
Learning Proximal Operators:

Using Denoising Networks for Regularizing Inverse Imaging Problems

Tim Meinhardt1

tim.meinhardt@in.tum.de

Michael Moeller2

michael.moeller@uni-siegen.de

Caner Hazirbas1

hazirbas@cs.tum.edu

Daniel Cremers1

cremers@tum.de

Technical University of Munich1 University of Siegen2

Abstract

While variational methods have been among the most

powerful tools for solving linear inverse problems in imag-

ing, deep (convolutional) neural networks have recently

taken the lead in many challenging benchmarks. A re-

maining drawback of deep learning approaches is their re-

quirement for an expensive retraining whenever the specific

problem, the noise level, noise type, or desired measure of

fidelity changes. On the contrary, variational methods have

a plug-and-play nature as they usually consist of separate

data fidelity and regularization terms.

In this paper we study the possibility of replacing the

proximal operator of the regularization used in many con-

vex energy minimization algorithms by a denoising neural

network. The latter therefore serves as an implicit natural

image prior, while the data term can still be chosen indepen-

dently. Using a fixed denoising neural network in exemplary

problems of image deconvolution with different blur kernels

and image demosaicking, we obtain state-of-the-art recon-

struction results. These indicate the high generalizability

of our approach and a reduction of the need for problem-

specific training. Additionally, we discuss novel results on

the analysis of possible optimization algorithms to incorpo-

rate the network into, as well as the choices of algorithm

parameters and their relation to the noise level the neural

network is trained on.

1. Introduction

Many important problems in image processing and com-

puter vision can be phrased as linear inverse problems

where the desired quantity u cannot be observed directly but

needs to be determined from measurements f that relate to

u via a linear operator A, i.e. f = Au+n for some noise n.

In almost all practically relevant applications the solution is

very sensitive to the input data, and the underlying contin-

uous problem is ill-posed. A classical but powerful general

CNN

Figure 1: We propose to exploit the recent advances in con-

volutional neural networks for image denoising for general

inverse imaging problems by replacing the proximal opera-

tor in optimization algorithms with such a network. Chang-

ing the image reconstruction task, e.g. from deblurring to

demosaicking, merely changes the data fidelity term such

that the same network can be used over a wide range of ap-

plications without requiring any retraining.

approach to obtain stable and faithful reconstructions is to

use a regularization and determine the estimated solution û

via an energy minimization problem of the form

û = argminuHf (Au) +R(u). (1)

In the above, Hf is a fidelity measure that relates the data f

to the estimated true solution u, e.g. Hf (Au) = ‖Au− f‖2
and R is a regularization function that introduces a-priori

information on the expected solution.

Recently, the computer vision research community has

had great success in replacing the explicit modeling of en-

ergy functions in Equation (1) by parameterized functions

G that directly map the input data f to a solution û = G(f).
Powerful architectures are so-called deep networks that pa-

rameterize G by several layers of linear operations followed

by certain nonlinearities, e.g. rectified linear units. The free

parameters of G are learned by using large amounts of train-

ing data and fitting the parameters to the ground truth data

via a large-scale optimization problem.
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Deep networks have had a big impact in many fields of

computer vision. Starting from the first large-scale appli-

cations of convolutional neural networks (CNNs), e.g. Im-

ageNet classification [24, 35, 17], deep networks have re-

cently been extended to high dimensional inverse problems

such as image denoising [43, 47], deblurring [44], super-

resolution [10, 11], optical flow estimation [12, 28], image

demosaicking [42, 15, 21], or inpainting [22, 45]. In many

cases, the performance of deep networks can be further im-

proved when the prediction of the network is postprocessed

with an energy minimization method, e.g. optical flow [16]

and stereo matching (disparity estimation) [46, 6, 27].

While learning based methods yield powerful represen-

tations and are efficient in the evaluation of the network for

given input data f , their training is often difficult. A suffi-

cient amount of training data needs to be acquired in such a

way that it generalizes well enough to the test data the net-

work is finally used for. Furthermore, the final performance

often depends on a required training and network archi-

tecture expertise which includes weight regularization [25],

dropout [37], batch normalization [19], or the introduction

of “shortcuts” [17]. Finally, while it is very quick and

easy to change the linear operator A in variational methods

like Equation (1), learning based methods require a costly

training as soon as the operator A changes. The latter mo-

tivates the idea to combine the advantages of energy min-

imization methods that are flexible to changes of the data

term with the powerful representation of natural images that

can be obtained via deep learning.

It was observed in [40, 18] that modern convex opti-

mization algorithms for solving Equation (1) merely depend

on the proximal operator of the regularization R, which

motivated the authors to replace this step by general de-

signed denoising algorithms such as the non-local means

(NLM) [3] or BM3D [7] algorithms. Upon preparation of

this manuscript we additionally found the ArXiv report [30]

which extends the ideas of [40] and offers a detailed theoret-

ical analysis on solving linear inverse problems by turning

them into a chain of denoising steps. For the sake of com-

pleteness, we have to mention methods such as [41] who

apply the contrary approach and use variational methods as

boilerplate models to design their network architecture.

In this paper we exploit the power of learned image de-

noising networks by using them to replace the proximal op-

erators in convex optimization algorithms as illustrated in

Figure 1. Our contributions are:

• We demonstrate that using a fixed denoising network

as a proximal operator in the primal-dual hybrid gra-

dient (PDHG) method yields state-of-the-art results

close to the performance of methods that trained a

problem-specific network.

• We analyze the possibility to use different optimiza-

tion algorithms for incorporating neural networks and

show that the fixed points of the resulting algorithmic

schemes coincide.

• We provide new insights about how the final result is

influenced by the algorithm’s step size parameter and

the denoising strength of the neural network.

2. Related work

Classical variational methods exploiting Equation (1),

use regularization functions that are designed to suppress

noise while preserving important image features. One of

the most famous examples is the total variation (TV) [33]

which penalizes the norm of the gradient of an image and

has been shown to preserve image discontinuities.

An interesting observation is that typical convex opti-

mization methods for Equation (1) merely require the eval-

uation of the proximal operator of the regularization func-

tional R,

proxR(b) = argminu

1

2
‖u− b‖22 +R(u). (2)

The interpretation of the proximal operator as a denoising

of b motivated the authors of [40, 18] to replace the prox-

imal operator of R by a powerful denoising method such

as NLM or BM3D. Theoretical results including conditions

under which the alternating directions method of multipliers

(ADMM) with a custom proximal operator converges were

presented in [31, 5].

Techniques using customized proximal operators have

recently been explored in several applications, e.g. Pois-

son denoising [31], bright field electron tomography [36],

super-resolution [2], or hyperspectral image sharpening

[38]. Interestingly, the aforementioned works all focused

on patch-based denoising methods as proximial operators.

While [39] included a learning of a Gaussian mixture model

of patches, we propose to use deep convolutional denoising

networks as proximal operators, and analyze their behavior

numerically as well as theoretically.

3. Learned proximal operators

3.1. Motivation via MAP estimates

A common strategy to motivate variational methods

like Equation (1) are maximum a-posteriori probability

(MAP) estimates. One desires to maximize the conditional

probability p(u|f) that u is the true solution given that f is

the observed data. One applies Bayes rule, and minimizes

the negative logarithm of the resulting expression to find

argmax
u

p(u|f) = argmin
u

− log

(

p(f |u)p(u)
p(f)

)

(3)

=argmin
u

(− log(p(f |u))− log(p(u))) . (4)
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In the light of MAP estimates, the data term is well de-

scribed by the forward operator A and the assumed noise

model. For example, if the observed data f differs from

the true data Au by Gaussian noise of variance σ2, it holds

that p(f |u) = exp(−‖Au−f‖2

2

2σ2 ), which naturally yields a

squared ℓ2 norm as a data fidelity term. Therefore, having

a good estimate on the forward operator A and the under-

lying noise model seems to make “learning the data term”

obsolete.

A much more delicate term is the regularization, which

– in the framework of MAP estimates – corresponds to the

negative logarithm of the probability of observing u as an

image. Assigning a probability to any possible R
n×m ma-

trix that could represent an image, seems extremely difficult

by simple, hand-crafted measures. Although penalties like

the TV are well-motivated in a continuous setting, the norm

of the gradient cannot fully capture the likelihood of com-

plex natural images. Hence, the regularization is the perfect

candidate to be replaced by learning-based techniques.

3.2. Algorithms for learned proximal operators

Motivated by MAP estimates “learning the probability

p(u) of natural images”, seems to be a very attractive strat-

egy. As learning p(u) directly appears to be difficult from

a practical point of view, we instead exploit the observa-

tion of [40, 18] that many convex optimization algorithms

for Equation (1) only require the proximal operator of the

regularization.

For instance, applying a proximal gradient (PG) method

to the minimization problem in Equation (1) yields the up-

date equation

uk+1 = proxτR
(

uk − τA∗∇Hf (Auk)
)

. (5)

Since a proximal operator can be interpreted as a Gaussian

denoiser in a MAP sense, an interesting idea is to replace

the above proximal operator of the regularizer by a neural

network G, i.e.

uk+1 = G
(

uk − τA∗∇Hf (Auk)
)

. (6)

Instead of the proximal gradient method in Equation (5), the

plug-and-play priors considered in [40] utilize the ADMM

algorithm leading to update equations of the form

uk+1 =prox 1

γ
(Hf◦A)

(

vk+1 − 1

γ
yk

)

, (7)

vk+1 =prox 1

γ
R

(

uk +
1

γ
yk

)

, (8)

yk+1 =yk + γ(uk+1 − vk+1), (9)

and consider replacing the proximal operator in Equa-

tion (8) by a general denoising method such as NLM or

BM3D. Replacing Equation (8) by a neural network can be

motivated equally.

Finally, the authors of [18] additionally consider a

purely primal formulation of the primal-dual hybrid gradi-

ent method (PDHG) [29, 13, 4]. For Equation (1) such a

method amounts to update equations of the form

zk+1 =zk + γAūk − γprox 1

γ
Hf

(

1

γ
zk +Aūk

)

, (10)

yk+1 =yk + γūk − γprox 1

γ
R

(

1

γ
yk + ūk

)

, (11)

uk+1 =uk − τAT zk+1 − τyk+1, (12)

ūk+1 =uk+1 + θ(uk+1 − uk), (13)

if proxHf◦A
is difficult to compute, or otherwise

yk+1 =yk + γūk − γprox 1

γ
R

(

1

γ
yk + ūk

)

, (14)

uk+1 =proxτ(Hf◦A)(u
k − τyk+1), (15)

ūk+1 =uk+1 + θ(uk+1 − uk). (16)

In both variants of the PDHG method shown above, lin-

ear operators in the regularization (such as the gradient in

case of TV regularization) can further be decoupled from

the computation of the remaining proximity operator. From

now on we will refer to (10)–(13) as PDHG1 and to (14)–

(16) as PDHG2.

Again, the authors of [18] considered replacing the prox-

imal operator in update Equation (11) or Equation (14) by a

BM3D or NLM denoiser, which – again – motivates replac-

ing such a designed algorithm by a learned network G, i.e.

yk+1 = yk + γūk − γ G
(

1

γ
yk + ūk

)

. (17)

A natural question is which of the algorithms PG, ADMM,

PDHG1, or PDHG2 should be used together with a denois-

ing neural network? The convergence of any of the four

algorithms can only be guaranteed for sufficiently friendly

convex functions, or in some nonconvex settings under spe-

cific additional assumptions. The latter is an active field of

research such that analyzing the convergence even beyond

nonconvex functions goes beyond the scope of this paper.

We refer the reader to [31, 5] for some results on the con-

vergence of ADMM with customized proximal operators.

We will refer to the proposed method as an algorithmic

scheme in order to indicate that a proximal operator has

been replaced by a denoising network. Despite this heuris-

tics, our numerical experiments as well as previous publi-

cations indicate that the modified iterations remain stable

and converge in a wide variety of cases. Therefore, we in-

vestigate the fixed-points of the considered schemes. Inter-

estingly, the following remark shows that the set of fixed-

points does not differ for different algorithms.
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Remark 3.1. Consider replacing the proximal operator of

R in the PG, ADMM, PDHG1, and PDHG2 methods by an

arbitrary continuous function G. Then the fixed-point equa-

tions of all four resulting algorithmic schemes are equiva-

lent, and yield

u∗ = G
(

u∗ − tAT∇Hf (Au∗)
)

(18)

with ∗ ∈ {PG,ADMM,PDHG1,PDHG2} and t = τ for

PG and PDHG2, and t = 1
γ

for ADMM and PDHG1.

Proof. See supplementary material.

3.3. Parameters for learned proximal operators

One key question when replacing a proximity operator

of the form prox 1

γ
R by a Gaussian denoising operator, is

the relation between the step size γ and the noise stan-

dard deviation σ used for the denoiser. Note that prox 1

γ
R

can be interpreted as a MAP estimate for removing zero-

mean Gaussian noise with standard-deviation σ =
√
γ (as

also shown in [40]). Therefore, the authors of [18] used

the PDHG algorithm with a BM3D method as a proximal

operator in Equation (14) and adopted the BM3D denois-

ing strength according to the relation σ =
√
γ. While al-

gorithms like BM3D allow to easily choose the denoising

strength, a neural network is less flexible as an expensive

training is required for each choice of denoising strength.

An interesting insight can be gained by using the al-

gorithmic scheme arising from the PDHG2 algorithm with

stepsize τ = c
γ

for some constant c, and the proximity op-

erator of the regularization being replaced by an arbitrary

function G. In the case of convex optimization, i.e. the

original PDHG2 algorithm, the constant c resembles the sta-

bility condition that τγ has to be smaller than the squared

norm of the involved linear operator. After using G instead

of the proximal mapping, the resulting algorithmic scheme

becomes

yk+1 =yk + γūk − γ G
(

1

γ
yk + ūk

)

, (19)

uk+1 =prox c
γ
(Hf◦A)(u

k − c

γ
yk+1), (20)

ūk+1 =uk+1 + θ(uk+1 − uk). (21)

We can draw the following simple conclusion:

Proposition 3.2. Consider the algorithmic scheme given by

Equations (19)–(21). Then any choice of γ > 0 is equiv-

alent to γ = 1 with a newly weighted data fidelity term

H̃f = 1
γ
Hf . In other words, changing the step size γ merely

changes the data fidelity parameter.

Proof. We divide Equation (19) by γ and define ỹk = 1
γ
yk.

The resulting algorithm becomes

ỹk+1 =ỹk + ūk − G
(

ỹk + ūk
)

, (22)

uk+1 =proxc(H̃f◦A)(u
k − c ỹk+1), (23)

ūk+1 =uk+1 + θ(uk+1 − uk), (24)

which yields the assertion.

We’d like to point out that Proposition 3.2 states the

equivalence of the update equations. For the iterates to co-

incide one additionally needs the initialization y0 = 0.

Interestingly, similar results can be obtained for any of

the four schemes discussed above. As a conclusion, the

specific choice of the step sizes τ and σ does not matter,

as they simply rescale the data fidelity term, which should

have a free tuning parameter anyway.

Besides the step sizes τ and σ, an interesting question

is how the denoising strength of a neural network G relates

to the data fidelity parameter. In analogy to MAP estimates

above, one could expect that increasing the standard devia-

tion σ of the noise the network is trained on by a factor of

a, requires the increase of the data fidelity parameter by a

factor of a2 in order to obtain equally optimal results.

To test such an hypothesis we run several different de-

convolution experiments with the same input data, but dif-

ferent neural networks which all differ by the standard de-

viation σ they have been trained on. We use a data fidelity

term of the form α
2 ‖Au−f‖22 for a blur operator A, and data

fidelity parameter α. We then run an exhaustive search for

the best parameter α maximizing the PSNR value for each

of the different neural networks. The first plot of Figure 2

illustrates the optimal data fidelity parameter α as a func-

tion of the standard deviation σ the corresponding neural

network has been trained on. Interestingly, the dependence

of the optimal α on σ indeed seems to be well approximated

by a parabola, as illustrated by the dashed blue line repre-

senting the curve α = p σ2 for an optimal p.

It is important to note that while in the convex optimiza-

tion setting a rescaling of both, regularization and data fi-

delity parameter, does not change the final result at all, the

results obtained at each of the data points shown in the first

part of Figure 2 do differ as illustrated in the second plot.

While a network trained on very small noise did not give

good results, a sufficiently large standard deviation gives

good results over a large range of training noise level σ.

Please also note that similar choices (data fidelity pa-

rameter and strength of the denoising algorithm) have to be

made for any other custom denoising algorithm: As dis-

cussed above, the authors of [18] proposed to make the

BM3D denoising strength step size depended. [30] also con-

siders the use of neural networks as proximal operators, but

similar to [18], the authors of [30] try to make the denoising

strength step size dependent. However, since the denoising
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Figure 2: The same deconvolution experiment was run with

denoising networks trained on noise with different standard

deviations σ as proximal operators. The first plot shows the

optimal data fidelity parameter α as a function of σ and the

dashed blue curve is the best quadratic fit. It verifies the

expected theoretical quadratic relation between the data fi-

delity parameter and denoising strength. The second plot

shows the corresponding achieved PSNR values (for opti-

mally tuned data fidelity parameters) as a function of σ. We

can see that the PSNR is quite stable over a large range of

sufficiently large denoising strengths.

strength of a neural network cannot be adapted as easily as

for the BM3D algorithm, the authors rely on the assump-

tion that a rescaling of the input data which is fed into the

network allows to adapt the denoising strength. Instead we

propose to rather fix the denoising strength, which – accord-

ing to Proposition 3.2 – then allows us to fix the algorithm

step size γ = 1 and control the smoothness of the final re-

sult by adapting the data fidelity parameter. This avoids the

problem of the aforementioned approaches that the internal

step size parameter γ of the algorithmic scheme influences

the result and therefore becomes a (difficult-to-tune) hyper-

parameter.

4. Numerical implementation

4.1. Algorithmic framework and prior stacking

In the following section we describe how we imple-

mented the proposed algorithmic scheme with a neural net-

work replacing a proximal operator.

According to Remark 3.1 the potential fixed-points of

any of the schemes are the same. In comparison to the PG

method, the PDHG algorithm has the advantage that it can

easily combine learned (neural network) priors (which have

no associated cost function term and thus are referred to as

implicit priors) with explicitly modeled priors that can be

tailored to specific applications – a fact that has first been

exploited by the authors of [18] in a technique termed prior

stacking, which we utilize in our experiments as well.

A combination, or stacking, of different priors can easily

be achieved in the PDHG algorithm by introducing multiple

variables: If we consider all variables in their vectorized

form, our final algorithmic scheme is given by

zk+1 =zk + γDūk − γprox β
γ
J

(

1

γ
zk +Dūk

)

, (25)

yk+1 =yk + γūk − γG
(

1

γ
yk + ūk

)

, (26)

uk+1 =proxτα(Hf◦A)(u
k − τyk+1 − τDT zk+1), (27)

ūk+1 =2uk+1 − uk, (28)

where D is an arbitrary linear operator (e.g. the discretized

gradient in the case of TV regularization), J an additional

regularization (e.g. J(Du) = ‖Du‖2,1 for the TV), β is

a regularization parameter, α is the data fidelity parameter,

and we use (Hf ◦A)(u) = 1
2‖Au−f‖22 for a linear operator

A. We now have two variables z and y, which implement

the network G and an additional regularization J , where the

regularization J may again consist of multiple priors. For

more details on prior stacking we refer the reader to [18].

Please note that our result of Proposition 3.2 can eas-

ily be extended to the above algorithm, where an arbitrary

γ = c
τ

can be eliminated via β → β
γ

, α → α
γ

, with c

(usually) denoting the operator norm ‖[I,−DT ]‖2. Conse-

quently, we again only have to optimize for the data fidelity

and regularization parameters unless one considers even the

product c = τγ of the step sizes as a free parameter. For

the sake of clarity and similarity to the convex optimization

case, we decided not to pursue this direction.

4.2. Deep convolutional denoising network

In order to make our denoising network benefit from

the recent advances in learning based problem solving we

use an end-to-end trained deep convolutional neural net-

work (CNN). Our network architecture of choice is similar

to DnCNN-S [47] and composed of 17 convolution layers

with a kernel size of 3×3 each of which is followed by a

rectified linear unit (ReLU). Input of the network is either

a gray-scale or a color image depending on the application.

We use the training pipeline identical to [47] with the Adam

optimization algorithm [20] and train our network for re-

moving Gaussian noise of a fixed standard deviation σ. Ta-

ble 1 demonstrates the superior performance of our learned

denoising operator in comparison with general denoising al-

gorithms such as NLM and BM3D on a range of different
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Table 1: Average PSNRs in [dB] for 11 test images for dif-

ferent standard deviations σ of the Gaussian noise in a com-

parison of NLM, BM3D, and our denoising networks using

the DnCNN-S architecture proposed in [47]. We used the

same test images as in our deconvolution experiments.

σ Noisy NLM [3] BM3D [7] DnCNN-S

0.02 33.99 35.49 36.77 37.80

0.03 30.47 32.73 34.14 35.26

0.04 27.99 31.04 32.49 33.52

0.05 26.06 29.79 31.16 32.15

0.06 24.50 28.94 30.13 31.13

0.07 23.19 28.27 29.22 30.20

0.08 22.08 27.52 28.57 29.48

0.09 21.00 26.94 27.89 28.81

0.10 20.14 26.37 27.41 28.10

σ. It should be noted that each σ requires an individually

trained DnCNN-S. Although we used different noise levels

than the one presented in [47], our results have similar mar-

gins to BM3D indicating that our trained networks represent

state-of-the-art denoising methods.

5. Evaluation

The general idea of using neural networks instead of

proximal operators applies to any image reconstruction

task. We demonstrate the effectiveness of this approach on

the exemplary problems of image deconvolution and Bayer

demosaicking. It is important to note that we keep the neu-

ral network fixed throughout the entire numerical evalua-

tion. In particular, the network has neither been specifically

trained for deconvolution nor for demosaicking, but only on

removing Gaussian noise with a fixed noise standard devia-

tion of σf = 0.02.

For a direct comparison we follow the experimental

setup of [18], but reimplemented the problems using the

problem agnostic modeling language for image optimiza-

tion problems ProxImaL [14]. For the denoising network

we used the graph computation framework TensorFlow [1]

which made the integration simple and flexible. 1 Since

our approach stands in direct comparison to [18], we have

to mention that we were not able to reproduce their re-

sults with our implementation. This is likely due to them

replacing the proximal operator with an improved but not

released version of BM3D which was even further refined

for the case of demosaicking. In this paper, our main goal

is to compare our approach with the framework of [18] as

methods that are not tailored to a specific problem but pro-

vide solutions for any linear inverse problem. Therefore,

1Our code is available at https://github.com/tum-vision/

learn_prox_ops.

we use the publicly available BM3D implementation, per-

form a grid search over all free parameters, and denote the

obtained results in our evaluation by FlexISP∗. The latter

allows us to investigate to what extend the advantage in de-

noising performance shown in Table 1 transfers to general

inverse problems. Of course, approaches that are tailored to

a specific problem, e.g. by training a specialized network,

will likely yield superior performance.

FlexISP∗ applies the same step size related denoising ap-

proach as [18], but in contrast to [18] we observed a notable

effect of the choice of γ and therefore included it in the pa-

rameter optimization. We set the same residual-based stop-

ping criterion as well as a maximum number of 30 PDHG

iterations for FlexISP∗ and our approach.

5.1. Demosaicking

We evaluated our performance on noise-free demo-

saicking of the Bayer filtered McMaster color image

dataset, [48]. Besides our denoising network, we use the

cross-channel and total variation prior as additional explicit

regularizations J in Equation (25) as also done in [18]. For

FlexISP∗ as well as for our method we optimized in an ex-

haustive grid search for the data fidelity parameter α as well

as for the regularization parameters βTV and βCross.

Figure 4 compares our average debayering quality with

multiple state-of-the-art algorithms, and Figure 3 gives a

visual impression of the demosaicking quality of the cor-

responding algorithms for two example images. As we

can see, the proposed method achieves a very high aver-

age PSNR value and is only surpassed by [15] who specifi-

cally trained a deep demosaicking CNN. Comparing our ap-

proach with FlexISP∗, the advantage of about 1dB in PSNR

values of our network over BM3D on image denoising car-

ried over to the inverse problem of demosaicking.

To justify our choice of a fixed σf we investigate the ro-

bustness of our approach to different choices of denoising

networks. Table 2 illustrates the results of our method for

differently trained networks, and also shows the optimal pa-

rameters found by our grid search. While we can see that

the PSNRs do vary by about 1.1dB, it is encouraging to

see that the average PSNR remains above 36dB for a wide

range of differently trained networks. A little less conclu-

sive are the optimal parameters found by our grid search.

They merely seem to indicate that explicit priors should be

used less if the denoising network is trained on larger noise

levels. We also tested completely omitting explicit priors,

which decreased the average performance by about 0.4dB.

5.2. Deconvolution

For evaluating the deconvolution performance, we use

the benchmark introduced by [34], which consists of 5 dif-

ferent experiments with different Gaussian noise and differ-

ent blur kernels applied to 11 standard test images. Exper-
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Figure 3: Visual comparison of different demosaicking methods on two example images of the McMaster color image data

set. To illustrate the differences in reconstruction quality we added zoomed in residual images. Apart from FlexISP∗ and our

result, all other images are taken from [18].
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Figure 4: Average PSNR results in [dB] for demosaicking

the McMaster color image dataset. The results of all meth-

ods except CNN, FlexISP∗ and ours are copied from the

same comparison in [18]. As expected the deep CNN from

[15] which was specifically trained on demosaicking out-

performs our approach. Nevertheless the results show that

using a powerful denoising network as a proximal operator

yields substantial results.

iments a - c, d and e each apply a Gaussian, squared and

motion blurring, respectively.

Table 3 compares our average results over all test images

with eight state-of-the-art deblurring methods, and Figure 5

gives a visual impression of the corresponding results for

two example images within experiments a and e. Apart

from FlexISP∗ and our method, all other results are taken

from [18]. For FlexISP∗ and our method, we used the TV

as an explicit additional prior and optimized individual pa-

rameter sets for each experiment. However, while FlexISP∗

benefits from a separately optimized stepsize γ, our method

applies the same neural network for all experiments. Nev-

ertheless, our overall performance is on par with the other

methods.

Particularly remarkable is the fact that the MLP approach

Table 2: The table shows the optimal parameters for the

data fidelity parameter α, the TV regularization βTV and the

cross channel prior βCross when denoising networks trained

on Gaussian noise with different standard deviation σ are

used. Below the parameters we show the average PSNR

values in [dB] obtained on the McMaster color image data

set. Considering the results of competing methods shown

in Figure 4, different denoising networks yield quite good

demosaicking performance on a wide range of different σ.

σ
Reconstruction PSNR in [dB]

α βTV βCross

0.001
36.05

4000 0.1 0.05

0.01
36.74

100 0.01 0.0

0.02
37.12

90 0.01 0.0

0.03
36.39

12 0.0 0.0

0.05
36.08

800 0.0 0.01

form [34] trained a network (including the different linear

operators) on each of the five experiments separately. It is

encouraging to see that an energy minimization algorithm

with a generic denoising network as a proximal operator

yields results similar to the specialized networks in experi-

ments a - d and even outperformed the latter on the problem

e of removing motion blurs.

When comparing to the FlexISP∗ results it is interesting

to see that the performance advantage our denoising net-

works have over BM3D on plain denoising did not fully

carry over to the deconvolution problem, yielding a com-
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Figure 5: Visual comparison of different deconvolution methods on two out of 11 standard test images. The images Boat

and Barbara were each corrupted with Gaussian noise (σ = 0.04, σ = 0.01) and a Gaussian blur (experiment a) as well as a

motion blur (experiment e), respectively. Apart from FlexISP∗ and our result, all other images are taken from [18].

Table 3: Average PSNR results in [dB] for image decon-

volution on a set of 11 standard grayscale images over 5

experiments with different blur kernels and noise levels as

detailed in [34]. All reported values except FlexISP∗ and

ours were taken from [18]. Note that we used exactly the

same denoising network (σ = 0.02) for all experiments op-

posed to MLP, which trained specialized neural networks

removing the different corruptions of experiments a–e sep-

arately. We conclude that only very little performance has

to be scarified when combining a generic but powerful de-

noising network with the flexibility of energy minimization

algorithms.

Deblurring method
Reconstruction PSNR in [dB]

a b c d e AVG

EPLL [49] 24.04 26.64 21.36 21.04 29.25 24.47
IRLS [26] 24.09 26.51 21.72 21.91 28.33 24.51
LUT [23] 24.17 26.60 21.73 22.07 28.17 24.55

DEB-BM3D [8] 24.19 26.30 21.48 22.20 28.26 24.49
IDD-BM3D [9] 24.68 27.13 21.99 22.69 29.41 25.18

FoE [32] 24.07 26.56 21.61 22.04 28.83 24.62
MLP [34] 24.76 27.23 22.20 22.75 29.42 25.27

FlexISP∗ [18] 24.32 26.84 21.99 22.53 29.30 25.00
Ours 24.51 27.08 21.83 21.96 30.17 25.11

Ours, σ=0.01 24.25 27.01 21.57 21.52 28.78 24.63
Ours, σ=0.04 24.56 27.10 21.95 22.40 30.35 25.27
Ours, σ=0.06 24.62 27.14 22.03 22.58 30.26 25.33
Ours, σ=0.09 24.57 27.13 21.98 22.60 29.96 25.25
Ours, σ=0.2 24.48 26.63 22.00 22.35 25.80 24.25

parably small difference in PSNR value. Therefore, a de-

tailed understanding for which problems and in what sense

the performance of a denoising algorithm can be fully trans-

ferred to an inverse problem when the algorithm is used as

a proximal operator remains an open question for future re-

search.

Due to the efficiency of the neural network, the aver-

age runtime of our approach for image deconvolution was

≈2.5s in comparison to ≈4s of FlexISP∗ yielding a sig-

nificant relative improvement of 37.5%. In both cases the

denoising operator was evaluated on the GPU.

We again study the robustness of the proposed approach

to networks trained on different noise levels. The second

plot of Table 3 shows the optimal PSNR values attained

with networks that have been trained on different standard

deviations σ. As we can see the PSNRs remain very stable

over a large range of different σ indicating the robustness

toward the specific network that is used.

6. Conclusion

In this paper we studied the use of denoising neural net-

works as proximal operators in energy minimization algo-

rithms. We showed that four different algorithms using neu-

ral networks as proximal operators have the same potential

fixed-points. Moreover, the particular choice of step size in

the PDHG algorithm merely rescales the data fidelity (and

other possible regularization) parameters. Interestingly, the

noise level the neural network is trained on behaves very

much like a regularization parameter derived from MAP es-

timates and reveals a quadratic relation between the stan-

dard deviation σ and the data fidelity parameter.

For our numerical experiments we proposed to combine

the PDHG algorithm with a DnCNN-S denoising network

[47] as a proximal operator and the prior stacking approach

of [18]. Our reconstruction results and robustness tests on

the exemplary problems of demosaicking and deblurring in-

dicate that one can obtain state-of-the-art results with a fixed

neural network.

We expect that this concept can significantly ease the

need for problem-specific retraining of classical deep learn-

ing approaches and additionally even allows to benefit from

learned natural image priors for problems where training

data is not available.
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