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Abstract

Creating road maps is essential for applications such as

autonomous driving and city planning. Most approaches in

industry focus on leveraging expensive sensors mounted on

top of a fleet of cars. This results in very accurate estimates

when exploiting a user in the loop. However, these solutions

are very expensive and have small coverage. In contrast, in

this paper we propose an approach that directly estimates

road topology from aerial images. This provides us with an

affordable solution with large coverage. Towards this goal,

we take advantage of the latest developments in deep learn-

ing to have an initial segmentation of the aerial images.

We then propose an algorithm that reasons about missing

connections in the extracted road topology as a shortest

path problem that can be solved efficiently. We demonstrate

the effectiveness of our approach in the challenging Toron-

toCity dataset [23] and show very significant improvements

over the state-of-the-art.

1. Introduction

Creating maps of our roads is a fundamental step in many

application domains. Having accurate maps is essential to

the success of autonomous driving for routing, localization

as well as to ease perception. Building smart cities requires

understanding the road network as well as the traffic pat-

terns that occur on it to enable faster commute times, better

public transportation systems and a healthier environment.

Most self-driving teams and mapping companies rely on

expensive sensors mounted on a fleet of vehicles which

drive around, mostly capturing LIDAR point clouds. A

semi-manual process is then utilized to create the road net-

work. Very accurate results can be achieved, but coverage

is very limited. Furthermore, this is a very costly process.

Thus HD maps are available for only a small region of the

world.

An alternative approach is to use aerial and satellite im-

ages as data source. This is appealing as they have much

larger coverage. For example, satellites go around the world

Figure 1: Road topology from aerial images at a large scale.

Our extracted road network is shown in blue.

twice a day, providing up-to-date information. However,

extracting road networks from this imagery is very chal-

lenging, as the resolution is much lower. Further, occlusion

(e.g., trees) and large shadows cast by tall buildings are dif-

ficult to handle. Most existing approaches cast the prob-

lem as semantic segmentation. Unfortunately, this ignores

topology, which is the basic unit needed in order to per-

form driving. Recently, [13, 14] leveraged existing maps

to enhance them with road-width as well as information

about the number of lanes, their location, parking spaces

and sidewalks. However, these approaches cannot reason

about roads that are not present in the initial coarse map.

In contrast, in this paper we propose an approach that

directly estimates road topology from aerial images. To-

wards this goal, we take advantage of the latest develop-

ments in deep learning to have an initial segmentation of the

aerial images. We then propose an algorithm that reasons

about missing connections in the extracted road topology as

a shortest path problem that can be solved efficiently. We

demonstrate the effectiveness of our approach in the chal-

lenging TorontoCity dataset [23], and show very significant

improvements over the state-of-the-art.
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2. Related work

Many approaches have been proposed in the last decades

to extract road segmentation from aerial and satellite im-

ages. Several methods extract low level features and define

heuristic rules (e.g. connectivity, shape) over these to clas-

sify road like structures. Geometric-stochastic road models

based on assumptions about the width, length and curvature

of the road and the pixel intensities have been exploited in

[2]. Hinz and Baumgartner [10] use road models and their

context including knowledge about their radiometry, geom-

etry and topology. In [11], homogeneous areas are detected

based on their shape and a road tree is then grown by track-

ing the roads. The drawback of these heuristic rule based

models is that obtaining the optimal set of rules and param-

eters is very difficult. This is particularly challenging due to

the high variety of roads. As a consequence these methods

can work only on areas (e.g. rural) where the used features

(e.g. image edge) occur predominantly at roads.

Convolutional neural networks have been used to seg-

ment roads from aerial images [15]. The neural network is

applied at the patch level in multiple stages (with the previ-

ous prediction as input) to capture more context and struc-

ture. In [16], existing maps are used for data augmentation.

Unfortunately connectivity of roads is not guaranteed in this

approach. In [4], the roads are detected by a deep neural net-

work applied to image patches. The extracted road network

is then matched to a road database (i.e., OpenStreetMap)

and the two road maps are merged.

Connectivity is probably one of the most important road

features. However, this has been rarely studied in both the

computer vision and photogrametry communities. Chai et

al. [3] define a junction point process that reasons about the

graph describing the road network. The process uses vari-

ous priors, e.g. homogeneity of the pixel values, connectiv-

ity of the graph, edge orientation and line width. However,

optimization is hard as it requires Reversible Jump MCMC

sampling. In [19], a Point Process is defined to describe

the interaction of line segments (e.g., connectivity). The

road network is extracted by minimizing an energy func-

tion using simulated annealing. In [22], the road extraction

is limited to tree structures. This guarantees the connec-

tivity and the optimization can be solved exactly. Unfortu-

nately roads are not tree-structured, posing a significant lim-

itation. This approach was further extended to loopy graphs

in [21], where the NP hard problem is approximately solved

by a branch and cut algorithm. Wegner et al. [24, 25] seg-

ment the image into superpixels and the ones with high road

likelihood are connected by a shortest path algorithm with

the goal of creating an overcomplete representation of the

road network. These paths are then handled as higher order

cliques in a Conditional Random Field (CRF). As shown in

our experiments this method does not produce very accu-

rate results, and is an order of magnitude slower than our

(a) (b)

Figure 2: Road graph extraction: Nodes are road segment

endpoints (crosses). (a) Graph constructed via thinning.

Small branches (orange) are removed and small loops (blue)

are replaced by a tree providing the same connectivity to the

rest of the graph. (b) final graph (red).

approach.

Most approaches considered road segmentation as a bi-

nary problem, however roads can have various categories

which are important for mapping. Mattyus et al. [13] im-

prove existing freely-available road maps by extracting road

width information and by correcting the position of the cen-

terline. In [14], aerial and ground images are utilized jointly

in order to extract fine-grained road information like the

number of lanes, presence of sidewalks and parking lanes.

Crowd-sourced manual labeling as well as GPS trajectories

have been exploited to create road topology. This is the case

of the OpenStreetMap project [1], in which volunteers have

mapped more than half of the world. Recorded GPS tracks

were also employed to help the road segmentation [27].

3. Road Topology from Aerial Images

In this paper we want to extract a graph representation

of the road network from aerial images. In this graph the

nodes represent end points of street segments and the edges

encode the connections between these points, defining the

road segment center lines. Towards this goal, we exploit

convolutional neural networks (CNNs) to segment the im-

ages into the categories of interest. Then a simple process

based on thinning extracts the road centerlines from the seg-

mentation output. Errors in the segmentation can result in

discontinuities, which translate into topological errors of the

extracted road network. To alleviate this problem we further

reason about the presence or absence of edges in an aug-

mented road graph which contains also connection hypothe-

ses covering the disconnects. As shown in our experiments

this improves significantly our estimated road network.

3.1. Semantic segmentation of Aerial Images

In this section we describe the architecture we employ to

segment aerial images. Following current trends in seman-
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Figure 3: Segmentation softmax is highlighted in green, the

extracted road center line is shown in red, and the connec-

tion hypotheses generated by the A∗ search are in blue.

Dashed yellow shows other possible connections which

were not selected by the A* algorithm.

tic reasoning from ground images we develop a variant of

ResNet [8] to perform this task. Similar to FCN [18], it con-

sists of an encoder that compresses the image into a small

feature map, and a fully convolutional decoder, which gen-

erates the segmentation output probabilities.

Our encoder consists of a ResNet block with 55 convo-

lutional layers with 3 × 3 kernels. We use a convolutional

layer with stride 2 after 6 residual block forming 13 con-

volutional layers. This divides the whole encoding network

in 4 parts. We use 16, 32, 64 and 128 kernels in each of

these parts respectively. This gives us a feature map of 128

dimension with 1/8 of the original resolution.

The decoder consists of 3 fully convolutional layers with

number of kernels 64, 32 and 16 respectively. Each of these

layers upsamples its input to be double its resolution. In

order to capture details, each of these layers takes feature

maps directly from the encoder network as input as well

as two additional skip connections from the stride convolu-

tion. The last convolutional layer converts the feature map

into scores follow by a softmax with three outputs: road,

building and background. Thus the whole network consists

of 55 convolutional layers for the encoder, 3 fully convolu-

tional layers for the decoder, follow by a convolutional layer

to output the class labels.

Segmentation networks are typically trained via cross-

entropy. However, the metric of interest at test time is typi-

cally the intersection over union (IoU), which is defined as

1

|C|

∑

c

∑
i ✶{yi = c} · ✶{y∗i = c}∑

i ✶{yi = c}+ ✶{y∗i = c} − ✶{yi = c} · ✶{y∗i = c}

where yi is the prediction, y∗i the ground truth and c is a

class label.

In this paper, we develop a novel soft IoU loss, which

is differentiable and thus amenable to back propagation. In

particular, it is defined by replacing the indicator functions

with the softmax outputs

ℓsoft−IOU =
1

|C|

∑

c

∑
i pic · p

∗

ic∑
i pic + p∗ic − pic · p∗ic

where pic is the prediction score at location i for class c, and

p∗ic is the ground truth distribution which is a delta function

at y∗i , the correct label.

3.2. Road graph generation

Once we have an estimate of the semantic segmentation,

the next step is to produce a graph representing the topol-

ogy of the network. Towards this goal, we first generate a

binary mask from the softmax output of the deep network

by thresholding the road class at 0.5 probability. Then we

apply thinning [28] to extract the road centerlines, i.e., a one

pixel wide representation of the road segments preserving

the connectivity of the components. This results in a graph,

where every pixel is a node. To simplify the graph we em-

ploy the Ramer–Douglas–Peucker algorithm [17, 6], which

outputs a piecewise linear approximation of our road skele-

tons. In particular, we use an error tolerance of ǫ = 1.5m.

Note that our thinning procedure creates separate branches

at topological defects of the segmentation mask. Many of

them are small curves, which are not real centerlines. We

thus remove curves with length smaller than 5m. This is

illustrated in Fig. 2.

Another potential problem are small holes in the seg-

mentation mask, which cause undesired loops in our con-

nectivity graph. We thus convert each loop of size smaller

than 100 m into a tree (star architecture) which provides the

same connectivity to the nodes outside of the loop 1. We

refer the reader to Fig. 2 for an example. Note that we will

only violate connectivity at roundabouts, which are rare in

North America, where our source imagery is captured. This

gives our representation of the road network graph, where

nodes are end-points of the road segments and edges define

the curves connecting these points.

3.3. Generating connection hypotheses byA∗ search

Our segmentation algorithm is accurate, but discontinu-

ities of the resulting mask can cause errors in topology. Fig.

3 shows an example where the road in the left is discon-

nected. To alleviate this problem, we reason about poten-

tial missing street segments in order to further improve the

topology. We define a leaf node as a node with a single con-

nection. This represents the end of a road according to our

1 The loop nodes connected to nodes outside the loop are preserved, the

rest are removed and a new node is inserted in the center of the loop and is

connected to all the preserved nodes.
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Figure 4: Each road segment (orange dots) is a random vari-

able. Red lines show centerlines extracted from the seg-

mentation. Hypothesis connections are shown as blue lines.

This is the dual of the graph that describes the road network.

current topology estimate. We generate connections from

the leaf nodes to other nodes if they lie within 50m and the

shortest path in the graph between the two nodes is larger

than 100m, to prevent creating small loops in the graph.

Following this procedure, a leaf node can be connected

to many nodes which provide the same connectivity. This is

illustrated in Fig. 3, where possible connections are shown

in dashed yellow. We exploit the A∗ algorithm [7] to select

from these connections. A* is a shortest path algorithm that

applies a cost heuristic to determine the next nodes to visit.

If this heuristic is close to the real cost, then the search is

efficient. We utilize the probability score of being non-road

as our node cost, the distance as our edge cost and the eu-

clidean distance as our heuristic. The algorithm runs very

fast as most nodes are not visited during the search.

3.4. Reasoning about the connections

So far we have shown how to estimate possible connec-

tions between road segments. We now define an algorithm

that decides the validity of these connections. Towards this

goal, we reason about the hypothesized connections as well

as the original road segments to prune false positives. We

represent each road segment/connection with a binary vari-

able yi ∈ {0, 1} representing the presence/absence of that

road segment. Note that this is the dual of the graph which

describes our road network. We refer the reader to 4 for an

illustration.

To perform this task, we exploit a variety of potentials

which depend on a single road segment. Our features are

the soft-max scores along the road segment, the distance

to the closest non road pixel, the length of the segment, a

binary feature encoding if the node represents a connection

hypothesis and the number of connections to other road sec-

tions. Since a road segment defines a curve, we calculate

the features along the curve by employing different pooling

strategies. In particular we employ min, max and average

pooling to form additional features.

Figure 5: Two examples for the connection classifier. (Left)

negative example, (Right) positive example.

(a) (b)

Figure 6: Illustration of the ground truth (GT) assignment.

(a) GT graph in black and the extracted graph in blue. The

subfigure shows two types of augmented edges. The dashed

red connect the GT endpoints (A and B) to our extracted

graph, while the dashed blue connect the discontinuities of

our extracted graph. (b) The shortest path between A and

B is shown in orange where the dashed line highlights the

augmented edges. The shortest path defines the assignment

and thus the true positives area, i.e., the projection on the

ground truth (green). False positives are segments outside

the shortest path (red), false negative length is the missing

part of the ground truth, shown in black.

Deciding if a connection hypotheses is true is a difficult

classification problem, especially since our deep semantic

segmentation algorithm has already failed in this region. We

thus utilize an additional network that classifies whether the

hypothesized connection is a true connection or not, and

employ the output of this classifier as an additional feature.

The input to this classifier is a cropped image around the

connection with the connection drawn on the image. We

refer the reader to Fig. 5 for an illustration. In particular, we

use an Inception network [20] to perform this classification.

Inference in this model is trivial and can be done in par-

allel as all our features depend on a single road hypothesis.

We next describe how to perform learning.

4. Learning and Metrics

One of the difficulties we need to tackle is the fact that

the ground truth graph and the estimated graph have dif-

ferent topology. Furthermore, the road hypothesis on both

graphs have also different shape. In order to both do learn-

ing and evaluate our results we need to be able to register

the two graphs and come up with the true labeling in the
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hypothesized graph. In this section we describe how to do

this task.

4.1. Assignment of GT roads to extracted roads

Our first goal is to assign the ground truth (GT) roads

to the extracted roads in the predicted graph. We consider

this assignment as a set of shortest path problems defined

between each intersection and the road ends connected to

that intersection in the ground truth network. To ensure that

the connection goes along a similar path as the ground truth

road, we only include as hypothesis the extracted roads lo-

cated in a fix radius around the ground truth.

Note that in principle there will be many cases where

there is no possible path, as we might have disconnects in

the extracted graph. To handle this, we augment our graph

with edges connecting the end points of the ground truth

graph to the end points in the extracted graph. Furthermore,

we also include edges that encode the missing connections.

Fig. 6 shows an illustration of this process, where on (a) the

extracted graph is shown in blue and the additional edges

are shown in dashed blue and red.

We then solve the assignment problem by calculating the

shortest path between the endpoints, where the distance be-

tween the adjacent points pi and pi+1 is calculated as

D(pi, pi+1) =

i+1∑

j=i

φd(pj) + λ(pi, pi+1)||pi − pi+1||

with λ(pi, pi+1) = 1 if the edge existed and λ(pi, pi+1) =
c, with c as a large constant if the edge is an augmented

edge. φd(pj) measurs the distance to the closest ground

truth road edge. This ensures that the shortest path lies close

to the ground truth. The minimum path can be solved by

the Dijkstra algorithm [5]. Since the augmented edges have

very high cost, they will only be selected if there is no other

choice (the extracted graph is not connected). We refer the

reader to Fig. 6 for an example.

4.2. Learning

We can utilize the procedure we just described to com-

pute our ground truth in terms of the extracted graph, i.e.,

our yi’s. In particular, all the original edges on the short-

est path are considered as true positives, while the edges

that are not part of any shortest path are considered as false

positives. We use this assignment as our ground truth to per-

form learning. We train our model using max margin loss

and use the Hamming distance as the task loss.

4.3. Evaluating Topology

The most commonly employed metrics in the literature

are pixel-based and measure semantic segmentation [15, 4,

24, 25, 3]. However, these metrics do not reflect the quality

of the extracted topology. Defining a graph based metric is

Figure 7: TorontoCity demo area shown on Google Earth.

Cyan: train, orange: validation, red: test set.

non-trivial as there is no simple answer to the question of

when are two graphs similar.

Wenger et al. [24, 25] propose a connectivity metric

measuring if the shortest path distances between randomly

sampled correct pixels are the same in the ground truth and

the extracted road network. This metric reflects topological

similarity, but it is hardly reproducible due to the random

selection of end points to form the shortest path problem.

Furthermore, only a few end points are selected and thus

this can miss many topological changes.

In this paper we propose a new set of metrics, which

are based on the assignment of the ground truth roads to

the extracted roads. We believe that these metrics better

capture the extracted topology. We define the precision of

each segment as the ratio of the true positive length d∗p to

the extracted length dp. We compute the final precision by

computing the average precision of each segment weighted

by its ground truth length d∗p

pr =
1∑
p d

∗

p

∑

p

min (dp, d
∗

p)

max (dp, d∗p)
d∗p

Note that to take into account the fact that the ground truth

length can be smaller or greater than the estimated length

we use the ratio of min and max values. We define recall as

simply the percentage of road that is recovered with respect

to the ground truth dp,gt

rec =

∑
p d

∗

p∑
p dp,gt

We report F1, which is the harmonic mean of precision and

recall.

F1 = 2
pr · rec

pr + rec

Additionally, we define a metric capturing the ratio of road

segments which were estimated without discontinuities. We

call this Connected Road Ratio (CRR).

CRR =
Ncon

Ngt
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IoU F1 precision recall

[25] 41.6 58.8 46.3 80.5
[25] + Our Deep 68.4 81.2 75.7 87.7

Ours 76.4 86.6 87.7 85.6

Table 1: Semantic Segmentation of the road class: our ap-

proach significantly outperforms [25], even when the base-

line utilizes our deep semantic segmentation algorithm.

F1 Precision Recall CRR

OSM (human) 89.7 93.7 86.0 85.4

[25] 39.7 26.1 82.6 76.8
[25] DeepUn 63.1 50.0 85.7 78.4

HED [26] 42.4 27.3 94.9 91.2
Ours basic 78.0 71.2 86.2 79.1

Ours - NoDeepCon. 83.9 84.4 83.3 77.6
Ours full 84.0 84.5 83.4 77.8

Table 2: Topology recovery metrics (percentage).

with Ncon the number of road segments extracted without

discontinuities and Ngt the number of GT segments.

5. Experiments

We perform our experiments on the demo region of the

TorontoCity dataset [23]. We use the pixelwise annotations

of this dataset to train our semantic segmentation network

with 3 classes (i.e., background, road, building).

Dataset: The TorontoCity demo region includes aerial

images over 25km2 for training, 12km2 for validation and

17.5km2 for test. All sets are typical North American ur-

ban areas with both skyscrapers and family houses. The

imagery consists of 5000 × 5000 pixel orthorectified im-

ages with 10 cm/pixel resolution and RGB color channels.

The dataset provides pixelwise annotation of the road sur-

faces and the buildings plus vector data defining the road

center lines and the connectivity between the roads (i.e. the

road graph). Fig. 7 shows an overview of the dataset. Note

that this is a very large area compared to datasets typically

employed in the literature.

Baselines: We compare our method to the work of

Wenger et al. [24, 25]. We resized the images to 25 cm/pixel

(the same as in [25]) and used the default parameter setting

provided in the authors’ code. Note that without resizing,

their approach takes more than an hour per image. We add

an additional comparison by combining the Markov random

field of [25] with our deep neural network estimates, in or-

der to give this approach the opportunity to leverage deep

learning. Towards this goal, we replaced their random for-

est unary features with our semantic segmentation softmax

gt\pred. 0 1

0 71.6 28.4
1 32.9 67.1

Table 3: Confusion matrix of connection classifier

values. Since [25] does not create a vector representation

of the road, we use our graph generation method (described

in Section 3.2) to convert it to a graph which we can then

evaluate. We compare also to HED [26] which predicts the

road centerlines directly by a deep net. We directly employ

their code. Additionally, we compare to the freely available

OpenStreetMap project [1] road maps as baseline. This can

be considered as human performance on this task. We ne-

glect very small road categories in OSM (i.e., path, cycle-

way, service, footway and path), as they are not labeled in

TorontoCity.

Learning details: We used the training set for training the

deep network and the validation set for training the SVM.

Our network takes as input 1440× 1440 resolution patches

randomly cropped from the raw images with random flips.

The network is trained with Adam [12] for 80 rounds, with

the initial learning rate of 1e− 3, which we drop by a factor

of 5 at round 40 and 60. We use batch size of 3 perform

300 iterations for each round. The weights are initialized

using MSR initialization [9]. Training the network took

around 16 hours. To train the Inception network that reasons

about whether a connection in the graph exists, we employ

a training set of 22, 000 images, which were generated by

creating connection hypotheses on the training set (1/3 of

the samples), by generating additional examples from the

road graph (1/3) and by adding negative examples (1/3)

randomly picked around road areas. For training we use

a learning rate of 0.001, a momentum of 0.9 and train the

network for 100 epochs.

Metrics: We report four types of pixel-wise metrics to

show the quality of our semantic segmentation. This in-

cludes intersection over union (IoU), precision, recall and

F1. We additionally report the metrics described in Section

4, which tests the accuracy of the shape and topology of the

road network. We apply a radius of 20m around the ground

truth roads, everything else cannot be a true positive.

Soft IoU vs. cross-entropy loss: Table 4 shows a com-

parison between applying cross-entropy and soft IoU loss

for semantic segmentation. Soft IoU is considerably better.

Comparison to the state-of-the-art: As shown in Ta-

ble 1 our method outperforms the baseline [25] by a large

margin, even when we provide our segmentation scores as
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mean bg road building accuracy

cross-entr. 71.6 74.8 69.9 70.3 84.1
soft IoU 75.6 80.2 75.1 71.5 87.0

Table 4: IoU for 3 classes on the validation set. Soft IoU

loss is considerably better.

(a) TP (b) TN (c) FP (d) FN

Figure 8: Examples of connection classifier: TP: true pos-

itive, TN: true negative, FP: false positive, FN: false nega-

tive. This is a difficult classification problem even for hu-

mans. Many road like structures (drivable surfaces) are not

part of the road network ground truth, e.g. in (c).

unary potentials. The baseline tends to create an overcom-

plete road extraction resulting in higher recall but smaller

precision. As shown in Table 2 our approach also signifi-

cantly outperforms the baseline in terms of topology. In par-

ticular, [25] has high recall but very bad precision. By ap-

plying our deep unary potentials the baseline improves, but

is sill behind our approach. HED [26] also predicts roads

at every road-like surface, resulting in high Recall and CRR

but very low Precision and F1. HED has a difficult time

predicting the skeleton, as in contrast to edge detection, it

is not aligned with image edges but lies over homogeneous

road surfaces. Having low precision is problematic in prac-

tice since a manual operator doing quality control would

need to delete many extracted roads, which most likely will

take longer than adding missing roads. The CRR metric is

correlated with Recall and is very sensitive to small discon-

tinuities, while it is agnostic to false positives. Therefore,

methods that create over-complete road networks with low

precision achieve higher numbers. This is why any single

metric is not good in isolation.

Running time: Our approach is very efficient. The seg-

mentation network takes approximately 1s on an NVIDIA

TITAN X GPU. Classifying an image takes around 1s run-

ning on the same GPU. The rest of the pipeline is imple-

mented in C++ single threaded. It takes 90s on average to

process a 5000× 5000 pixel image. In contrast, [25] needs

around 30 minutes per 2000 × 2000 pixel image running

multi threaded on an Intel Xeon E5-2690 CPU. We used the

Matlab and C++ implementation provided by the authors.

Comparison to human performance: OpenStreetMaps

have been generated by a combination of manual labeling

and recorded crowed-sources GPS trajectories. As shown

in Table 2 our approach is not far behind OSM. This is re-

markable, taking into account the enormous manual label-

ing task that OSM required. OSM achieves almost 90% F1.

The fact that it is not perfect shows the difficulty of the task.

Ablation studies: We compared three different instantia-

tions of our model. Our basic algorithm only extracts the

road center line from our semantic segmentation without

reasoning about connectivity. Our second version reasons

about connectivity but does not utilize the Inception classi-

fier. The last version is our full model. As shown in Table 2

our basic method provides decent results. If we employ rea-

soning about the existence of roads, precision increases and

thus also F1, while the recall as well as the ratio of roads

covered decrease only slightly. Adding the deep unary con-

nection classifier improves the performance only slightly.

This classification task is a very difficult and the accuracy is

only around 70% as shown in Table 3.

Qualitative Results: Fig. 9 shows results over the test

set for the baseline and our method. The baseline is much

more susceptible to create false positives, which reduces the

precision significantly. Finally, Fig. 10 shows details of the

extracted road networks. Our method can produce very sim-

ilar results to the TorontoCity ground truth as well as OSM

(human annotation). The extracted centerlines follow the

road curves, and very few false positive roads exist. Typi-

cal errors are due to tall buildings and wide roads where the

segmentation fails, e.g., due to occlusion by the buildings.

Small interruptions in the connectivity around intersections

are shown in Fig. 10.

6. Conclusion

In this paper we have presented an approach that directly

estimates road topology from aerial images. This provides

us with an affordable solution that has large coverage. To-

wards this goal, we have taken advantage of the latest de-

velopments in deep learning to have an initial segmentation

of the aerial images. We have then derived an algorithm

that reasons about missing connections in the extracted road

topology as a shortest path problem which can be solved

efficiently. We have demonstrated the effectiveness of our

approach in the challenging TorontoCity dataset [23] and

show very significant improvements over the state-of-the-

art. In the future we plan to extract additional information

such as building footprints in order to enrich our maps.
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(a) [25] (b) Ours

Figure 9: Visualization of the results on the entire test set (17.5km2, 1.75 · 109 pixels). Green: True positive, red: false

positive, blue: false negative. On the left (a): baseline [25], on the right (b): our method.

(a) [25] (b) Ours (c) OSM (human) (d) GT

Figure 10: Road centerlines (blue). We can produce similar results to humans and much better estimates than the baseline.
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