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Abstract
Reconstruction of 3D environments is a problem that

has been widely addressed in the literature. While many

approaches exist to perform reconstruction, few of them

take an active role in deciding where the next observations

should come from. Furthermore, the problem of travelling

from the camera’s current position to the next, known as

pathplanning, usually focuses on minimising path length.

This approach is ill-suited for reconstruction applications,

where learning about the environment is more valuable than

speed of traversal.

We present a novel Scenic Route Planner that selects

paths which maximise information gain, both in terms of

total map coverage and reconstruction accuracy. We also

introduce a new type of collaborative behaviour into the

planning stage called opportunistic collaboration, which

allows sensors to switch between acting as independent

Structure from Motion (SfM) agents or as a variable baseline

stereo pair.

We show that Scenic Planning enables similar perfor-

mance to state-of-the-art batch approaches using less than

0.00027% of the possible stereo pairs (3% of the views).

Comparison against length-based pathplanning approaches

show that our approach produces more complete and more

accurate maps with fewer frames. Finally, we demonstrate

the Scenic Pathplanner’s ability to generalise to live sce-

narios by mounting cameras on autonomous ground-based

sensor platforms and exploring an environment.

1. Introduction
One of the frontiers in vision is its use in autonomous

vehicles. Vision-Based 3D reconstruction has the capability

to provide autonomous agents with detailed reconstructions

that can be used to reason about the environment. However,

as datasets have grown, and real-time computer-vision has be-

come prevalent, the focus has shifted from how to reconstruct,

to what to reconstruct. A number of recent techniques have

been proposed, that take an active role in the data collection

process, reducing computation time by pre-selecting the most

informative views of the scene. However, unless the dataset

has been collected offline, the sensor must travel between

these viewpoints. During this travel time, the sensor may

not be contributing significantly to the model. In this paper

we propose an active approach to visual reconstruction, that

considers not only the next best viewpoint, but the path (or

sequence of viewpoints) for it to take. We achieve this by

adapting techniques from the robotic pathplanning literature;

introducing a computer-vision based cost space and applying

pathplanning to this cost space rather than the traditional

Euclidean world.

We also propose an extension to this, which allows us to

use multiple monocular cameras to operate in a collaborative

manner. The naive solution is to have multiple sensors

operating independently in the same physical space and

then fusing the resulting maps. However, this does not fully

exploit the potential for collaboration. Reasoning jointly

about the cameras’ observations allows us to exploit valuable

information. Collaborative building of the map, by two or

more cameras, has the potential to dramatically increase

reliability, while reducing the time needed to perform the

reconstruction.

To summarise, we present a novel approach that is capable

of using multiple mobile cameras in order to automatically

reconstruct a scene from monocular images. Our main con-

tributions are a Scenic Pathplanner that efficiently searches

Special Euclidean Space (SE(3)) for paths of high informa-

tion gain and an Opportunistic Collaboration framework that

determines the behaviour of the cameras jointly during the

pathplanning stage, to act either as a wide-baseline stereo

pair, or as independent SfM agents. It is important to note

that every step along the Scenic Route is not necessarily a

local optima. Instead, the Scenic Pathplanner trades infor-

mation gain against path length. In order to validate our

approach’s capabilities, we perform guided reconstruction of

a room from an offline dataset consisting of ∼8500 images.

To validate online capabilities, we mount cameras on mobile

ground-based robots and autonomously reconstruct a room

in real time.

2. Related Work

Collaborative sensors capable of intelligently reconstruct-

ing an environment have four fundamental problems to over-
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come. First, they must be able to reconstruct their environ-

ment. Second, they require the ability to decide where in

that map they should go to next. Third, autonomous entities

should be able to negotiate an environment to reach their goal.

Finally, they should be able to decide whether collaboration

with another sensor is in their best interest.
Reconstruction algorithms can be divided into online and

offline approaches. Online approaches tend to be sparse

both in time and space, while offline approaches are usually

denser and can deal with unstructured datasets.

In terms of online approaches, Klein and Murray[20]

introduced the concept of splitting pose estimation and map-

ping into independent threads. This allowed for robust

Simultaneous Localization and Mapping (SLAM) algorithms

to run in real time. More recent contributions, such as that by

Mur-Artal et al. [28] and Engel et al. [7] add an explicit loop

closure thread and are generally more robust. Online sys-

tems are good for pose estimation and stabilisation, but are

generally not dense enough to provide scene understanding

and/or detailed reconstructions.

Offline approaches, commonly referred to as Multi-View

Stereo (MVS), typically find pairwise stereo correspondences

and use large optimisations to estimate dense and accurate

reconstructions, such as work by Snavely et al. [34]. Denser

reconstructions were achieved by Furukawa and Ponce [11]

who use sparse feature matching and patch growing, along

with photometric and visibility constraints to produce dense

reconstructions. Jancosek et al. [17] extend [11] by attempt-

ing to actively select views in a Next-Best View (NBV)-like

approach to make large datasets feasible by estimating feasi-

ble stereo pairs, but provide no results on partial-image recon-

struction. Hornung et al. [16] use an octree-like hierarchical

volumetric reconstruction along with graph cut minimisation.

More recently, Galliani et al. [12] expand the patch-matching

idea proposed by Bleyer et al. [3] to use more than two views.

However, the computational cost for dense reconstruction

of large structures can be prohibitive, preventing their use

online, and lack the ability to choose views dynamically dur-

ing data capture. In this work we propose a novel approach

capable of actively choosing the best locations to improve the

reconstruction/model or map. More importantly, it is capable

of significantly reducing computational cost by selecting a

small number of key views to use.

In order to perform efficient reconstruction that maximises

quality and coverage using a minimum amount of data (such

as in [1] and [24]), it is necessary to actively select where

the NBV is. NBV estimation can be divided into two main

categories: exploration and refinement.

Exploratory NBV aims to generate the most complete

map of the (unknown) scene. It is generally based on the

concept of a frontier, for example in the work by Heng et al.

[14]. This approach uses a precomputed lattice and defines

frontier locations as edges between observed and unobserved

cells. Frontier pose configurations are then selected based on

the information gain they provide and the cost to reach that

configuration. Paull et al. [30] similarly uses coverage and

distance to the NBV. Sim et al. [33] evaluate hard-coded

exploration strategies to create a visual map. Most similar to

our work is Bourgault et al. [4], who use an occupancy grid

and a measure of information to perform adaptive robotic

exploration on a 2D laser-scan map. These approaches rely

on depth sensors to perform the reconstruction and thus

make no attempt to reduce the noise in the scene.

In contrast, refinement NBV estimation aims to select

poses that improve the 3D model accuracy. For example,

Forster et al. [9] use depth uncertainty to estimate the best

areas of the map to explore. Hoppe et al. [15] create a full

network of poses for an Unmanned Aerial Vehicle (UAV),

but assume prior knowledge of the environment. Sadat et

al. [32] and Mostegel et al. [27] plan optimal paths for a

monocular Visual Odometry (VO) system, but require a set

endpoint. Mauro et al. [25] focus on offline datasets, while

Banta et al. [2] and Potthast and Sukhatme [31] focus on

single object NBV. Our work is most similar to Mendez et al.

[26], who use a joint octree and pointcloud approach to NBV

but are limited to offline datasets and perform a brute-force

search of the available views.

In this paper, we present an approach that is capable of

sampling the camera pose-space to define not only an NBV,

but the path to it.

Moving directly from the current view to the NBV dis-

cards a lot of useful information along the way. Not only

that but, in the case of online sensors, it leaves the navigation

to the user. The problem of estimating a path between the

current and goal state is known as pathplanning in the field

of robotics. The current state-of-the-art for pathplanning are

stochastic tree-based algorithms such as Probabilistic Road

Map (PRM) [19] and Rapidly-exploring Random Tree (RRT)

[22]. Generally speaking, they work by sampling a state

space in order to provide collision-free trajectories from

a start state to a goal state. PRM [19] is better suited to

multi-query scenarios where the same roadmap resolves vari-

ous queries. On the other hand, RRT [22] algorithms build

a tree for every query. However, these algorithms do not

guarantee optimality. Work done by Karaman and Frazzoli

[18] extended these approaches to guarantee asymptotic opti-

mality and renamed them PRM* and RRT*. More recently,

informed sampling has become the state-of-the-art. Work

such as that by Gamell et al. [13] reduce the state-space of

the problem by only sampling from regions that are capable

of reducing the cost of the current solution.

In robotics, it is often assumed that the cost of an individ-

ual state in the configuration space is intrinsically linked to

the pose alone. However, from a computer vision point of

view, we know all images from a moving camera provide

information important to reconstruction. Therefore, our work
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breaks this assumption by relating the cost of a state not only

to the pose, but also to the geometry of the scene. Since the

geometry of the reconstructed scene is constantly changing,

we focus on RRT* since the tree can be built and discarded

as needed. To our knowledge, we are the first to implement a

pathplanning algorithm that defines the optimum path as one

that traverses areas of high information gain (which we refer

to as “the scenic route”) while optimising a stereo arrange-

ment with other sensors, thereby making the pathplanning

algorithm enforce soft collaboration constraints.

Our approach is designed to generalise to more than

one sensor. Therefore, it is not only necessary to merge

each sensor’s interpretation of the world, but to observe

the emergent behaviours given the sensors’ knowledge of

each other. Forster et al. [8] use two independent cameras

mounted on UAVs that create sparse maps along with an

overlap detector to merge the pose-graphs of both cameras.

Lazaro et al. [23] merge their maps in a decentralised agent-

to-agent mode. When the sensors are in the vicinity of each

other they share a local version of the map. Each sensor then

augments its own SLAM pose graph with a small amount

of relative poses to other robots. Similarly, Cunningham et

al. [6] use local maps, neighbouring sensor information and

robust data association to provide a decentralised approach.

To our knowledge, we are the first to implement what

we refer to as “opportunistic collaboration” between sen-

sors. This is a higher level form of collaborative behaviour

where the cameras come to a consensus during the initial

NBV planning stage. The sensors will agree on an initial

interpretation of the world and then choose to either act as

a variable baseline stereo pair, or to explore independently,

depending on the scene properties.

3. Methodology

In this section we describe our approach which creates

dense maps using opportunistically collaborative cameras

travelling along the scenic route. We use an octree represen-

tation of the world, along with Next-Best View (NBV) and

Next-Best Stereo (NBS) costs. However, we propose a novel

Sequential Monte-Carlo (SMC) approximation to these costs,

which allows development of path-planning algorithms that

operate directly in the cost space.

In section 3.1 we use images in a state-of-the-art recon-

struction algorithm based on dense correspondences obtained

from Deep Learning. This reconstruction is then added to a

map using an octree structure to perform data association.

Section 3.2 describes the NBV cost. In our first contribution,

section 3.2.1, we create an approximation of the view qual-

ity cost-space using the NBV in a novel SMC formulation.

This is done in order to efficiently find the goal state. In

our second contribution, section 3.3, we describe the scenic

route pathplanner which uses the cost-space approximation

of section 3.2.1 to perform an RRT-based search between

the current sensor position and the goal-state. Finally, our

third contribution is the joint planning of opportunistic col-

laboration described in section 3.3.3. The cameras jointly

plan a number of paths based on various collaborative or

independent behaviours. They then execute a combination of

behaviours which is expected to collectively maximise the

information gained from the environment.

3.1. 3D Reconstruction

To reason about informative views, we must have an in-

terpretation of the current scene geometry. Images from the

cameras are used to estimate dense, bidirectional matches

using a deep-learning based approach [35]. These dense

correspondences are triangulated to obtain a cloud of 3D

points and their covariances (i.e. their uncertainty). These

pointclouds provide a detailed representation of the scene;

however, they are simultaneously too dense to plan naviga-

tion and perform data association while also being too sparse

for geometric operations such as ray casting. Filtering and

storing the points within an octree data structure facilitates

efficient lookup and geometric operations. We store a set

of voxels V = (Vo ∪ Ve ∪ Vu), comprising occupied (Vo),

empty (Ve) and unobserved (Vu) voxels. Occupied voxels

contain geometry, empty voxels are empty space the sensor

can occupy and unobserved voxels are unknown areas. Data

association is performed by searching an octree for a match

for each new point, then updating this match with the new ob-

servation. If no match is found, the point is added to the map.

3.2. NextBest View (NBV) Goal Estimation

In order to explore a 3D environment, each sensor needs

to be able to make decisions about where in space they are

going to next; the goal state. Since the goal of the sensors

is to model the environment, the goal state is defined as the

pose in SE(3) (position + orientation) that maximises the

potential information gain of the map i.e. the Next-Best

View (NBV).

3.2.1 Approximate View Quality Cost-Space

It would be intractable to attempt an exhaustive search for

the NBV in SE(3), even if this is done on the discretised

octree. Instead, we propose a SMC sampling method that

uses information contained in the octree to approximate the

distribution of NBV costs across the scene.

It would be counter-productive to sample from voxels we

know contain points (v ∈ Vo) as there is a high probability

of a collision. Therefore, the first step is to extract the

empty voxels v ∈ Ve. We then uniformly sample from these

voxels and, for every voxel sampled, randomly assign an

orientation. Orientation sampling is application dependant,

and we discuss techniques in section 4. The weight wi of

each sample i ∈ I is then estimated as

wi = 1− Ci
nbv (1)
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where Cnbv is the NBV cost for that view. Our approach is

agnostic to the underlying NBV cost, with the exception that

it must lie in the range [0, 1]. In this paper, we use the NBV

cost defined by Mendez et al. [26], which is briefly defined

in section 3.2.2.

Once the weights have been estimated, it is necessary to

perform a resampling stage to better model the underlying

cost function. This resampling is done in three steps. First,

we propagate a small percentage of the best particles (Ip).

Second, we do a weighted resampling (Ig) from the set of

particles and apply gaussian noise. In most SMC applications

this would be enough to make the solution converge over

time. However, in this case the location of the NBV can

change drastically as observations are added. Therefore, it

is necessary to uniformly sample a smaller number of new

particles (Iu) from the empty voxels, to ensure detection of

newly emerging peaks in the cost function. The complete

set of particles I is then I = Ip ∪ Ig ∪ Iu. Note that during

resampling we do not want the samples to converge on a

single location, as we need an approximation of the full cost

function to plan the scenic route.

3.2.2 Next Best View Cost

For the experiments in this paper, the NBV is estimated by

casting a set of rays, Sr, from each candidate pose through

the image plane and into the scene. It is important to note

that Sr is a set of rays cast from the same candidate pose.

The candidate pose generation is done as shown in section

3.2.1. The NBV cost of the candidate pose is the average

cost of all the rays. The cost of each ray directly depends on

what it intersects. In the case that the rays intersect a voxel

that contains points (v ∈ Vo), the cost of each point can be

calculated as

φ(r, p) = e−||λpep×r|| , (2)

where r ∈ Sr is the ray cast from a candidate pose, v ∈ Vo is

the voxel on which the ray is incident and p ∈ Pv is a point

in v. λp and ep are the largest eigenvalue and eigenvector,

respectively, of the covariance Σp of p. Consequently, the

cost of a ray is defined as the average of all the points p ∈ Pv

contained in the intersected voxel

ψ(r, v) =
1

|Pv|

∑

p∈Pv

φ(r, p) . (3)

If the ray does not intersect an occupied voxel, we assign it

a cost of γ ∈ [0, 1], which is a user-defined parameter that

biases the cost-space towards exploration 0, or refinement 1.

Finally, the NBV cost of a particular pose is defined as

Cview =
1

|Sr|

∑

r∈Sr

{

ψ(r, v) if v ∈ Vo

γ ∈ [0, 1] else v ∈ Vu .
(4)

Note that equation 2 will give the lowest cost when r is

perpendicular to ep, meaning the camera is ideally positioned

to decrease the uncertainty of that point.

3.3. Scenic Pathplanning

A sensor should also be capable of negotiating a trajec-

tory to its goal. This implies smooth continually updated

motion planning, collision avoidance and cost minimisation.

A traditional robotics approach would see the path length

minimised. Indeed, most planners perform precisely this

kind of operation. However, if the goal is reconstruction,

then taking the shortest path might result in unfavourable

poses for both localization and reconstruction. The sensor

will also miss good views along the way to its goal.

In this section, we describe a novel approach that allows

the estimation of a “scenic” route. The scenic route is defined

as the path that will maximise the potential information gain

in the map, both in terms of accuracy and coverage.

3.3.1 Next-Best View Pathplanning

Naively, iterative NBV estimation could be treated as a path.

However, this would have no guarantees over the path length

or optimality. Instead, a tree-based approach such as RRT

can be used to bias the search towards the goal, optimize

path length as well as scenic value, and guarantee asymptotic

optimality.

An RRT implementation such as [13] would not only be

expensive and inefficient, but it would also be biased towards

finding short paths between the start and goal. This is because

RRT-based methods are designed to explore large Voronoi

regions of the pose space with no regard to the cost of that

area. Unfortunately, it is ill-defined to solve a problem when

the cost is not intrinsically linked to the pose, but is a function

of the pose and the reconstructed geometry. Instead, what is

needed is a method that biases the search towards areas rich

in good views, while minimising the stereo cost of the path.

We can define a tree in SE(3) space (i.e. both position

and orientation) as a collection of nodes Q = {q}, where

the root node is defined as xinit ∈ Q. The task of growing

a tree to get from start to goal would usually be done in a

standard RRT by first drawing a sample qrand from SE(3).

Second, finding the nearest vertex qnear in the tree from that

sample. Third, adding a new vertex qnew a predefined step

∆q in direction qnear to qrand. The edge cost Cedge is then

the Euclidean distance |qnear − qnew|.
Instead, we present a novel method that combines the

high-dimensional exploration of RRTs* with a bias towards

pre-computed areas of high information gain. Algorithm 1

shows how the scenic pathplanning tree would be formed in

an RRT* context. We first define the start state (xinit) as the

current position. The goal state (xgoal) is the current peak of

the NBV cost function, as estimated in section 3.2. Instead

of SE(3), our approach samples from the prior distribution

of good NBV candidates estimated in section 3.2.1. Stochas-

tically sampling from this distribution biases the growth of

the tree towards areas with good NBV cost.

This novel formulation allows us to estimate paths with
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Algorithm 1 RRT version of Scenic Pathplanner.

1: function BUILDSCENICRRT(xinit,xgoal)

2: G.ADD VERTEX(xinit)

3: while dist(xgoal, G) ≥ ∆q do

4: qrand ← SAMPLENBVCOSTSPACE( )

5: qnear ← NEARESTVERTEX(qrand, G)

6: qnew ← NEWVERTEX(qrand, qnear,∆q)

7: Cedge = |qnear − qnew|
8: G.ADD VERTEX(qnew)

9: G.ADD EDGE(qnear, qnew, Cedge)

10: end while

11: return G

12: end function

high information, from the current pose to the NBV. How-

ever, we also want to keep the sensor trained on the geometry

during the trajectory. More importantly, we want to allow

agents to plan collaborative paths. In order to do this, it is

necessary to define a cost-function to replace the Euclidean

distance of the graph edges.

3.3.2 Stereo Pair Pathplanning

In this section, we define the cost of the graph nodes as a

stereo-pair cost. The further away a pair of views are from

an “ideal” stereo pair, the higher the cost. The stereo-pair

can be made up of successive poses along the path, or be

a collaborative stereo-pair with another agent. Either way,

the quality of a particular configuration always depends on

the same parameters. Namely, the stereo camera baseline,

vergence angle and the distance between the known geometry

and vergence point.

Perhaps the most important aspect of a stereo pair is

its baseline. It must be short enough to allow for robust

correspondence estimation, while being large enough to

provide good depth estimates. Since the cameras are fully

mobile, it makes little sense to enforce a particular baseline.

Instead, we parameterise the baseline as a fraction of the

distance to the intersection of the rays (rL, rR) cast through

the principal point of both cameras. That is, we enforce

dLI = dRI = αdB , (5)

where I is the intersection of both rays, |rLI | = dLI and

|rRI | = dRI are the distances from the cameras (Left and

Right) to the intersection point I , and dB is the stereo base-

line. We implement this as a soft constraint with the cost

function

CB =
|dLI − αdB |

αdB
+

|dRI − αdB |

αdB
+

|dLI − dRI |

dB
. (6)

Figure 1 shows a sample camera configuration, where this

soft constraint is formed by the red lines and the baseline.

Enforcing this has a two fold effect. First, it makes the

baseline variable with the distance to the point being imaged.

A camera close to an object will prefer to have a small

baseline, while large baselines will be preferred for distant

Figure 1: Sample stereo pair geometry.

objects. Second, equation 5 also implicitly enforces a viewing

angle as it can be shown that a triangle with sides dLI =
dRI = αdB has an angle β = acos

(

1− 1

2α2

)

. To handle

the case where the principal rays do not intersect, we penalise

large angles between the rays (rL, rR) and the rays to the

intersection point (rLI , rRI)

CT = acos

(

|rL · rLI |

‖rL‖‖rLI‖

)

+ acos

(

|rR · rRI |

‖rR‖‖rRI‖

)

. (7)

These costs enforce a good stereo arrangement for anything

near the intersection point I . However, having a good config-

uration is useless if the geometry being imaged is not taken

into account. Therefore, we define G ∈ Vo as the closest

occupied voxel to the intersection point I and (rLG, rRG) as

the rays from the left and right (respectively) to G. These are

the green rays in figure 1. Penalising large distances between

I and G would be unfavourable to imaging from far away

(large baseline). Instead, we penalise having a large angle

between the rays to I and G

CG=acos

(

|rLI · rLG|

‖rLI‖‖rLG‖

)

+ acos

(

|rRI · rRG|

‖rRI‖‖rRG‖

)

(8)

C(L,R)=σ1CB+σ2Cβ+σ3CT +CG (9)

These costs ensure that successive poses in our tree are trained

on similar geometry. This allows easy SfM for monocular

sensors and/or data association for active/stereo sensors.

However, we can also leverage the same cost in order to plan

“collaborative” paths where more than one sensor is trained

on the same geometry.

3.3.3 Opportunistic Collaboration

Until now, we have considered a single camera perform-

ing guided reconstruction of its environment. However, if

there are multiple cameras, the proposed techniques can be

extended to perform joint pathplanning of all cameras simul-

taneously. However, we do not want to constrain the cameras

to act collaboratively. Therefore, we can grow separate trees

depending on the mode of operation. This allows the sensors

to automatically select the best path from both trees and

become opportunistically collaborative.

In the case of two monocular sensors, this is performed as

follows: during initial pathplanning we treat the robots as
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being completely independent from each other. We assume

that each sensor only knows the current position of the other

robot. Using this information it is possible for each agent to

independently grow two different trees and extract a path for

each camera.

First, we grow a collaborative stereo tree. In this case,

we use the other agent’s last known position, along with

each new tree node qnew, in equation 9 to estimate the cost.

This tree will attempt to find a path through the space that

maintains a good stereo pair (with the other agent), while

also travelling through areas of high information gain.

The second SfM tree is grown in order to optimise the

stereo configuration of each successive node along the path.

That is, the cost of each new node qnew is computed from

equation 9 between it and its parent node qnear.

In both cases, the cost for each path is computed by simply

adding all the successive stereo pairs until the goal is reached.

Since we are trying to estimate a “scenic” path to the goal,

it is also important for the estimation to have some notion

of path length. We enforce this by estimating the path cost

integral, where the cost of each edge can be computed as

Cedge=
Cqnew

+ Cqnear

2
|qnew − qnear|. (10)

Finally, once all paths have been estimated, the agents make

an autonomous decision about what the best course of action

is. They each share their path costs and the path with the

minimum cost will dictate how the sensors operate. There

are two possible scenarios. In the first, one agent will remain

static while the other moves to a position of vantage to

collect more data. In the second, they both move towards

independent goals while performing SfM. Once the next

observation(s) are obtained, a new goal and path are estimated

(for each agent) and the process is repeated. This approach

doesn’t account for the overlap in observations over the

whole trajectory. However, this is mitigated by the fact we

only use the first pose in the path before re-planning.

4. Results

The contributions of this paper have focused on allowing

a pair of mobile cameras to opportunistically and collabo-

ratively explore an unknown area and rapidly create a 3D

reconstruction of the scene. An effective system should be

able to plan a path which can rapidly explore and refine the

map using a small number of maximally informative views.

To demonstrate this, we first present qualitative and quantita-

tive evaluation on an online dataset followed by evaluation

on a live system that can autonomously reconstruct a scene.

4.1. Offline Dataset Reconstruction

We collect a dataset that consists of several minutes of

a UAV moving around a room. This footage is extremely

dense in the pose space, as we move the camera multiple

times over the same area but with different orientation. We

Figure 2: UAVs Pathplanning. The purple tracks show SfM

paths, the yellow tracks show Collaborative Stereo paths.

then use this footage to extract 8500 images from the camera

and run them through a state-of-the-art batch reconstruction

algorithm [36][5]. This provides us with a set of images with

their respective pose in 6-Degrees of Freedom (DoF) space.

In order to obtain ground truth information, we use a depth

sensor running Kinect Fusion[29].

4.1.1 Experimental Setup

Since the objective of these experiments is to map an un-

known environment, we start the process with absolutely no

knowledge of the scene. We only provide the algorithm with

a pair of images which are used to initialise the reconstruction

(and octree). After that, the approach is entirely autonomous.

At each iteration, we perform i) Stereo/SfM Reconstruction

(section 3.1), ii) Goal Estimation via SMC (section 3.2) and

iii) Scenic Pathplanning and Opportunistic collaboration

(3.3). Once the decision on whether to collaborate has been

made, we take the first pose in the estimated scenic path, and

repeat the operation. The goal estimation is done on a 4-DoF

manifold of SE(3); this allows us to only sample the yaw an-

gle of the camera, as views looking at the ceiling and/or floor

are not very informative. The scenic pathplanning is done

in full SE(3). It is only once the poses have been selected

that, for the purposes of this evaluation, we select the closest

pose in the dataset. This allows repeatability during tests.

For these experiments we set α = 3, γ = 0.7 and the various

cost weightings to 1.

4.1.2 Qualitative Analysis

The SMC is performing a weighted sample. This means the

larger the grouping of particles, the more benefit the sensor

would get from visiting it. Therefore, we expect the scenic

pathplanning to prefer these clusters as it makes its way to the

goal. Figure 2 shows the four different paths estimated from

the cameras to the goal pose. As expected, the paths show

a bias towards areas of high particle concentration, thereby

making the sensor take a more scenic route. In these figures,

the paths computed in yellow and orange are the collaborative

stereo paths, those in purple are for SfM. Notice how the SfM

paths make their way towards the goal in a zig-zag fashion.

This happens because the pathplanning is aiming to minimise

the stereo costs and therefore prefers wider baselines than a

direct path would afford. In addition, the zigzags can be seen
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(a) Kinect Fusion [29] (b) Proposed

Figure 3: Close up of the reconstruction performed by Kinect

Fusion and the proposed Scenic Route Reconstruction

(a) PRM (b) RRT*

(c) VSFM (d) Proposed

Figure 4: Comparison of the reconstructions done by the

different pathplanning algorithms, and the batch approach.

to flow into areas with high particle density. A close-up of the

resulting reconstruction can be seen in figure 3b, with a corre-

sponding ground truth reconstruction in figure 3a. Note that

we are able to extract a similar level of scene coverage, while

maintaining low depth error. A more complete reconstruction,

using 150 stereo pairs, can be seen in figure 4, where we show

results from two other pathplanning approaches and an online

batch approach. Figures 4a and 4b show reconstructions

done by PRM and Rapidly-exploring Random Tree (RRT*),

respectively. Since these approaches are not trying to opti-

mise the reconstruction during navigation, they lead to either

high noise (PRM) or low scene coverage (RRT*). Figure 4c

shows the reconstruction obtained by 8500 frames of Visu-

alSFM+CMVS [36][5][10]. Notice that it is not as dense,

and has considerably more noise than the proposed method.

4.1.3 Quantitative Analysis

We demonstrate that the proposed scenic pathplanning leads

to significantly better reconstructions than generic pathplan-

ners. Each pathplanner is integrated within the same recon-

struction framework and is evaluated based on the average

point error, number of outliers and coverage. We also com-

pare against VisualSFM+CMVS [36][5][10] and show that

we achieve comparable results with a fraction of the data.

The outlier ratio is computed as the fraction of recon-

structed points which are more than a threshold distance di
(set to 0.05 in these experiments) from any part of the ground
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Figure 5: Reconstruction performance measures plotted

against number of image pairs, for various different pathplan-

ning algorithms (and the baseline batch system).

truth. The average reconstruction error is calculated over all

inlier points. Finally to compute the coverage, we find the

fraction of ground truth points which are represented by at

least one point in the reconstruction (within di).

In order to make the comparison fair, we give PRM and

RRT* our computed goal-state rather than selecting a ran-

dom one. However, PRM and RRT* are both optimising

the path length to the goal state. This makes these algo-

rithms incapable of enforcing stereo constraints. As such,

the robots tend to observe different regions for most of the

reconstruction.

For the VisualSFM+CMVS baseline, we use the full

dataset to perform the reconstruction. This provides a base-

line value for each metric. The dataset consists of over 72

million possible stereo pairs. While some of these pairs might

be trivially discarded by an algorithm that has access to the

image and pose data, we explicitly do not use any of this

information. To simulate a live robotic navigation task, the

planning is done on the SE(3) manifold and is only related

back to the dataset when choosing the nearest-neighbour

pose. Therefore it is important to keep in mind that selecting

200 stereo pairs, as shown in figure 5, is still < 0.00027% of

the possible pairs.

Figure 5c demonstrates we can achieve coverage that

is comparable to VisualSFM+CMVS - nearly 70% of the

ground truth - using under 150 pairs. More importantly,

the proposed method explores the space faster than both

competing pathplanners while also achieving a higher final

coverage. Also notice that we exhibit a “stepped” behaviour

in the curve, which corresponds to autonomous switching

between exploration and refinement.

Figure 5a shows how the average point error progresses
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(a) Proposed (b) RGB-D SLAM [21]

(c) Proposed (d) RGB-D SLAM [21]

Figure 6: Reconstruction comparison for our pathplanning

algorithm and state-of-the-art RGB-D SLAM [21].

with the number of frames. The scenic pathplanner con-

sistently outperforms PRM and is only worse than RRT*

for a short period between frames 30 − 50. This is be-

cause, as shown in figure 5c, that period corresponds to

rapid exploration that RRT* does not perform. The scenic

pathplanner in general is significantly more accurate than

VisualSFM+CMVS. Areas where VSFM outperforms the pro-

posed technique correspond directly to the periods of explo-

ration, when coverage grows rapidly. In fact, in areas of low

coverage growth (refinement behaviour), the error decreases

below that of VisualSFM+CMVS (frames 60 − 100) and

only grows larger during an exploration period (100− 130).

Finally, in figure 5b, the proposed method can be seen to

consistently exhibit fewer outliers than all other pathplanners.

Indeed, apart from failure cases at frames 30 and 160 (which

added noisy measurements to the map) we also outperform

VisualSFM+CMVS, maintaining around 10% outliers.

Having qualitatively and quantitatively validated our ap-

proach on online datasets, we now validate on a live system.

5. Online Reconstruction

In this section, we first discuss implementing a live recon-

struction system that uses the proposed approach to perform

an intelligent, dense 3D reconstruction of its environment.

Qualitatively, we show how the results compare to a dense

RGB-D SLAM [21] approach. Quantitatively, we show that

the scenic pathplanner is not only capable of autonomously

reconstructing the environment, but that setting the value of

γ will either encourage or discourage exploration. Further

examples can also be found in the supplementary material.

5.1. Experimental Setup

In order for the sensors to autonomously navigate their

environment, we perform vision-based SLAM to obtain a

consistent pose estimate. This pose estimate is then used

in a sensor-fusion framework, along with the Inertial Mea-

surement Unit (IMU) and wheel odometry to obtain a robust

pose estimate for each camera. While this is enough for a
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Figure 7: Coverage plotted against number of image pairs,

note how lower values of γ are more exploratory.

single agent to perform reconstruction, we are interested

in multi-agent reconstruction. Therefore, we perform a

reprojection-error based pointcloud alignment on the sparse

visual landmarks from each SLAM system. This allows

us to estimate a similarity transform between the cameras,

effectively putting them in the same coordinate frame. Once

the sensors are operating in the same coordinate frame, the

current image and pose of each camera is used to initialise

the reconstruction (and octree). For these experiments, we

set α = 7 and di = 10cm. This enforces a narrower baseline

which makes it easier for the SLAM system to keep track of

the pose (less pure rotation). Since these experiments consist

of a ground-based sensors, we also limit the sampling for

NBV and pathplanning to SE(2). While this is not strictly

necessary, it reduces complexity and increases performance.

In figure 6, we show that our approach autonomously

reconstructs pointclouds that are both dense and detailed. The

level of detail is comparable to the “ground truth” obtained

using an RGB-D camera. Our approach also computes the

navigability of the space it reconstructs. Therefore, it knows

which areas of the map the sensor can realistically reach and

which are out of bounds.

In figure 7 we quantitatively demonstrate that our ap-

proach is capable of autonomously exploring an environment.

The system is run with different values of γ and the achieved

coverage is shown. This demonstrates that the sensor’s will-

ingness to explore its environment is impacted significantly

by γ. When γ = 0, the system begins exploring rapidly. As

γ increases towards 1, the reward of exploration decreases

until there is no benefit to it at all; in this case, the sensors

will prefer to look at the same geometry from different angles.

6. Conclusion

In conclusion, we have presented a novel approach that

can coordinate at least two cameras in an opportunistically

collaborative way, creating a dense reconstruction of their en-

vironment. We leverage the approximate NBV cost distribu-

tion to bias a random tree-based search method toward areas

of large information gain. This explores SE(3) to find a scenic

path between the camera and the NBV. In the future, it would

also be interesting to adapt this approach to use depth sensors.
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[7] J. Engel, T. Schöps, J. Sturm, and D. Cremers. LSD-SLAM:

Large-Scale Direct Monocular SLAM. In ECCV, 2014.

[8] C. Forster and S. Lynen. Collaborative monocular SLAM

with multiple micro aerial vehicles. In IROS, 2013.

[9] C. Forster, M. Pizzoli, and D. Scaramuzza. Appearance-based

Active, Monocular, Dense Reconstruction for Micro Aerial

Vehicles. Robotics: Science and Systems, 2014.

[10] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Towards

internet-scale multi-view stereo. In CVPR, 2010.

[11] Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-

View Stereopsis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(8), 2010.

[12] S. Galliani and K. Schindler. Massively parallel multiview

stereopsis by surface normal diffusion. In ICCV, 2015.

[13] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed

rrt*: Optimal incremental path planning focused through an

admissible ellipsoidal heuristic. In IROS, 2014.

[14] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys. Efficient

Visual Exploration and Coverage with a Micro Aerial Vehicle

in Unknown Environments. In ICRA, 2015.

[15] C. Hoppe, A. Wendel, S. Zollmann, K. Pirker, A. Irschara,

H. Bischof, S. Kluckner, and S. C. Technology. Photogram-

metric Camera Network Design for Micro Aerial Vehicles.

Computer Vision Winter Workshop, 2012.

[16] A. Hornung and L. Kobbelt. Hierarchical volumetric multi-

view stereo reconstruction of manifold surfaces based on dual

graph embedding. In CVPR. IEEE, 2006.

[17] M. Jancosek, A. Shekhovtsov, and T. Pajdla. Scalable multi-

view stereo. In ICCV, 2009.

[18] S. Karaman and E. Frazzoli. Sampling-based algorithms for

optimal motion planning. International Journal of Robotics

Research, 30(7), 2011.

[19] L. Kavraki, L. Kavraki, P. Svestka, P. Svestka, J.-C. Latombe,

J.-C. Latombe, M. Overmars, and M. Overmars. Probabilistic

roadmaps for path planning in high-dimensionalconfiguration

spaces. IEEE Robotics & Automation Magazine, 12(4), 1996.

[20] G. Klein and D. Murray. Parallel Tracking and Mapping for

Small AR Workspaces. In ISMAR, 2007.

[21] M. Labbe and F. Michaud. Online global loop closure detec-

tion for large-scale multi-session graph-based slam. In IROS,

2014.

[22] S. M. LaValle. Rapidly-exploring random trees a new tool for

path planning. Technical report, 1998.

[23] M. Lazaro, L. Paz, J. Castellanos, and G. Grisetti. Multi-robot

SLAM using condensed measurements. In IROS, 2013.
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