.

We infer that the generated videos are able to fill up the

gaps in the manifold and thus oversampling the original set

of video with them can help improve the training on a su-

pervised learning task. (We note that these models were

not finetuned to achieve the best possible accuracy on the

dataset, but only used for comparison against each other.)

User Study: In order to assess how people perceive our

generated results, we performed a user study. 10 generated

and 10 real videos having the same captions for each dataset

were shown to 24 subjects who were asked to rate the videos

as generated or real. The results are shown in Table 3. It can

be clearly observed that the percentage of generated videos

considered real is very close to that of real videos. This

suggests that our network is able to generate new videos

highly similar to the real ones.

Datasets One Digit MNIST Two Digit MNIST KTH Dataset

Video Type Gen. Real Gen. Real Gen. Real

% videos

considered real
83.33% 93.75% 78.53% 89.15% 75.94% 92.45%

Table 3. User Study Results showing the percentage of videos

considered real by people.

(We also performed studies on the task of future frame

prediction, but are unable to include it due to space con-

straints. These are included in the supplemental material.)

5. Conclusion

In summary, we proposed a network architecture that en-

ables variable length semantic video generation using cap-

tions, which is the first of its kind. Through various ex-

periments, we conclude that our approach, which combines

the use of short-term and long-term spatiotemporal con-

text, is able to effectively to generate videos on unseen

captions maintaining a strong consistency between consec-

tive frames. Moreover, the network architecture is robust in

transferring spatio-temporal style across frames when gen-

erating multiple frames. By learning using visual context,

the network is even able to learn a robust latest representa-

tion over parts of videos, which is useful for tasks such as

video prediction and action recognition. We did observe in

our experiments that our network does exhibit some averag-

ing effect when filling up the background occasionally. We

infer that since the recurrent attention mechanism focuses

primarily on objects, the approach may need to be extended

with a mechanism to handle the background via a separate

pathway. Future efforts in this direction will assist in bridg-

ing this gap as well as extending this work to address the

broader challenge of learning with limited supervised data.
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