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Abstract

Given a video and a description sentence with one

missing word, “source sentence”, Video-Fill-In-the-Blank

(VFIB) problem is to find the missing word automatically.

The contextual information of the sentence, as well as vi-

sual cues from the video, are important to infer the miss-

ing word accurately. Since the source sentence is broken

into two fragments: the sentence’s left fragment (before the

blank) and the sentence’s right fragment (after the blank),

traditional Recurrent Neural Networks cannot encode this

structure accurately because of many possible variations of

the missing word in terms of the location and type of the

word in the source sentence. For example, a missing word

can be the first word or be in the middle of the sentence and

it can be a verb or an adjective. In this paper, we propose

a framework to tackle the textual encoding: Two separate

LSTMs (the LR and RL LSTMs) are employed to encode the

left and right sentence fragments and a novel structure is in-

troduced to combine each fragment with an external mem-

ory corresponding to the opposite fragments. For the visual

encoding, end-to-end spatial and temporal attention models

are employed to select discriminative visual representations

to find the missing word. In the experiments, we demon-

strate the superior performance of the proposed method on

challenging VFIB problem. Furthermore, we introduce an

extended and more generalized version of VFIB, which is

not limited to a single blank. Our experiments indicate the

generalization capability of our method in dealing with such

more realistic scenarios.

1. Introduction & Related Works

In computer vision, due to Deep Convolutional Neural

Networks (CNNs) [1, 2, 3, 4] dramatic success has been

achieved in detection (e.g. object detection [5]) and classi-

fication (e.g. action classification [6]). Likewise, Recurrent

Neural Networks (RNN) [7, 8, 9] have been demonstrated

to be very useful in Natural Language Processing (NLP)

for language translation. Recently, new problems such as

Visual Captioning (VC) [10, 11, 12] and Visual Question

Figure 1. Two examples of the Video-Fill-in-the-Blank

problem[19] with a single blank and multiple blanks.

Answering (VQA) [13, 14, 15, 16, 17, 18] have drawn a lot

of interest, as these are very challenging problems and ex-

tremely valuable for both computer vision and natural lan-

guage processing. Both Visual Captioning and Visual Ques-

tion Answering are related to the Video-Fill-in-the-Blank

(VFIB) problem, which is addressed in this paper.

Visual Captioning (VC) needs deep understanding of

both visual (i.e. image or video) and textual cues. Recently,

several approaches for VC have been introduced. Some of

these algorithms focus on leveraging RNNs, which take vi-

sual input, focus on different regions of the image and lever-

age attention models to produce captions [12, 20]. Fur-

thermore, a dense captioning method is proposed in [20],

where for a given image, multiple captions are generated

and for each caption a corresponding bounding box is pro-

duced. Visual Question Answering (VQA) has deep roots

in textual question answering [21, 22, 23]. The goal of tex-

tual question answering is to answer a question based on a

collection of sentences.

The major difference between VQA and VC problems is

that in VQA there is a “question” as a sentence in addition to

the image or video. This makes the problem harder since the

question can be about details of the image or video; How-

ever, for the VC problem, any factual sentence about the

image can be a correct caption. Some methods use a combi-

nation of the question and the image/video features through
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Figure 2. Our proposed method to solve Video Fill In the Blank (VFIB) problem. Source sentence encoding, spatial and temporal attention

models are shown.

LSTMs [24] and output the answer to the question. Some

other methods combine the image features with the words

one by one, for instance, the methods in [17, 22]( [17] is

an extension of [22]), use visual and textual information as

input to the dynamic memory networks and convert it to a

sequence of words through an RNN with an iterative atten-

tion process. In [18], a binary question answering (yes/no)

on abstract (unreal) scenes is presented. Another binary an-

swering problem which verifies existence of a relation be-

tween two concepts (for example: dogs eat ice cream) is

proposed in [25], which uses CNNs to verify the relation.

MovieQA [26] presents another form of VQA, where the

input is a video and its subtitle. The authors in [26] use

multiple choice questions and demonstrate that the visual

information does not contribute to the final results.

Video Fill-In-the-Blank (VFIB) [27] is a relatively new

problem and has a broad variety of real world applications

such as visual guided report generation, corrupted data re-

covery, officer report automation for police departments,

etc. VFIB is related to Video Question Answering (VQA)

problem, however, it has some differences. VQA datasets

usually have a bias to some specific forms of questions

such as location, color, counting, etc. Therefore, the an-

swers for each of these questions are limited to a small

dictionary of words. For example, in DAQUAR question

answering dataset [15], in many cases, the word “table”

is the answer to “What is” question type, and “White” to

“What color” questions [14]. On the other hand, in VFIB

problem, there is no limit on the type of the missing word

and the word can be a verb, adverb, adjective, etc. Fur-

thermore, for VQA problems, the “question” is always a

complete sentence. In this scenario, it is easier to encode

the “question” in the model (for example, using standard

models such as Recurrent Neural Networks) and then use

it to predict the answer. Therefore, it is easy and straight-

forward to use off-the-shelf techniques; However, there is

no “question” in the VFIB problem, so it is tricky to en-

code the source sentence using the standard encoding tech-

niques. Also, the blank can be at any location in the sen-

tence, namely, in the middle or very first or last word of the

source sentence. Last but not least, for VQA problem, it is

very expensive to collect datasets, hence limiting its practi-

cal applications. It is time-consuming since the human an-

notators have to generate questions and answers one by one

while watching the videos. Some efforts have been made

to make the question-answer generation automatic [14], but

these approaches generate a lot of abnormal questions, and

they tend to work well only on object related questions.

Due to lack of a complete sentence and the various types

of missing words and also different possible locations of

the missing word in the source sentence, the VFIB problem

cannot be well-solved by traditional Recurrent Neural Net-

work (e.g. LSTM). Therefore, we propose a new framework

which leverages the source sentence structure and integrates

the spatial and temporal attention modules to fully exploit

the visual information.

This paper makes the following contributions: First, we

propose a novel approach which can encode left and right

sentence fragments. It encodes each fragment with a sep-

arate LSTM and feeds the output of each fragment to the

opposite fragment (for example, from left fragment to the

right fragment) as an external memory. This is very dif-

ferent from basic BiLSTM approaches [28, 7], where each

of left and right fragments are encoded separately and then

joined by a simple fusion technique (e.g. concatenation,

summation, etc). Moreover, we show that our text encoding

achieves superior performance over other methods. Second,

we propose a novel framework for the spatial and temporal
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Figure 3. An illustration of the source sentence encoding approach. In the first stage, Each source sentence is formatted as two fragments,

the left and right sentence fragments. Each sentence fragment is passed through an LSTM. In the second stage, left and right fragments’

LSTMs are combined with a memory from the opposite side.

attention models, which are trained end-to-end. Third, dif-

ferent visual features are employed by the spatial and tem-

poral attention models, which exploit the visual cues from

different domains. Fourth, in our formulation we perform

multiple features fusion in end-to-end fashion without any

need for pre-training single modules like [29, 30], which

deal with multi-modal problems. We also introduce a more

general version of VFIB problem and employ source sen-

tences with multiple blanks. We show that our method pro-

duces the superior results.

The organization of the rest of the paper is as follows:

In Section 2 we introduce different components of the pro-

posed method in detail; in Section 3, we show experimental

results on both single blank and multiple blanks problems;

and we conclude in Section 4.

2. Method

We formulate the VFIB problem as a word prediction

problem with two sentence fragments (left sentence frag-

ment “ql”, and right sentence fragment “qr”) and the video

υ:

b̂ = argmax
b∈β

p(b|ql,qr, υ, θ), (1)

where β ⊂ V is the set of words to fill in the blank and V is

the dictionary of all the words in our dataset. b̂ is the predic-

tion (the word to be filled in the blank), and θ is the model

parameters. Our framework is depicted in Figure 2. The

proposed approach consists of four components: 1) source

sentence encoding, 2) spatial attention model, 3) temporal

attention model, and 4) inference of the missing word. We

discuss these four components in the following subsections.

2.1. Source Sentence Encoding

In this section, we introduce how to encode the source

sentence which consists of left and right fragments and a

blank between them. Figure 3 shows an illustration of the

proposed source sentence encoding approach. The blank

can be anywhere in a source sentence, thus a single LSTM

architecture will not work very well, since left or right frag-

ment can be very short, and in many cases the missing word

depends on both fragments. However, a simple LSTM will

fail if one fragment is very short or both fragments are

needed for prediction. Also, the blank can belong to any

classes of words (e.g. verb, adjective, etc.). These com-

plexities of the source sentence make the textual encoding

difficult.

We treat the source sentence as two fragments; the left

fragment from the first word to the word before the blank

and the right fragment backward from the last word to the

word after the blank. Our source sentence encoding mod-

ule has three stages. In the first stage, we encode each of

the left and right fragments separately with two indepen-

dent LSTMs. In the second stage, we encode left and right

fragments along with the encoded fragments from the op-

posite side in stage one. Namely, we use the encoded left

fragment in the first stage as an external memory to encode

the right fragment in stage two and vice versa. We call it

“external memory”, since it is computed using the opposite

fragment. In fact, the external memory makes the model to

understand each fragment better, since it has some informa-

tion from the opposite fragment. Finally, the model learns

to combine the output of both stages and generates the fi-

nal source sentence’s representation called uq (Figure 3).

Our approach has two major differences compared to BiL-

STM [28, 7]. First, we use the the opposite fragments as

an external memory for each sides, and second, our method

learns how to combine the left and right encoded fragments.

In the following, we provide more details.

Assume that the source sentence has n words, and the

t’th word is missing. The left and right fragments’ se-
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quences can be embedded as:

q1
l = W1

x[x
1,x2, ...,xt−1]

q1
r = W1

x[x
n,xn−1, ...,xt+1],

(2)

where xi ∈ {0, 1}
|V |

is an one-hot vector representation

of i’th word in the source sentence, and W1
x ∈ R

c×|V |

is a word embedding matrix (|V | is the size of the dictio-

nary, and c is the encoding dimension). q1
l and q1

r are two

sequences where each element q1l(j) ∈ R
c is a continuous

vector representing j’th word in q1l sequence. We model

the left and right sentence’s fragments separately using two

LSTMs:

u1
l = LSTM1

LR(q
1
l(i)

), (i = 1, ..., (t− 1))

u1
r = LSTM1

RL(q
1
r(i)

), (i = 1, ..., (n− t))
(3)

where u1
l ,u

1
r ∈ R

h are the last hidden states from the

“LR” and “RL” LSTMs respectively (Fig. 3) and h is the

LSTMs’ hidden state size. Since the missing word is related

to both left and right fragments of a sentence, we have an

extra stage to encode Left/Right fragments with respect to

an external memory coming from the opposite side, namely

Right/Left fragments. In this way, the first stage processes

each of fragments separately and the second stage processes

them with respect to opposite side’s encoded representation.

q2
l = [µl,W

2
x[x

1,x2, ...,xt−1], µl]

q2
r = [µr,W

2
x[x

n,xn−1, ...,xt+1], µr],
(4)

where W2
x is of the same size as W1

x and µr, µl ∈ R
c are

two external memory vectors obtained by:

µr = u1
lWµ

µl = u1
rWµ

(5)

where Wµ ∈ R
h×c encodes the LSTMs outputs to memory

vectors. q2
l and q2

r are two sequences while |q2
l | − |q1

l | =
|q2

r| − |q1
r| = 2 because of the external memory vectors

attached to them and each element of them is a contin-

uous vector. Similar to Eq. 3, we encode these two se-

quences with two different LSTMs, namely LSTM2
LR and

LSTM2
RL (Fig 3), to obtain u2

l ,u
2
r ∈ R

h as encoded left

and right fragments in the second stage. Note that; since

W1
x and W2

x are two different matrices, LR/RL LSTMs

of first and second stages, observe completely different se-

quence of vectors. Also, none of these four LSTMs share

any parameters with the other ones.

Finally, a proper combination of u1
l , u1

r , u2
l and u2

r as the

final representation of the source sentence is needed. We

concatenate and combine them by a fully connected layer

as the final representation of the source sentence:

uq = tanh(Wuq[u
1
l |u

1
r|u

2
l |u

2
r]), (6)

Source	Sentence
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Figure 4. An illustration of the spatial attention model. The model

assigns importance score to each region of an image based on the

source sentence.

where Wuq ∈ R
d×4h is a trainable weights matrix applied

to learn a proper combination of four vectors. We refer uq ∈
R

d as the source sentence representation (textual feature)

in the following sections and it is a bounded vector due to

tanh(·) activation function.

2.2. Spatial Attention Model

We use a CNN (i.e., VGG-19 [2], more details are pro-

vided in Section 3.4) to extract visual features. The output

from the last pooling layer of CNNs can be considered as

a feature map with spatial information about the input im-

age. Figure 4 shows an illustration of the spatial attention

model. First, we apply max-pooling over the raw CNN fea-

tures (i.e the output from the last pooling layer of VGG-19

pre-trained network) from all video key-frames to obtain a

spatial visual feature from the whole video:

ΦF = tanh(WfΘ(Φf (f
t))|ft∈F ), (7)

where Φf (·) is the spatial visual feature map extraction

function (more details are provided in Section 3.4), F rep-

resents all the video key-frames in υ, ft is a video frame at

time t, Θ(·) is the max-pooling function, Wf is a trainable

transformation matrix, and ΦF ∈ R
d×m is the intermediate

visual feature matrix where each column is a feature vec-

tor corresponding to a spatial region in the original video

frames, d is the same as uq in Eq.6, and m is the number of

spatial regions in the video frame.

We use spatial attention model [31] to pool the interme-

diate visual features ΦF . The first step is to combine the

source sentence representation uq with the intermediate vi-

sual features ΦF :

ΨF = tanh((WFΦF )⊕ (Wuuq + bu)), (8)

where WF ∈ R
k×d and Wu ∈ R

k×d are two transfor-

mations on the intermediate visual features and source sen-

tence representation to align them and have the same dimen-

sions. bu is the bias term, and ⊕ is a summation between

a matrix and an augmented vector (i.e. the source sentence

representation uq has to be expanded, or repeated m times,

in order to have the same dimension as WFΦF . The matrix
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Figure 5. An illustration of the temporal attention model. An

LSTM is used to find relevant shots based on the source sentence.

ΨF ∈ R
k×m is used to find the final attention scores over

all the regions:

psp = softmax(ΨT
Fwsp), (9)

where wsp ∈ R
k×1 is a trainable weight vector and psp ∈

R
m×1 is the spatial attention vector. The final spatial pooled

visual vector is a weighted average over all m regional in-

termediate spatial feature vectors:

usp = ΦFpsp, (10)

where usp ∈ R
d is the spatial pooled visual vector. It is a

bounded vector since ΦF is bounded.

2.3. Temporal Attention Model

Temporal dynamics of a video and the motion informa-

tion plays a significant role in video understanding, espe-

cially in actions and events understanding. However, in our

spatial-pooled visual representation presented in previous

section, the whole video is represented as one vector, and

there is no temporal information. Therefore, we propose to

model the temporal dynamics of the video using a temporal

attention model. Figure 5 shows an illustration of this com-

ponent in our approach. We divide a video into a number of

shots and represent the shots as below:

ΦG = tanh(Wg[Φg(g
1),Φg(g

2), ...,Φg(g
|G|)]), (11)

where Φg(·) is the feature extraction function (C3D [32],

which encodes the temporal information. More details are

provided in Section 3.4), G represents the set of video shots

and gi is the ith video shot. Wg ∈ R
d×z is a transformation

matrix, where z is the original dimension of the feature vec-

tor Φg(g
i), and k is the encoding dimension. We combine

the video shots representation ΦG ∈ R
d×|G| and the source

sentence representation uq as:

ΨG = tanh((WGΦG)⊕ (Wuuq + bu)), (12)

where WG ∈ R
k×d, is a mapping for shot representation

ΦG. We share Wu and bu with the spatial attention model

in Eq. 8. Similar to Eq. 8, in order to apply the summa-

tion ⊕, uq is repeated |G| times to have the same number of

columns as ΦG. Each column of matrix ΨG ∈ R
k×|G| is

the combination of a single shot and the source sentence.

An LSTM is employed to model the dynamics between

shots and the source sentence:

Ωi
G = LSTM(Ψi

G) (i = 1...|G|), (13)

where Ψi
G is the i’th column of ΨG. The output of this

LSTM is a sequence of attention vectors corresponding to

each shot ΩG = [Ω1
G,Ω

2
G, ...,Ω

|G|
G ] (See Fig. 5). However,

we need to make probabilities out of these vectors and for

this purpose we simply use a softmax operator:

ptp = softmax(ΩGwtp), (14)

where wtp ∈ R
k×1 is a trainable weight vector and ptp ∈

R
|G|×1 is the temporal attention of the shots and the final

temporal-pooled representation is a weighted average over

all the shot features ΦG with the attention model:

utp = ΦGptp, (15)

where utp ∈ R
d is of the same dimension as the spatial-

pooled features and the source sentence representation. Its

values are also bounded since ΦG is obtained by passing

through a tanh(·) activation in Eq. 11. Using this tempo-

ral attention model, we capture the dynamics of the visual

features which are related to the source sentence represen-

tation.

2.4. Inference of the Missing Word

Here, we discuss how to infer the missing word or fill in

the blank. Let β be the vocabulary to fill in the blank (|β|
as its size). We aim to find a probability for each word can-

didate in β, which needs a joint representation (summation

fusion [31]) of all three components as mentioned earlier:

u = [uq + usp + utp], (16)

where u ∈ R
d is an joint representation of all three features:

source sentence representations, spatially- and temporally-

pooled visual representations. Note that all three vectors

uq , usp and utp in equations 6, 10 and 15 are bounded,

since they have been obtained by passing through a tanh(·)
activation. They also have the same dimension d and this

makes the summation fusion [31] applicable and effective.

For the final inference of the missing word, we compute a

probability of each candidate word as follows:

Pblank = softmax(Wblanku), (17)
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where Wblank ∈ R
|β|×d. This is followed by a multino-

mial logistic regression “softmax” to find the probabilities

vector Pblank ∈ R
|β|. Based on Eq. 1, the final answer is:

b̂ = argmax
b∈β

Pblank(b). (18)

3. Experiments

We perform experiments on two datasets: the original

LSMDC Dataset [27] to evaluate the single blank VFIB

problem (i.e. there is only one blank in the source sen-

tence), and an extended LSMDC Movie Dataset to evaluate

our performance on the multiple blanks VFIB problem (i.e.

there are multiple blanks in the sentence).

3.1. LSMDC Movie Dataset (Single Blank)

In this set of experiments, we use the movie dataset

[27, 19, 33], which has been used in Large Scale Movie De-

scription and Understanding Challenge (LSMDC) [27, 34].

Movies are a rich source of visual information and be-

come much more valuable when proper textual meta-data

is provided. Movies benefit from many textual data like

the subtitle, audio descriptions and also movie synop-

sis. LSMDC dataset consists of respectively “91, 908”,

“6, 542”, “10, 053” and “9, 578” movie clips as Training,

Validation, Public and Private Test sets. We use the standard

splits provided by [27, 34]. Each clip comes with a sentence

annotated by an expert. There can be multiple source sen-

tences built for one clip. We use respectively “296, 960”,

“21, 689” and “30, 349” samples as training, validation and

test as the standard split provided by [34].

3.1.1 Quantitative Results

Here, we compare our proposed method with other ap-

proaches and baselines to show its superior performance

for the VFIB task. We have chosen some of these base-

lines from methods for visual question answering problem,

which are applicable to this problem as well. The compari-

son table (Table 1) has four parts. The first part is for meth-

ods which only use the text to find the missing word; the

second part is for methods which just use the video; the

third part is for methods which use both text and video; and

the last part is for different configurations of the proposed

method. We report the accuracy (same as in [34]) of each

method which is the ratio of number of missing words that

are inferred correctly to the total number of blanks. Here

are some details about these methods:

LSTM Left/Right Sentence fills the blank by just look-

ing at the left/right fragment of the missing word. This

experiment shows that both fragments are equally impor-

tant. BiLSTM finds the missing word based on a BiLSTM

[7], which encodes the input sentence using two different

LSTMs; one takes the input from the last word to the first

Method Accuracy

Text Only

Random Guess 0.006

LSTM Left Sentence 0.155

LSTM Right Sentence 0.165

BiLSTM 0.320

Our Sentence Encoding (w/o Second Stage) 0.340

Our Sentence Encoding 0.367

Human [27] 0.302

Video Only

BiLSTM Just Video 0.055

Text + Video

GoogleNet-2D [27] 0.349

C3D [27] 0.345

GoogleNet-2D-Finetuned [27] 0.353

GoogleNet-2D + C3D-Finetuned [27] 0.357

Video + Textual Encoding [14] 0.341

2Videos + Textual Encoding [14] 0.350

Ask Your Neurons [24] 0.332

SNUVL [35] 0.380

SNUVL (Ensembled Model) [35] 0.407

Human [27] 0.687

Ours

Single Model (VGG19 + C3D w/o Attention) 0.378

Single Model (w/o Spatial Attention) 0.390

Single Model (w/o Temporal Attention) 0.392

Single Model (w/o Second Stage) 0.396

Single Model (w/o LR/RL LSTMs) 0.387

Single Model 0.406

Ensembled Model 0.434

Table 1. Results on “Movie Fill-in-the-Blank” dataset.

word and the other one in the reverse. The blank word

is recovered based on BiLSTM’s output in missing word

location. Our Sentence Embedding as described in sec-

tion 2.1. This approach finds the missing word by using just

vector uq , without any visual features. For a fair compar-

ison with BiLSTM method, we have fixed the LSTM cells

sizes and also the word embedding lengths in all the exper-

iments. The authors in [27] report a few baselines using

GoogleNet [3] and C3D [32] features. The difference be-

tween the baselines in[27] and ours, shows the actual impor-

tance of our attention models and integration of the textual

encoding and visual modules in our method. Video+ Tex-

tual Encoding corresponds to “IMG+LSTM” in [14]. Key-

frames are passed through the VGG-19 pre-trained network

to extract 4, 096 dimensional vector of “fc7” layer for each

key-frame. Then, a max-pooling over all the features of all

frames will generate a video feature vector and the rest of

steps are the same as explained in [14]. We have used sim-

ple BiLSTM instead of LSTM to deal with two fragments of

sentence in VFIB. 2Videos+ Textual Encoding [14], sim-
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ilar to previous case, uses two different representations of

the video. One is attached to the beginning of each frag-

ment and the other one to the end. Ask Your Neurons [24]

encodes the visual CNN feature and concatenate with each

of words and pass them through left and right LSTMs one

by one. The answer is inferred based on the last output

of LSTMs. SNUVL [35] is the best reported method on

LSMDC FIB. It uses a concept detection method over the

videos, following by an attention model over the detected

concepts, to find the missing word. Ensemble model [36]

is a technique to boost the performance, when the optimiza-

tion process reaches different local optima, based on ran-

dom factors like initialization. We train the model multiple

times with different initializations and sum the final scores

from all the trained models.

We also test our model performance by removing each

of components, namely spatial attention, temporal atten-

tion and also replacing our source sentence encoding with

the BiLSTM in baselines. We also show the results of our

text encoder without Second Stage, by removing u2
l and

u2
r from Eq. 6. In one more complementary experiment,

we try our textual encoding with C3D and VGG19 features

without any attentions. These experiments show that all the

components contribute to final results.

3.2. Multiple Blanks VFIB

In this section, we explore a harder version of the VFIB

problem where more than one word is missing from the sen-

tence. We have generated a new dataset based on the orig-

inal LSMDC Movie Dataset by inserting multiple blanks

in the sentences, and we call it the “Extended LSMDC

Movie Dataset”. To be specific, we remove all the words

which have appeared at least once as a blank in the original

LSMDC dataset from all the sentence. In this case, most

of sentences have more than one blank and this makes the

LSMDC dataset suitable to be extended for multiple blanks

problem. In Figure 6, we show some statistics about the

number of blanks in sentences. About 79.3% of the sen-

tences have more than one blank. To clarify, in each sen-

tence, there are known number of blanks (with known lo-

cations), but there are various number of blanks in different

sentences. For multiple blanks’ experiments, we include all

the sentences with one or more blanks in all sets and also for

the evaluation, we consider equal value for all the blanks.

We employ two strategies to encode the source sentence

for the multiple blanks VFIB problem. For the first one,

we consider the left and right fragments of a missing word,

as a fragment from that word to the next blank, or if there

is no other blank, to the end of the sentence (both left and

right fragments are used). For example, for the source sen-

tence “She took her Blank1 out of the garage and Blank2

at the house for a moment.”. The left phrase of “Blank1” is

“She took her” and right phrase is “out of the garage and”

Method Accuracy

Baselines

Random Guess 0.006

Left LSTM (Masking) 0.104

Bi-LSTM (Masking) 0.156

2Videos + Textual (Subdivision) [14] 0.136

2Videos + Textual (Masking) [14] 0.177

Ours

Text Only (Subdivision) 0.136

Text + Video (Subdivision) 0.148

Text Only (Masking) 0.180

Text + Video (Masking) 0.201

Table 2. Results on the LSMDC Dataset (Multiple Blanks). Our

method has superior results.
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Figure 6. Number of sentences as a function of the number of

blanks in training set of LSMDC.

and we find the left and right phrases for “Blank2” with the

same approach as well. We call it the “Subdivision” ap-

proach since it makes multiple fragments out of the source

sentence and each blank has one left and one right fragment.

The second approach is to remove all other blanks and treat

them as left and right fragments as normal. In our example,

the left fragment of “Blank2” is “She took her out of the

garage” and the right fragment of the “Blank2” is “out of

the garage and at the house for a moment”. In this case, we

deal with each blank similar to single blank problem and we

just ignore other blanks in each of left and right fragments.

We call it “Masking” approach since we are masking the

other missing words from each fragment. After finding left

and right fragments based on any of these approaches, we

can apply our method or any other baselines (Table 2).

3.3. Qualitative Results

In Fig. 7, we show some qualitative results. For generat-

ing the attention map, we have reshaped the psp ∈ R
m=196

in Eq. 9 into a 14 × 14 matrix, then up-sampled it back

to the original frames size. We smooth the attention map

by a Gaussian filter and also suppress low intensity pixels

to be zero. Brighter parts have higher attention score than
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Temporal Attention Spatial Attention

Someone grabs her arm, pulls her close and ____ her a lingering kiss. GT: gives               Ours: gives

Someone watches out of the corner of his eye as the kid finds a cheap _____ 

inside. 

GT: sweet               Ours: sweet

Someone stops his ____ and kisses her on the head. GT: daughter           Ours: jacket

Figure 7. On the left we show representative frames from different shots. The colors below the frames show the temporal attention:

yellow/blue means the most/least attention. On the right, we show an spatial attention map obtained by our method and also we show the

attention map on one of selected key-frames.

Someone _____ and ______ his ______.

Cutting:

2Videos – Textual Encoding

Our Model

Masking:

2Videos – Textual Encoding

Our Model

Ground Truth:

(turns, faces, gaze)

(smiles, raises, wife)

(smiles, shakes, gaze)

(smiles, shakes, head)

(smiles, shakes, head)

In his ______, someone ______ at his ______ 

glowering.
Cutting:

2Videos – Textual Encoding

Our Model

Masking:

2Videos – Textual Encoding

Our Model

Ground Truth:

(room, sits, desk)

(office, glances, desk)

(office, stares, desk)

(office, sits, computer)

(office, sits, desk)

Figure 8. Examples for Multiple Blank VFIB problem which re-

quires a higher level of video and text alignment to find all the

missing words correctly.

the darker parts. For the temporal attention model, we ex-

tract the ptp vector as the temporal attention. In Fig. 7, we

show one frame from each shot and the color bar under the

sequence of shots shows the attention scores. Yellow and

blue respectively represent the maximum and minimum at-

tentions. In Fig. 8 we provide examples of multiple blanks

VFIB and predicted missing words using different methods.

3.4. Implementation Details

We use VGG-19 [37] network, pre-trained on Ima-

geNet [5], and extract last pooling layer (“pool5”) as our

spatial visual features consumed in section 2.2. The out-

put feature map is a 14 × 14 × 512 matrix which can be

reshaped as a 196 × 512 matrix and each of 512 dimen-

sional vectors are representing a 32 × 32 pixels region of

input frame. We believe any other very deep CNN network

like GoogLeNet [3] or ResNet [4] can produce similar re-

sults. We extract and pass the frames through this network

with 2fps rate. For temporal attention in section 2.3, we

use pre-trained 3D CNN (C3D) network [32] pre-trained

on [38] and followed settings defined in [32]. We extract

the “fc6” output of the network for each 16 frames (one

shot) of videos. We assume each video has 10 shots. For

shorter videos, we use all-zero vectors for remaining shots

and for longer ones we uniformly select 10 shots.

4. Conclusion

We proposed a new method for the Video-Fill-in-the-

Blank (VFIB) problem which leverages the “source sen-

tence” structure and also spatial-temporal attention mod-

els. We have introduced “external memory” to deal with

the complexity of “source sentence” in VFIB problem. We

have achieved superior performance over all other reported

methods. Also, an extension and more general version of

VFIB which deals with multiple blanks in sentences, is in-

troduced and discussed.
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