
Domain-adaptive deep network compression

Marc Masana, Joost van de Weijer, Luis Herranz

CVC, Universitat Autònoma de Barcelona

Barcelona, Spain

{mmasana,joost,lherranz}@cvc.uab.es

Andrew D. Bagdanov

MICC, University of Florence

Florence, Italy

andrew.bagdanov@unifi.it

Jose M Álvarez

Toyota Research Institute

jose.alvarez@tri.global

Abstract

Deep Neural Networks trained on large datasets can be

easily transferred to new domains with far fewer labeled

examples by a process called fine-tuning. This has the ad-

vantage that representations learned in the large source do-

main can be exploited on smaller target domains. However,

networks designed to be optimal for the source task are of-

ten prohibitively large for the target task. In this work we

address the compression of networks after domain transfer.

We focus on compression algorithms based on low-rank

matrix decomposition. Existing methods base compression

solely on learned network weights and ignore the statis-

tics of network activations. We show that domain trans-

fer leads to large shifts in network activations and that it

is desirable to take this into account when compressing.

We demonstrate that considering activation statistics when

compressing weights leads to a rank-constrained regression

problem with a closed-form solution. Because our method

takes into account the target domain, it can more optimally

remove the redundancy in the weights. Experiments show

that our Domain Adaptive Low Rank (DALR) method sig-

nificantly outperforms existing low-rank compression tech-

niques. With our approach, the fc6 layer of VGG19 can be

compressed more than 4x more than using truncated SVD

alone – with only a minor or no loss in accuracy. When

applied to domain-transferred networks it allows for com-

pression down to only 5-20% of the original number of pa-

rameters with only a minor drop in performance.

1. Introduction

One of the important factors in the success of deep learn-

ing for computer vision is the ease with which features,

pre-trained on large datasets such as Imagenet [6, 31] and

Places2 [37], can be transferred to other computer vision

: input fc6 (size 25088)

:input fc7 (size 4096)

+

+

output fc7 (size 4096)

: input fc6 (size 25088)

:input fc7 (size 4096)

+

+

output fc7 (size 4096)

T

6 6 6 6 6
W X A B X

6
A

T

6
B

T

7 7 7 7 7
W X A B X T

7
B

7
A

7
X

7
X

6
X 6

X

Figure 1. Example of compressing last two layers of the VGG-16

network (fc6, fc7). The original weight matrix is approximated by

two matrices. The main novelty in this paper is that we consider

the input X of each layer when compressing the corresponding

weight matrix W . This is especially relevant when doing domain

transfer from pre-trained networks where activation statistics can

be significantly skewed in the target domain.

domains. These new domains often have far fewer labeled

samples available but which, due to the high correlation

which exists between visual data in general, can exploit an

already learned representation trained on large datasets. The

most popular method to transfer the representations is by

means of fine-tuning, where the network is initialized with

the pre-trained network weights, after which they are fur-

ther adjusted on the smaller target domain [26]. These fine-

tuned networks, which have the same size as the originally

trained network, can then be applied to the task of the tar-

get domain. However, one must question whether a target

domain task requires such a large network and whether the

resulting network is not highly redundant.

14289

A drawback of Convolutional Neural Networks (CNNs)

is that they generally require large amounts of memory and

computational power (often provided by GPU). As a result

they are less suitable for small devices, like cell phones,

where requirements for energy efficiency limit CPU, GPU,

and memory usage. This observation has motivated much

research into network compression. Approaches include

methods based on weight quantization [13, 27], weight

removal from fully-connected [38] or convolutional lay-

ers [2], compact representations of convolutional layers

through tensor decompositions [7, 18, 1], as well as train-

ing of thinner networks from predictions of a larger teacher

network [16, 30].

One efficient method for the compression of fully con-

nected layers is based on applying singular value decompo-

sition (SVD) to the weight matrix [21, 7, 38]. Compression

is achieved by removing columns and rows related to the

least significant singular values. Then, the original layer is

replaced by two layers which have fewer parameters than

the original layer. The method has been successfully ap-

plied to increase efficiency in detection networks like Fast

R-CNN [9]. In these networks the truncated SVD approach

is applied to the fc6 and fc7 layers, and the authors showed

that with only a small drop in performance these layers can

be compressed to 25% of their original sizes. In the original

paper [21, 7, 38] the compression is always applied on the

source domain, and no analysis of its efficiency for domain

transfer exists.

In this work we investigate network compression in the

context of domain transfer from a network pre-trained on

a large dataset to a smaller dataset representing the target

domain. To the best of our knowledge we are the first to

consider network compression within the context of do-

main transfer, even though this is one of the most com-

mon settings for the application of deep networks. Our ap-

proach is based on weight matrix decomposition that takes

into account the activation statistics of the original network

on the target domain training set1. We first adapt a pre-

trained network with fine-tuning to a new target domain

and then proceed to compress this network. We argue that,

because the statistics of the activations of network layers

change from the source to the target domain, it is bene-

ficial to take this shift into account. Most current com-

pression methods do not consider activation statistics and

base compression solely on the values in the weight matri-

ces [20, 21, 7, 13, 27]. We show how the activation statistics

can be exploited and that the resulting minimization can be

written as a rank-constrained regression problem for which

there exists a closed-form solution. We call our approach

Domain Adaptive Low Rank (DALR) compression, since

it is a low-rank approximation technique that takes into ac-

1With activation statistics we refer to their direct usage during com-

pression, but we do not explicitly model the statistical distribution.

count the shift in activation statistics that occurs when trans-

ferring to another domains. As an additional contribution,

we show that the original SVD algorithm can be improved

by compensating the bias for the activations.

The paper is organized as follows. In the next section

we discuss work from the literature related to network com-

pression. In section 3 we discuss in detail the motivation

behind our network compression approach, and in section 4

we show how network compression can be formulated as a

rank constraint regression problem. In section 5 we report

on a range of compression experiments performed on stan-

dard benchmarks. Finally, we conclude with a discussion of

our contribution in section 6.

2. Related Work

Network compression has received a great deal of atten-

tion recently. In this section we briefly review some of the

works from the literature relevant to our approach.

Network pruning. A straight forward way to reduce the

memory footprint of a neural network is by removing unim-

portant parameters. This process can be conducted while

training [2, 38, 14, 20], or by analyzing the influence of

each parameter once the network has been trained [22]. For

instance, in [38], the authors use tensor low rank constraints

to (iteratively) reduce the number of parameters of the fully

connected layer.

Computationally efficient layer representations. Sev-

eral approaches have addressed the problem of reducing

computational resources by modifying the internal repre-

sentation of each layer taking into account the inherent re-

dundancy of its parameters. Common approaches exploit

linear structures within convolutional layers and approach

each convolutional kernel using low-rank kernels [7, 18, 1].

The main idea relies on the fact that performing a convo-

lution with the original kernels is equivalent to convolv-

ing with a set of base filters followed by a linear combi-

nation of their output. In [19], the authors propose two net-

work layers that are based on dictionary learning to perform

sparse representation learning, directly within the network.

In general, these approaches show significant reduction in

the computational needs with a minimum drop of perfor-

mance.

Parameter quantization. Previous works mentioned

above on efficient representations focus on modifying the

representation of a complete layer. Parameter quantization

is slightly different as it aims at finding efficient representa-

tions of each parameter individually (ie, representing each

parameter with fewer bits). A common practice to minimize

the memory footprint of the network and reduce the compu-

tational cost during inference consists of training using 32
bit to represent the parameters while performing inference

more efficiently using 16-bits without significantly affecting

4290

the performance. More aggressive quantization processes

have been also analyzed in [11] where the authors propose

an approach to directly thresholding values at 0 resulting

in a decrease of the top-1 performance on ImageNet by less

tan 10%. More recently, several works have adopted quanti-

zation schemes into the training process [27]. For instance,

in [27], the authors propose an approach to train a network

directly using binary weights resulting in very efficient net-

works with a very limited accuracy.

In [13] the authors propose an approach to combine

pruning, quantization and coding to reduce the computa-

tional complexity of the network. The authors first analyze

the relevance of each parameter pruning the irrelevant ones

and then, after fine-tuning the pruned network, the remain-

ing parameters are quantized. Results show a significant

reduction in the number of parameters (up to 35x) without

affecting the performance of the network.

Network distillation. These approaches aim at mimick-

ing a complicated model using a simpler one. The key idea

consists of training an ensemble of large networks and then

use their combined output to train a simpler model [5]. Sev-

eral approaches have built on this idea to train the network

based on the soft output of the ensemble [17], or to train the

network mimicking the behavior not only of the last layer

but also of intermediate ones [30].

All these methods for pruning, quantization, or compres-

sion in general, have shown results for reducing the foot-

print of networks and for reducing its computational com-

plexity. However, they are usually applied to the same target

domain as the one used for training the original network. In

contrast, in this paper we investigate network compression

in the context of domain transfer. That is, compressing a

network that has been trained on a generic large dataset in

order to reduce its computational complexity when used in a

different target domain using a smaller dataset. In this con-

text, the most related work is the approach presented in [12]

exploring non-negative matrix factorization to identify an

interesting set of variables for domain transfer. However,

the work in [12] does not consider network compression

and focuses on unsupervised tasks.

3. Motivation

Training networks for a specific task starting from a net-

work pre-trained on a large, generic dataset has become

very common practice, and to the best of our knowledge

we are the first to consider compression of these types of

domain-adapted networks. We investigate the compression

of fully connected layers by means of matrix decomposi-

tion. The basic principle is to decompose a weight matrix

into two matrices which contain fewer parameters than the

original weight matrix. This decomposition can then be ap-

plied to the network by replacing the original layer with

two new layers (see Fig. 1). An existing approach is based

on truncated Singular Value Decomposition [21, 7]. The

decomposition of that method is determined solely by the

weight matrix and ignores the statistics of layer activations

in the new domain.

To gain some insight into this shifting of the activation

distributions in deep networks when changing domain, we

take a closer look at the inputs to the two fully connected

layers fc6 and fc7 (which are the output of pool5 and fc6,

respectively), of the VGG19 network [32]. We analyze the

activation rate of neurons which is the fraction of images

in which a neuron has non-zero response. A value of 0.3

means that the neuron is activated in 30% of the images

in the data set. In Fig. 2 we show the activation rates of the

VGG19 network on ImageNet, on the CUB-200-2011 Birds

dataset [34], on the Oxford 102 Flowers dataset [25] and on

the Stanford 40 actions dataset [35].

The first thing to observe is that the activation rate is

fairly constant across all the input dimensions (i.e. activa-

tion rate of neurons in the previous layer) when computed

on the ImageNet dataset (i.e. source domain). Apparently

the network has optimized its efficiency by learning repre-

sentations which have a similar frequency of occurrence in

the ImageNet dataset. However, if we look at the activation

rates in the three target domains we see that the distributions

are significantly skewed: a fraction of neurons is much more

frequent than the rest, and the activation rates are lower than

in the source domain. This is especially clear for the input

to fc7 where activation rates vary significantly. If we con-

sider the percentage of input dimensions which accumulates

50% of the activations (which is the point where the area

under the curve to the left is equal to the area under the

curve to the right), we see a clear shift from ImageNet with

41.38% to 19.51% in Flowers, 24.93% in Birds and 29.44%

in Stanford (and from 32.29% to 14.61%, 19.13% and 25%

for fc6, respectively). This clearly shows that there exists

a significant change in the relative importance of neurons

from previous layers, optimized for a source domain, when

applied on new domains. Given this significant shift, we

believe that it is important to take these activation statistics

into account when compressing network layers after domain

transfer. Keeping lower weights connected to high activa-

tion neurons can lead to more efficient compression rather

than only focusing on the value of the weights themselves

as is done by current compression methods.

4. Compression by matrix decomposition

We start by introducing some notations. Consider a sin-

gle fully connected layer, with input and bias x, b ∈ R
n, the

output y ∈ R
m and the layer weights W ∈ R

m×n, related

according to:

y = Wx+ b, (1)

4291

0.5 1 1.5 2 2.5

Filter (ranked in descending order) 10 4

0

20

40

60

80

100

A
c
ti
v
a

ti
o

n
 r

a
te

 (
%

)

Input fc6

ILSVRC2012 (val)

Birds (test)

Flowers (test)

Stanford (test)

1000 2000 3000 4000

Filter (ranked in descending order)

0

20

40

60

80

100

A
c
ti
v
a

ti
o

n
 r

a
te

 (
%

)

Input fc7

ILSVRC2012 (val)

Birds (test)

Flowers (test)

Stanford (test)

Figure 2. Activation rates (ranked in decreasing order) of the input

to (top) fc6, and (bottom) fc7 for the Birds, Flowers and Stanford

datasets in the VGG19 trained on ILSVRC2012. The dimensions

of the inputs are 7× 7× 512 = 25088 (output of pool5) and 4096

(output of fc6), respectively. Note the more uniform distribution

for ILSVRC2012 (no domain change). Best viewed in color.

or when considering a set of p inputs to the layer:

Y = WX + b1Tp , (2)

where 1p is a vector with ones of size p × 1, Y ∈ R
m×p is

the set of outputs, and X ∈ R
n×p is the set of p inputs to

the layer.

Several compression works have focused on compress-

ing W into Ŵ so that ||W−Ŵ ||F is minimized [20, 21, 7].

The novelty of our work is that we also consider the inputs

X . As a consequence we will focus on compressing W into

Ŵ in such a way that ||Y − Ŷ ||F is minimal.

4.1. Truncated SVD and Bias Compensation (BC)

One approach to compression is to apply SVD such

that W = USV T where U ∈ R
m×m, S ∈ R

m×n,

V ∈ R
n×n [20, 21]. The layer weights W can be approx-

imated by keeping the k most significant singular vectors,

Ŵ = Û ŜV̂ T where Û ∈ R
m×k, Ŝ ∈ R

k×k, V̂ ∈ R
n×k.

Compression is obtained by replacing the original layer by

two new ones: the first with weights ŜV̂ T and the second

with weights Û . Note it is crucial that the two new layers

contain fewer parameters than the original network (i.e. that

nm > (n+m)k).

In this truncated SVD approach the bias term b of the

original network is added to the second layer. We propose

an alternative bias term which takes into account the inputs

X . We define W = Ŵ +
⌣

W , where
⌣

W is the residual

which is lost due to the approximation. We want to find

the new bias that minimizes ||Y − Ŷ ||F given inputs X .

Accordingly:

||Y − Ŷ ||F = ||WX + b1Tp − (ŴX + b̂1Tp)||F
= ||b̂1Tp − (b1Tp +

⌣

WX)||F . (3)

The bias which minimizes this is then:

b̂ = b+
⌣

WX1p = b+
⌣

Wx̄ (4)

where x̄ = X1p is the mean input response. Note that if X

were zero centered, then x̄ would be zero and the optimal

bias b̂ = b. However, since X is typically taken right after

a ReLU layer, this is generally not the case and SVD can

introduce a systematic bias in the output which in our case

can be compensated for using Eq. 4.

4.2. Domain Adaptive Low Rank Matrix Decompo­
sition (DALR)

In the previous subsection we considered the inputs to

improve the reconstruction error by compensating for the

shift in the bias. Here, we also take into account the inputs

for the computation of the matrix decomposition. In con-

trast, the SVD decomposition does not take them into ac-

count. Especially in the case of domain transfer, where the

statistics of the activations can significantly differ between

source and target domain, decomposition of the weight ma-

trix should consider this additional information. A network

trained on ImageNet can be highly redundant when applied

to for example a flower dataset; in this case most features

important for man-made objects will be redundant.

The incorporation of input X is done by minimizing

||Y − Ŷ ||F . We want to decompose the layer with weights

W into two layers according to:

W ≈ Ŵ = ABT , (5)

where Ŵ ∈ Rm×n, A ∈ Rm×k and B ∈ Rn×k again

chosen in such a way that m× n > (m+ n)× k.

We want the decomposition which minimizes:

min
A,B

||Y − Ŷ ||F = min
A,B

||WX −ABTX||F , (6)

4292

where we have set b̂ = b and subsequently removed it from

the equation. Eq. 6 is a rank constrained regression problem

which can be written as:

argmin
C

||Z − CX||2F+λ||C||2F
s.t. rank(C) ≤ k,

(7)

where C = ABT and Z = WX , and we have added a ridge

penalty which ensures that C is well-behaved even when X

is highly co-linear.

We can rewrite Eq 7 as:

argmin
C

||Z∗ − CX∗||2F
s.t. rank(C) ≤ k,

(8)

where we use

X∗

n×(p+n) =
(

X
√
λI

)

, and (9)

Z∗

m×(p+n) =
(

Z 0
)

. (10)

In Ashin [24] the authors show that there is a closed form

solution for such minimization problems based on the SVD

of Z. Applying SVD we obtain Z = USV T . Then the

matrices A and B in Eq. 5 which minimize Eq. 8 are:

A = Û

B = ÛTZXT
(

XXT + λI
)

−1 (11)

where Û ∈ Rm×k consists of the first k columns of U .

Network compression is obtained by replacing the layer

weights W by two layers with weights B and A, just as

in the truncated SVD approach. The first layer has no bi-

ases and the original biases b are added to the second layer.

Again we could apply Eq. 4 to compensate the bias for the

difference between W and Ŵ . However, this was not found

to further improve the results.

4.3. Reconstruction error analysis

We discussed three different approaches to compressing

a weight matrix W . They lead to the following approximate

outputs Ŷ :

SVD : Ŷ = Û ŜV̂ TX + b

SVD + BC : Ŷ = Û ŜV̂ TX + b̂

DALR : Ŷ = ABTX + b (12)

To analyze the ability of each method to approximate the

original output Y we perform an analysis of the reconstruc-

tion error given by:

ε = ||Y − Ŷ ||F . (13)

We compare the reconstruction errors on the CUB-200-

2011 Birds and the Oxford-102 Flowers datasets. The re-

construction error is evaluated on the test set, whereas the

Figure 3. Reconstruction error as a function of dimensions kept k

for (top) fc6 and (bottom) fc7 layers on CUB-200-2011 Birds and

Oxford-102 Flowers depending on the degree of compression.

inputs and outputs of the layers are extracted from the train-

ing set for computing the matrix approximations Ŷ . We

provide results for fc6 and fc7, the two fully connected lay-

ers of the VGG19 network.

In Figure 3 we show the results of this analysis. We see

that bias compensation provides a drop in error with respect

to SVD for layer fc6, however the gain is insignificant for

layer fc7. Our DALR method obtains lower errors for both

layers on both datasets for most of the compression set-

tings. This shows the importance of taking activation statis-

tics into account during compression.

5. Experimental results

Here we report on a range of experiments to quantify the

effectiveness of our network compression strategy. Code is

made available at https://github.com/mmasana/DALR.

5.1. Datasets

We evaluate our DALR approach to network compres-

sion on a number of standard datasets for image recognition

and object detection.

4293

CUB-200-2011 Birds: consists of 11,788 images (5,994

train) of 200 bird species [34]. Each image is annotated

with bounding box, part location (head and body), and at-

tribute labels. Part location and attributes are not used in

the proposed experiments. However, bounding boxes are

used when fine-tuning the model from VGG19 pre-trained

on ImageNet in order to provide some data augmentation

for the existing images.

Oxford 102 Flowers: consists of 8,189 images (2,040

train+val) of 102 species of flowers common in the United

Kingdom [25]. Classes are not equally represented across

the dataset, with the number of samples ranging from 40 to

258 per class.

Stanford 40 Actions: consists of 9,532 images (4,000

for training) of 40 categories that depict different human

actions [35]. Classes are equally represented on the training

set and all samples contain at least one human performing

the corresponding action.

PASCAL 2007: consists of approximately 10,000 images

(5,011 train+val) containing one or more instances of 20

classes [8]. The dataset contains 24,640 annotated objects,

with that the training and validation sets having a mean of

2.52 objects per image, and the test set a mean of 2.43 ob-

jects per image. This dataset is used to evaluate our ap-

proach for object detection.

ImageNet: consists of more than 14 million images of

thousands of object classes. The dataset is organized us-

ing the nouns from the WordNet hierarchy, with each class

having an average of about 500 images. We use CNNs pre-

trained on the 1,000-class ILSVRC subset.

5.2. Compression on source domain

Before performing experiments on domain adaptation,

we applied Bias Compensation and DALR compression on

the source domain and compare it to the truncated SVD

method as baseline. We used the original VGG19 network

trained on the 1,000 ImageNet classes. Since ImageNet is

a very large dataset, we randomly selected 50 images from

each class to build our training set for DALR and truncated

SVD compression. Then, we extracted the activations of

this training set for the fc6 and fc7 layers to compress the

network using DALR at different rates. The compressed

networks were evaluated on the ImageNet validation set.

Results are provided in Tables 1 and 2. Results on fc6

show a slight performance increase for the most restricting

compression settings (k = 32, 64, 128). However the gain

is relatively small. On fc7 the results are even closer and

the best results are obtained with bias compensation. Even

though the proposed compression methods outperform stan-

dard SVD the gain is small when done on the source do-

main. This is most probably due to the fact that the in-

puts have relatively uniform activation rates and consider-

dim kept 32 64 128 256 512 1024

params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 79.44 50.82 36.44 34.80 34.40 34.18

SVD + BC 73.41 46.54 36.21 34.82 34.33 34.22

DALR 66.43 44.50 36.06 34.63 34.28 34.20

Table 1. Top-1 error rate results on ImageNet when compressing

fc6 in the source domain. We report the dimensions k kept in the

layer and the percentage of parameters compressed. The uncom-

pressed top-1 error rate is 34.24%.

dim kept 32 64 128 256 512 1024

params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 57.07 40.68 35.50 34.63 34.40 34.35

SVD + BC 55.57 39.75 35.14 34.51 34.35 34.30

DALR 56.32 40.25 35.26 34.54 34.40 34.33

Table 2. ImageNet fc7 - uncompressed top-1 error rate: 34.24%.

ing them does not significantly change the matrix decom-

position (see also the discussion in Section 4.3). In gen-

eral these results suggest that compressing a model without

changing the domain can be done effectively with decompo-

sitions of filter weights (e.g truncated SVD), and does not

benefit significantly from the additional information com-

ing from the inputs, in contrast to when there is a domain

change involved (see the following sections).

5.3. Image recognition

Here we use the CUB-200 Birds, Oxford-102 Flowers

and Stanford 40 Actions datasets to evaluate our compres-

sion strategies. We apply the Bias Compensation and the

DALR compression techniques to fine-tuned VGG19 mod-

els. For all image recognition experiments we used the pub-

licly available MatConvNet library [33].

Fine-tuning: The VGG19 [32] is trained on ImageNet.

Since this network excelled on the ImageNet Large-Scale

Visual Recognition Challenge in 2014 (ILSVRC-2014), it

is a strong candidate as a pre-trained CNN source for the

transfer learning. Very deep CNNs are commonly used as

pre-trained CNNs in order to initialize the network param-

eters before fine-tuning. For each dataset, a fine-tuned ver-

sion of VGG19 was trained using only the training set. Al-

though initialized with the VGG19 weights, layers fc6 and

fc7 are given a 0.1 multiplier to the network’s learning rate.

The number of outputs of the fc8 layer is changed to fit the

number of classes in the dataset. All the convolutional lay-

ers are frozen and use the VGG19 weights.

Evaluation metrics: All results for image recognition are

reported in terms of classification accuracy. The compres-

sion rate of fully connected layers is the percentage of the

number of parameters of the compressed layer with respect

to the original number of parameters.

Baseline performance: We first apply truncated SVD to

the fc6 and fc7 weight matrices. In the original VGG19

and fine-tuned models, Wfc6 has 25088× 4096 parameters

4294

dim kept 32 64 128 256 512 1024

params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 16.83 36.47 51.74 54.47 54.85 55.25

SVD + BC 27.91 46.00 53.50 54.83 55.21 55.44

Pruning (mean) 4.30 8.06 12.57 25.82 37.25 50.41

Pruning (max) 4.06 7.01 15.26 25.27 36.69 48.95

DALR 48.81 54.51 55.78 55.85 55.71 55.82

Table 3. Birds fc6 compression - original accuracy: 55.73%.

dim kept 32 64 128 256 512 1024

params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 26.86 44.13 52.19 54.30 54.80 55.13

SVD + BC 28.72 47.07 53.62 54.45 55.02 55.30

Pruning (mean) 2.49 3.45 9.15 18.31 34.05 47.24

Pruning (max) 6.46 9.60 13.84 22.63 33.28 45.67

DALR 51.21 54.16 55.21 55.59 55.71 55.85

Table 4. Birds fc7 compression - original accuracy: 55.73%.

and Wfc7 has 4096× 4096 parameters. Applying truncated

SVD results in a decomposition of each weight matrix into

the two smaller matrices. If we keep the k largest singular

vectors, those two matrices will change to (25088+4096)k
and (4096+4096)k parameters for fc6 and fc7 respectively.

Since SVD does not take into account activations, and there

is no compression method to our knowledge that uses ac-

tivations in order to reduce the number of parameters in

the weight matrices, we also show results for activation-

based pruning. The pruning strategy consists of removing

the rows or columns of the weight matrices which are less

active for that specific dataset, following the work on [23].

Results: Tables 3 to 8 show the performance of compress-

ing the fc6 and fc7 layers using SVD and pruning baselines,

as well as the proposed Bias Compensation and DALR tech-

niques. Results confirm the tendency observed in the analy-

sis of the L2-error reconstruction curves in Figure 3. DALR

compression has a better performance than the other meth-

ods at the same compression rates on both fc6 and fc7 for

CUB-200 Birds, Oxford-102 Flowers and Stanford-40 Ac-

tions. In all our experiments DALR provides a slight boost

in performance even when compressing to 25% of the orig-

inal parameters. Bias compensation slightly improves the

original SVD method on both layers except on Flowers for

fc7. Since the fc6 layer has more parameters, it is the layer

that allows for more compression at a lower loss in perfor-

mance. The advantages of DALR are especially clear for

that layer, and for a typical setting where one would accept

a loss of accuracy of around one percent, truncated SVD

must retain between 4x and 8x the number of parameters

compared to DALR to maintain the same level of perfor-

mance. Finally, both pruning methods are consistently out-

performed by compression methods, probably due to the ef-

fect pruning has on subsequent layers (fc7 and fc8).

In the previous experiment we evaluated the layer com-

pression separately for fc6 and fc7. To get a better under-

standing of the potential joint compression, we perform a

dim kept 32 64 128 256 512 1024

params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 14.00 47.37 59.90 75.07 77.72 78.61

SVD + BC 29.55 57.93 71.96 75.91 78.00 78.63

Pruning (mean) 1.42 4.91 19.74 49.07 71.23 77.64

Pruning (max) 1.81 4.96 10.36 33.99 60.14 74.78

DALR 72.17 76.42 77.95 78.22 78.94 78.94

Table 5. Flowers fc6 compression - original accuracy: 78.84%.

dim kept 32 64 128 256 512 1024

params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 58.14 70.30 75.10 77.02 78.01 78.58

SVD + BC 57.07 70.14 75.53 77.15 78.00 78.50

Pruning (mean) 19.13 25.81 37.26 55.80 67.54 75.33

Pruning (max) 8.18 18.91 27.06 42.95 62.69 72.63

DALR 72.32 76.55 77.79 78.48 78.86 78.86

Table 6. Flowers fc7 compression - original accuracy: 78.84%.

dim kept 32 64 128 256 512 1024

params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 38.18 55.59 66.59 67.97 68.38 68.94

SVD + BC 46.76 60.14 66.96 68.17 68.40 69.00

Pruning (mean) 3.98 7.27 13.70 32.14 52.02 62.46

Pruning (max) 5.44 13.12 26.72 46.11 53.40 63.16

DALR 64.70 68.33 69.31 69.65 69.54 69.52

Table 7. Stanford fc6 compression - original accuracy: 68.73%.

dim kept 32 64 128 256 512 1024

params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 50.98 62.27 66.72 68.08 68.44 68.60

SVD + BC 53.62 62.74 67.32 68.37 68.67 68.82

Pruning (mean) 12.46 17.57 25.23 34.20 51.05 61.19

Pruning (max) 14.84 20.37 22.90 36.35 49.30 59.33

DALR 63.87 67.46 68.44 68.75 68.78 68.78

Table 8. Stanford fc7 compression - original accuracy: 68.73%.

compression experiment with DALR on both layers simul-

taneously. In order to find suitable compression pairs for

both layers at the same time, we implemented an iterative

solution. At each step, we slightly increase the compres-

sion on both layers. Then, both options are evaluated on

the validation set, and the compression rate with better per-

formance is applied to the network and used on the next

iteration. When both steps in compression exceed a defined

drop in performance (here set to a 1% accuracy drop), the

iterative process stops and the compressed network is eval-

uated on the test set. Results are shown in Table 10. This

implementation tends to compress fc6 more because fc6 has

more room for compression than fc7, as seen also in the ex-

periments reported in Tables 4 to 8. The results show that

we can compress the parameters of the fully connected lay-

ers to as few as 14.88% for Flowers, as few as 6.81% for

Birds, and as few as 29.85% for Stanford while maintaining

close to optimal performance.

5.4. Object detection

One of the most successful approaches to object detec-

tion is RCNN [10] (including its Fast [9] and Faster [29]

variants). This approach is also an example of the effective-

4295

ae
ro

pla
ne

bic
yc

le

bir
d

boa
t

bot
tle

bus
ca

r
ca

t
ch

ai
r

co
w

din
in

gt
ab

le

dog hor
se

m
ot

or
bik

e

per
so

n

pot
te

dpla
nt

sh
ee

p

so
fa

tr
ai

n
tv

m
on

ito
r

mAP

No Compression 75.9 77.4 65.3 53.9 38.0 76.8 78.2 80.9 40.6 74.0 67.2 79.4 82.4 74.9 66.2 33.4 66.0 67.3 73.3 67.1 66.9

SVD @ 1024 74.4 77.6 65.9 54.9 38.4 76.7 78.2 81.6 40.0 73.0 65.9 78.9 81.9 75.7 65.6 33.7 65.3 67.3 72.4 65.7 66.6

SVD + BC @ 1024 73.9 77.8 65.9 55.0 38.5 76.7 78.3 81.5 40.1 72.6 66.4 79.1 82.2 75.7 65.7 33.9 65.5 67.5 72.1 66.1 66.7

DALR @ 1024 74.6 77.7 66.4 53.7 37.6 77.0 78.1 81.7 40.5 73.3 67.4 79.7 81.9 74.8 65.9 34.0 65.9 66.9 73.7 66.3 66.9

SVD @ 768 74.2 77.5 65.8 53.5 37.8 76.6 78.3 82.3 39.8 72.5 66.1 79.4 81.5 74.2 65.6 33.8 64.7 67.9 71.7 66.3 66.5

SVD + BC @ 768 74.4 77.5 65.6 53.8 38.0 77.3 78.2 82.2 39.7 72.5 66.3 79.7 82.1 75.4 65.7 34.0 65.1 68.1 71.7 66.0 66.7

DALR @ 768 74.2 77.5 66.7 53.8 37.8 77.4 78.1 82.0 40.1 72.7 66.2 79.0 81.7 75.5 66.1 33.9 65.8 66.7 73.2 66.0 66.7

Table 9. Compression and bias compensation results on Fast-RCNN on PASCAL 2007.

Orig. Acc Compr. Acc fc6 red. fc7 red. total red.

Birds 55.73 55.97 4.66% 19.97% 6.81%

Flowers 78.84 77.62 10.45% 41.99% 14.88%

Stanford 68.73 69.43 25.59% 55.96% 29.85%

Table 10. Reduction in number of parameters for both fc6 and fc7.

ness of the fine-tuning approach to domain transfer, and also

of the importance of network compression for efficient de-

tection. The authors of [9] analyzed the timings of forward

layer computation and found that 45% of all computation

time was spent in fc6 and fc7. They then applied truncated

SVD to compress these layers to 25% of their original size.

This compression however came with a small drop in per-

formance of 0.3 mAP in detection on PASCAL 2007.

For comparison, we have also run SVD with bias com-

pensation and our compression approach based on low-rank

matrix decomposition. Results are presented in Table 9.

Here we apply compression at varying rates to fc6 (which

contains significantly more parameters), and compress fc7

to 256 pairs of basis vectors (which is the same number used

in [9]). What we see here is that at the same compression

rate for fc6 (1024) proposed in [29], our low-rank compres-

sion approach does not impact performance and performs

equal to the uncompressed network. When we increase the

compression rate of fc6 (768) we see a drop of 0.4% mAP

for standard SVD and only half of that for both SVD with

bias compensation and DALR.

6. Conclusions and discussion

We proposed a compression method for domain-adapted

networks. Networks which are designed to be optimal on a

large source domain are often overdimensioned for the tar-

get domain. We demonstrated that networks trained on a

specific domain tend to have neurons with relatively flat ac-

tivations rates, indicating that almost all neurons are equally

important in the network. However, after transferring to a

target domain, activation rates tend to be skewed. This mo-

tivated us to consider activation statistics in the compression

process. We show that compression which takes activations

into account can be formulated as a rank-constrained regres-

sion problem which has a closed-form solution. As an addi-

tional contribution we show how to compensate the bias for

the matrix approximation done by SVD. This is consistently

shown to obtain improved results over standard SVD.

Experiments show that DALR not only removes redun-

dancy in the weights, but also balances better the parameter

budget by keeping useful domain-specific parameters while

removing unnecessary source-domain ones, thus achieving

higher accuracy with fewer parameters, in contrast to trun-

cated SVD, which is blind to the target domain. On further

experiments in image recognition and object detection, the

DALR method significantly outperforms existing low-rank

compression techniques. With our approach, the fc6 layer

of VGG19 can be compressed 4x more than using truncated

SVD alone – with only minor or no loss in accuracy.

The Bias Compensation and DALR techniques were ap-

plied to fully connected layers in this work. To show the

effectiveness of those methods we applied them to standard

networks with large fully connected layers. On more recent

networks, like ResNets [15], most of the computation has

moved to convolutional layers, and the impact of the pro-

posed method would be restricted to the last layer. How-

ever, VGG-like networks are very much used in current ar-

chitectures [4, 37, 28]. Extending the proposed compres-

sion method to convolutional layers is an important research

question which we aim to address in future works.

Our paper shows that domain transferred networks can

be significantly compressed. The amount of compression

seems to correlate with the similarity [3, 36] between the

source and target domain when we compare it to the order-

ing proposed in [3] (see Table II). According to this order-

ing, the similarity with respect to ImageNet in descending

order is image classification (PASCAL), fine-grained recog-

nition (Birds, Flowers) and compositional (Stanford). We

found found that higher compression rates can be applied in

target domains further away from the source domain.

Acknowledgements We thank Adrià Ruiz for his ad-
vice on optimization. Herranz acknowledges the Euro-
pean Unions H2020 research under Marie Sklodowska-
Curie grant No. 6655919. Masana acknowledges 2017FI-
B-00218 grant of Generalitat de Catalunya, and their
CERCA Programme. We acknowledge the Spanish project
TIN2016-79717-R, the CHISTERA project M2CR (PCIN-
2015-251). We also acknowledge the generous GPU sup-
port from Nvidia.

4296

References

[1] J. M. Alvarez and L. Petersson. Decomposeme: Simplifying

convnets for end-to-end learning. arXiv:1606.05426, 2016.

2

[2] J. M. Alvarez and M. Salzmann. Learning the number of

neurons in deep networks. In NIPS, 2016. 2

[3] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and

S. Carlsson. Factors of transferability for a generic convnet

representation. IEEE transactions on pattern analysis and

machine intelligence, 38(9):1790–1802, 2016. 8

[4] A. Bansal, X. Chen, B. Russell, A. G. Ramanan, et al. Pix-

elnet: Representation of the pixels, by the pixels, and for the

pixels. arXiv:1702.06506, 2017. 8

[5] C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model com-

pression. In KDD, pages 535–541. ACM, 2006. 3

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 1

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In NIPS, 2014. 2, 3, 4

[8] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 88(2):303–

338, 2010. 6

[9] R. Girshick. Fast r-cnn. In CVPR, 2015. 2, 7, 8

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 7

[11] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compress-

ing deep convolutional networks using vector quantization.

CoRR, abs/1412.6115, 2014. 3

[12] L. Gui and L.-P. Morency. Learning and transferring deep

convnet representations with group-sparse factorization. In

ICCV. Springer, 2015. 3

[13] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quan-

tization and huffman coding. arXiv:1510.00149, 2015. 2,

3

[14] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain sur-

geon and general network pruning. In ICNN, 1993. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 8

[16] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning al-

gorithm for deep belief nets. Neural Computation, 18:1527–

1554, 2006. 2

[17] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-

edge in a neural network. In arXiv:1503.02531, 2014. 3

[18] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

BMVC, 2014. 2

[19] P. Koch and J. J. Corso. Sparse factorization layers for neu-

ral networks with limited supervision. In Arxiv:1612.04468,

2016. 2

[20] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In NIPS, 1989. 2, 4

[21] J. Li. Restructuring of deep neural network acoustic models

with singular value decomposition. In Interspeech, January

2013. 2, 3, 4

[22] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy.

Sparse convolutional neural networks. In CVPR, 2015. 2

[23] M. Masana, J. van de Weijer, and A. D. Bagdanov. On-the-

fly network pruning for object detection. arXiv:1605.03477,

2016. 7

[24] A. Mukherjee. Topics on Reduced Rank Methods for Multi-

variate Regression. PhD thesis, The University of Michigan,

2013. 5

[25] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In Proceedings of the

Indian Conference on Computer Vision, Graphics and Image

Processing, Dec 2008. 3, 6

[26] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and

transferring mid-level image representations using convolu-

tional neural networks. In CVPR, 2014. 1

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In ECCV, 2016. 2, 3

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2016. 8

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015. 7, 8

[30] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets.

arXiv:1412.6550, 2014. 2, 3

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 1

[32] K. Simonyan and A. Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv:1409.1556, 2014. 3, 6

[33] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. In Proceeding of the ACM Int. Conf. on

Multimedia, 2015. 6

[34] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical re-

port, 2011. 3, 6

[35] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-

Fei. Human action recognition by learning bases of action

attributes and parts. In ICCV, 2011. 3, 6

[36] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Advances

in neural information processing systems, pages 3320–3328,

2014. 8

[37] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.

Places: An image database for deep scene understanding.

arXiv preprint arXiv:1610.02055, 2016. 1, 8

[38] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards

compact cnns. In ECCV, 2016. 2

4297

