
Learning from Video and Text via Large-Scale Discriminative Clustering

Antoine Miech1,2 Jean-Baptiste Alayrac1,2 Piotr Bojanowski2 Ivan Laptev 1,2 Josef Sivic1,2,3
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Abstract

Discriminative clustering has been successfully ap-

plied to a number of weakly supervised learning tasks.

Such applications include person and action recognition,

text-to-video alignment, object co-segmentation and co-

localization in videos and images. One drawback of dis-

criminative clustering, however, is its limited scalability.

We address this issue and propose an online optimization

algorithm based on the Block-Coordinate Frank-Wolfe al-

gorithm. We apply the proposed method to the problem

of weakly supervised learning of actions and actors from

movies together with corresponding movie scripts. The

scaling up of the learning problem to 66 feature-length

movies enables us to significantly improve weakly super-

vised action recognition.

1. Introduction

Action recognition has been significantly improved in re-

cent years. Most existing methods [23, 35, 39, 40] rely on

supervised learning and, therefore, require large-scale, di-

verse and representative action datasets for training. Col-

lecting such datasets, however, is a difficult task given the

high costs of manual search and annotation of the video.

Notably, the largest action datasets today are still orders

of magnitude smaller (UCF101 [37], ActivityNet [7]) com-

pared to large image datasets, they often contain label noise

and target specific domains such as sports (Sports1M [20]).

Weakly supervised learning aims to bypass the need

of manually-annotated datasets using readily-available, but

possibly noisy and incomplete supervision. Examples of

such methods include learning of person names from im-

age captions or video scripts [3, 10, 36, 38]. Learning ac-

tions from movies and movie scripts has been approached

in [4, 5, 9, 23]. Most of the work on weakly supervised per-

son and action learning, however, has been limited to one or

a few movies. Therefore the power of leveraging large-scale
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Figure 1: We automatically recognize actors and their actions in a

of dataset of 66 movies with scripts as weak supervision.

weakly annotated video data has not been fully explored.

In this work we aim to scale weakly supervised learn-

ing of actions. In particular, we follow the work of [4] and

learn actor names together with their actions from movies

and movie scripts. While actors are learned separately for

each movie, differently from [4], our method simultane-

ously learns actions from all movies and movie scripts avail-

able for training. Such an approach, however, requires solv-

ing a large-scale optimization problem. We address this

issue and propose to scale weakly supervised learning by

adapting the Block-Coordinate Frank-Wolfe approach [21].

Our optimization procedure enables action learning from

tens of movies and thousands of action samples, readily

available from our subset of movies or other recent datasets

with movie descriptions [31]. This, in turn, results in large

improvements in action recognition.

Besides the optimization, our work introduces a new

model for background class in the form of a constraint. It

enables better and automatic modeling of the background

class (i.e. unknown actors and actions). We evaluate our

method on 66 movies and demonstrate significant improve-

ments for both actor and action recognition. Example re-

sults are illustrated in Figure 1.
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1.1. Related Work

This section reviews related work on discriminative clus-

tering, Frank-Wolfe optimization and its applications to the

weakly supervised learning of people and actions in video.

Discriminative clustering and Frank-Wolfe. The

Frank-Wolfe algorithm [11, 15] allows to minimize large

convex problems over convex sets by solving a sequence

of linear problems. In computer vision, it has been used in

combination with discriminative clustering [2] for action

localization [5], text-to-video alignment [1, 6], object

co-localization in videos and images [18] or instance-level

segmentation [32]. A variant of Frank-Wolfe with random-

ized block coordinate descent was proposed in [21]. This

extension leads to lower complexity in terms of time and

memory requirements while preserving the convergence

rate. In this work we build on [21] and adapt it for the

problem of large-scale weakly supervised learning of

actions from movies.

Weakly supervised action recognition. Movie scripts

are used as a source of weak supervision for temporal ac-

tion localization in [9]. An extension of this work [5] ex-

ploits the temporal order of actions as a learning constraint.

Other [22] target spatio-temporal action localization and

recognition in video using a latent SVM. A weakly super-

vised extension of this method [34] localizes actions with-

out location supervision at the training time. Another recent

work [41] proposes a multi-fold Multiple-Instance Learn-

ing (MIL) SVM to localize actions given video-level su-

pervision at training time. Closer to us is the work of [4]

that improves weakly supervised action recognition by joint

action-actor constraints derived from scripts. While the ap-

proach in [4] is limited to a few action classes and movies,

we propose here a scalable solution and demonstrate signif-

icant improvements in action recognition when applied to

the large-scale weakly supervised learning of actions from

many movies.

Weakly supervised person recognition. Person recogni-

tion in TV series has been studied in [10, 36] where the

authors propose a solution to the problem of associating

speaker names in scripts and faces in videos. Speakers in

videos are identified by detecting face tracks with lip mo-

tion. The method in [8] presents an alternative solution by

formulating the association problem using a convex surro-

gate loss. Parkhi et al. [28] present a method for person

recognition combining a MIL SVM with a model for the

background class. Most similar to our model is the one pre-

sented in [4]. The authors propose a discriminative clus-

tering cost under linear constraints derived from scripts to

recover the identities and actions of people in movies. Apart

from scaling-up the approach of [4] to much larger datasets,

our model extends and improves [4] with a new background

constraint.

Contributions. In this paper we make the following

contributions: (i) We propose an optimization algorithm

based on Block-Coordinate Frank-Wolfe that allows scal-

ing up discriminative clustering models [2] to much larger

datasets. (ii) We extend the joint weakly supervised Person-

Action model of [4], with a simple yet efficient model of the

background class. (iii) We apply the proposed optimization

algorithm to scale-up discriminative clustering to an order

of magnitude larger dataset, resulting in significantly im-

proved action recognition performance.

2. Discriminative Clustering for Weak Super-

vision

We want to assign labels (e.g. names or action classes)

to samples (e.g. person tracks in the video). As opposed

to the standard supervised learning setup, the exact labels

of samples are not known at training time. Instead, we are

given only partial information that some samples in a subset

(or bag) may belong to some of the labels. This ambiguous

setup, also known as multiple instance learning, is common,

for example, when learning human actions from videos and

associated text descriptions.

To address this challenge of ambiguous and partial

labels, we build on the discriminative clustering crite-

rion based on a linear classifier and a quadratic loss

(DIFFRAC [2]). This framework has shown promising re-

sults in weakly supervised and unsupervised computer vi-

sion tasks [1, 4, 5, 6, 16, 17, 30, 32]. In particular, we use

this approach to group samples into linearly separable clus-

ters. Suppose we have N samples to group into K classes.

We are given d-dimensional features X ∈ R
N×d, one for

each of the N samples, and our goal is to find a binary ma-

trix Y ∈ {0, 1}N×K assigning each of the N samples to

one of the labels, where Ynk = 1 if and only if the sample

n (e.g. a person track in a movie) is assigned to the label k

(e.g. action class running).

First, suppose the assignment matrix Y is given. In this

case finding a linear classifier W can be formulated as a

ridge regression problem

min
W∈Rd×K

1

2N
‖Y −XW‖2F +

λ

2
‖W‖2F, (1)

where X is a matrix of input features, Y is the given la-

bels assignment matrix, ‖.‖F is the matrix norm (or Frobe-

nius norm) induced by the matrix inner product 〈., .〉F (or

Frobenius inner product) and λ is a regularization hyper-

parameter set to a fixed constant. The key observation is

that we can resolve the classifier W ∗ in closed form as

W ∗(Y ) = (X⊤X +NλI)−1X⊤Y. (2)

In our weakly supervised setting, however, Y is un-

known. Therefore, we treat Y as a latent variable and op-

timize (1) w.r.t. W and Y . In details, plugging the optimal
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solution W ∗ (2) in the cost (1) removes the dependency on

W and the cost can be written as a quadratic function of Y ,

i.e. C(Y ) = 〈Y,A(X,λ)Y 〉F, where A(X,λ) is a matrix

that only depends on the data X and a regularization pa-

rameter λ. Finding the best assignment matrix Y can then

be written as the minimization of the cost C(Y ):

min
Y ∈{0,1}N×K

〈Y,A(X,λ)Y 〉F. (3)

Solving the above problem, however, can lead to degen-

erate solutions [2] unless additional constraints on Y are

provided. In section 3, we incorporate weak supervision in

the form of constraints on the latent assignment matrices

Y . The constraints on Y used for weak supervision gener-

ally decompose into small independent blocks. This block

structure is the key for our optimization approach that we

will present next.

2.1. Large­Scale optimization

The Frank-Wolfe (FW) algorithm has been shown effec-

tive for optimizing convex relaxation of (3) in a number of

vision problems [1, 4, 5, 6, 19, 32]. It only requires solving

linear programs on a set of constraints. Therefore, it avoids

costly projections and allows the use of complicated con-

straints such as temporal ordering [5]. However, the stan-

dard FW algorithm is not well suited to solve (3) for a large

number of samples N .

First, storing the N ×N matrix A(X,λ) in memory be-

comes prohibitive (e.g. the size of A becomes ≥ 100GB for

N ≥ 200000). Second, each update of the FW algorithm

requires a full pass over the data resulting in a space and

time complexity of order N for each FW step.

Weakly supervised learning is, however, largely moti-

vated by the desire of using large-scale data with “cheap”

and readily-available but incomplete and noisy annotation.

Scaling up weakly supervised learning to a large number of

samples is, therefore, essential for its success. We address

this issue and develop an efficient version of the FW algo-

rithm. Our solution builds on the Block-Coordinate Frank-

Wolfe (BCFW) [21] algorithm and extends it with a smart

block-dependent update procedure as described next. The

proposed update procedure is one of the key contribution of

this paper.

2.1.1 Block-coordinate Frank-Wolfe (BCFW)

The Block-Coordinate version of the Frank-Wolfe algo-

rithm [21] is useful when the convex feasible set Y can

be written as a Cartesian product of n smaller sets of con-

straints: Y = Y(1) × . . . × Y(n). Inspired by coordinate

descent techniques, BCFW consists of updating one vari-

able block Y(i) at a time with a reduced Frank-Wolfe step.

This method has potentially n times cheaper iterates both

in space and time. We will see that most of the weakly su-

pervised problems exhibit such a block structure on latent

variables.

2.1.2 BCFW for discriminative clustering

To benefit from BCFW, we have to ensure that the time and

space complexity of the block update does not depend on

the total number of samples N (e.g. person tracks in all

movies) but only depends on the size Ni of smaller blocks

of samples i (e.g. person tracks within one movie). After

a block is sampled, the update consists of two steps. First,

the gradient with respect to the block is computed. Then the

linear oracle is called to obtain the next iterate. As we show

below, the difficult part in our case is to efficiently compute

the gradient with respect to the block.

Block gradient: a naive approach. Let’s denote Ni the

size of block i. The objective function f of problem (3) is

f(Y ) = 〈Y,A(X,λ)Y 〉F, where (see [2])

A(X,λ) =
1

2N
(IN −X(X⊤X +NλId)

−1X⊤). (4)

To avoid storing matrix A(X,λ) of size N×N , one can pre-

compute the matrix P = (X⊤X +NλId)
−1X⊤ ∈ R

d×N .

We can write the block gradient with respect to a subset of

samples i as follows:

∇(i)f(Y ) =
1

N
(Y (i) −X(i)PY ), (5)

where Y (i) ∈ R
Ni×K and X(i) ∈ R

Ni×d are the label as-

signment variable and the feature matrix for block i (e.g.

person tracks in movie i), respectively. Because of the PY

matrix multiplication, naively computing this formula has

the complexity O(NdK), where N is the total number of

samples, d is the dimensionality of the feature space and K

is the number of classes. As this depends linearly on N , we

aim to find a more efficient way to compute block gradients,

as described next.

Block gradient: a smart update. We now propose an up-

date procedure that avoids re-computation of block gradi-

ents and whose time and space complexity at each iteration

depends on Ni instead of N . The main intuition is that we

need to find a way to store information about all the blocks

in a compact form. A natural way of doing so is to maintain

the weights of the linear regression parameters W ∈ R
d×K .

From (2) we have W = PY . If we are able to maintain the

variable W at each iteration with the desired complexity

O(NidK), then the block gradient computation (5) can be

reduced fromO(NdK) toO(NidK). We now explain how

to effectively achieve that.
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At each iteration t of the algorithm, we only update a

block i of Y while keeping all other blocks fixed. We denote

the direction of the update by Dt ∈ R
N×K and the step size

by γt. With this notation the update becomes

Yt+1 = Yt + γtDt. (6)

The update rule for the weight variable Wt can now be writ-

ten as follows:

Wt+1 = P (Yt + γtDt)

Wt+1 = Wt + γtPDt,
(7)

Recall that at iteration t, BCFW only updates block i, there-

fore Dt has non zero value only at block i. In block notation

we can therefore write the matrix product PDt as:

[

P (1), · · · , P (i), · · · , P (n)
]

×





0

D
(i)
t

0





= P (i)D
(i)
t ,

(8)

where P (i) ∈ R
d×Ni and D

(i)
t ∈ R

Ni×K are the i-th blocks

of matrices P and Dt, respectively. The outcome is an up-

date of the following form

Wt+1 = Wt + γtP
(i)D

(i)
t , (9)

where the computational complexity for updating W has

been reduced to O(NidK) compared to O(NdK) in the

standard update.

We have designed a Block-Coordinate Frank-Wolfe up-

date with time and space complexity depending only on the

size of the blocks and not the entire dataset. This allows

to scale discriminative clustering to problems with a very

large number of samples. The pseudo-code for the algo-

rithm is summarized in Algorithm 1. Next, we describe an

application of this large-scale discriminative clustering al-

gorithm to weakly supervised person and action recognition

in movies.

3. Weakly supervised Person-Action model

We now describe an application of our large-scale dis-

criminative clustering algorithm with weak-supervision.

The goal is to assign to each person track a name and an ac-

tion. Both names and actions are mined from movie scripts.

For a given movie i, we assume to have Ni automatically

extracted person tracks as well as the parsing of a movie

script into person names and action classes. We also as-

sume that scripts and movies have been roughly aligned in

time. In such a setup we can assign labels (e.g. a name or

an action) from a script section to a subset of tracksN from

the corresponding time interval of a movie (see Figure 2 for

example). In the following, we explain how to convert such

form of weak supervision into a set of constraints on latent

Algorithm 1 BCFW for Discriminative Clustering [2]

Initiate Y0, P := (X⊤X + NλId)
−1X⊤, W0 = PY0,

gi = +∞, ∀i.
for t = 1 . . .Niter do

i← sample from distribution proportional to g [27]

∇(i)f(Yt)←
1
N
(Y

(i)
t −X(i)Wt) # Block gradient

Ymin ← argminx∈Y(i)〈∇(i)f(Yt), x〉F # Linear oracle

D ← Ymin − Y (i)

gi ← −〈D,∇(i)f(Yt)〉F # Block gap

γ ← min(1, gi
1
N

〈D,D−X(i)P (i)D〉F
) # Line-search

Wt+1 ←Wt + γP (i)D # W update

Y
(i)
t+1 ← Y

(i)
t + γD # Block update

end for

variables corresponding to the names and actions of people.

We will also show how these constraints easily decompose

into blocks. We denote Z the latent variable assignment

matrix for person names and T for actions.

3.1. Weak­supervision as constraints

We use linear constraints to incorporate weak supervi-

sion from movie scripts. In detail, we define constraints

on subsets of person tracks that we call “bags”. In the fol-

lowing we explain the procedure for construction of bags

together with the definition of the appropriate constraints.

‘At least one’ constraint. Suppose a script reveals the

presence of a person p in some time interval of the movie.

We construct a set N with all person tracks in this interval.

As first proposed by [4], we model that at least one track in

N is assigned to person p by the following constraint

∑

n∈N

Znp ≥ 1. (10)

We can apply the same type of constraint when solving for

action assignment T .

Person-Action constraint. Scripts can also provide infor-

mation that a person p is performing an action a in a scene.

In such cases we can formulate stricter and more informa-

tive constraints as follows. We construct a setN containing

all person tracks appearing in this scene. Following [4], we

formulate a joint constraint on presence of a person per-

forming a specific action as

∑

n∈N

ZnpTna ≥ 1. (11)

Mutual exclusion constraint. We also model that each

person track can only be assigned to exactly one label. This
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Script 1:

Virginia is driving 

while Buster intently 

studies the terrain…

Script i:

Movie i:

: Person assignment matrix of movie i 
: # of known characters in movie i
: # of person tracks in movie i

: Subset of tracks with constraints
: Action assignment matrix

: # of action classes in the model
: # of person tracks in ALL movies

Figure 2: Overview of the Person-Action weakly supervised model, see text for detailed explanations.

restriction can be formalized by the mutual exclusion con-

straint

Z1P = 1N , (12)

for Z (i.e. rows sum up to 1). Same constraint holds for T .

Background class constraint. One of our contributions

is a novel way of coping with the background class. As

opposed to previous work [4], our approach allows us to

have background model that does not require any external

data. Also it does not require a specific background class

classifier as in [28].

Our background class constraint can be seen as a way

to supervise people and actions that are not mentioned in

scripts. We observe that tracks that are not subject to con-

straints from Eq. (10) and tracks that belong to crowded

shots are likely to belong to the background class. Let us

denote by B the set of such tracks. We impose that at least a

certain fraction α ∈ [0, 1] of tracks in B must belong to the

background class. Assuming that person label p = 1 cor-

responds to the background, we obtain the following linear

constraint (similar constraint can be defined for actions on

T ):

∑

n∈B

Zn1 ≥ α | B | . (13)

3.2. Person­Action model formulation

Here we summarize the complete formulation of the per-

son and action recognition problems.

Solving for names. We formulate the person recognition

problem as discriminative clustering, where X1 are face de-

scriptors:

min
Z∈{0,1}N×P

〈Z,A(X1, λ)Z〉F, (Discriminative cost) (14)

such that











∑

n∈N Znp ≥ 1, (At least one)
∑

n∈B Zn1 ≥ α | B |, (Background)

Z1P = 1N . (Mutual exclusion)

Solving for actions. After solving the previous problem

for names separately for each movie, we vertically concate-

nate all person name assignment matrices Z. We also define

a single action assignment variable T in {0, 1}M×A, where

M is the total number of tracks across all movies and X2

are action descriptors (details given later). We formulate

our action recognition problem as a large QP:

min
T∈{0,1}M×A

〈T,A(X2, µ)T 〉F, (Discriminative cost) (15)

such that



















∑

n∈N Tna ≥ 1, (At least one)
∑

n∈N ZnpTna ≥ 1, (Person-Action)
∑

n∈B Tn1 ≥ β | B |, (Background)

T1A = 1M . (Mutual exclusion)

Block-Separable constraints. The set of linear con-

straints on the action assignment matrix T is block separable

since each movie has it own set of constraints, i.e. there are

no constraints spanning multiple movies. Therefore, we can

fully demonstrate here the power of our large-scale discrim-

inative clustering optimization (Algorithm 1).

4. Experimental Setup

4.1. Dataset

Our dataset is composed of 66 Hollywood feature-length

movies (see the list in Appendix [26]) that we obtained

from either BluRay or DVD. For all movies, we down-

loaded their scripts (on www.dailyscript.com) that

we temporally aligned with the videos and movie subtitles

using the method described in [23]. The total number of

frames in all 66 movies is 11,320,252. The number of body

tracks detected across all movies (see 4.3 for more details)

is M = 201874.

4.2. Text pre­processing

To provide weak supervision for our method we process

movie scripts to extract occurrences of the 13 most frequent

action classes: Stand Up, Eat, Sit Down, Sit Up,
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Hand Shake, Fight, Get Out of Car, Kiss, Hug,

Answer Phone, Run, Open Door and Drive. To do

so, we collect a corpus of movie scripts different from the

set of our 66 movies and train simple text-based action clas-

sifiers using linear SVM and a TF-IDF representation of

words composed of uni-grams and bi-grams. After retriev-

ing actions in our target movie scripts, we also need to iden-

tify who is performing the action. We used spaCy [14] to

parse every sentence classified as describing one of the 13

actions and get every subject for each action verb.

4.3. Person detection and Features

Face tracks. To obtain tracks of faces in the video, we

run the multi-view face detector [25] based on the DPM

model [12]. We then extract face tracks using the same

method as in [10, 36]. For each detected face, we com-

pute facial landmarks [36] followed by the face alignment

and resizing of face images to 224x224 pixel. We use pre-

trained vgg-face features [29] to extract descriptors for each

face. We kept the features of dimension 4096 computed by

the network at the last fully-connected layer that we L2 nor-

malized. For each face track, we choose the top K (in prac-

tice, we choose K=5) faces that have the best facial land-

mark confidence. Then we represent each track by averag-

ing the features of the top K faces.

Body tracks. To get the person body tracks, we run

the Faster-RCNN network with VGG-16 architecture fine-

tuned on VOC 07 [33]. Then we track bounding boxes us-

ing the same tracker as used to obtain face tracks. To get

person identity for body tracks, we greedily link each body

track to one face track by maximizing a spatio-temporal

bounding box overlap measure. However if a body track

does not have an associated face track as the actor’s face

may look away from the camera, we cannot obtain its iden-

tity. Such tracks can be originating from any actor in the

movie. To capture motion features of each body track, we

compute bag-of-visual-words representation of dense tra-

jectory descriptors [39] inside the bounding boxes defined

by the body track. We use 4000 cluster centers for each of

the HOF, MBHx and MBHy channels. In order to capture

appearance of each body track we extract ResNet-50 [13]

pre-trained on ImageNet. For each body bounding box, we

compute the average RoI-pooled [33] feature map of the last

convolutional layer within the bounding box, which yields

a feature vector of dimension 2048 for each box. We extract

a feature vector every 10th frame, average extracted feature

vectors over the duration of the track and L2 normalize. Fi-

nally, we concatenate the dense trajectory descriptor and the

appearance descriptor resulting in a 14028-dimensional de-

scriptor for each body track.

Method Acc. Multi-Class AP Background AP

Cour et al. [8] 48% 63% −
Sivic et al. [36] 49% 63% −
Bojanowski et al. [4] 57% 75% 51%
Parkhi et al. [28] 74% 93% 75%
Our method 83% 94% 82%

Table 1: Comparison on the Casablanca benchmark [4].

Episode 1 2 3 4 5

Sivic et al. [36] 90 83 70 86 85

Parkhi et al. [28] 99 90 94 96 97

Ours 98 98 98 97 97

Table 2: Comparison on the Buffy benchmark [36] using AP.

α 0 0.1 0.2 0.3 0.4 0.5 0.75 1.0

Accuracy 58 58 70 82 84 83 76 55

AP 86 87 90 94 94 93 85 58

Table 3: Sensitivity to hyper-parameter α (13) on Casablanca.

5. Evaluation

5.1. Evaluation of person recognition

We compare our person recognition method to several

other methods on the Casablanca benchmark from [4] and

the Buffy benchmark from [36]. All methods are evalu-

ated on the same inputs: same face tracks, scripts and char-

acters. Table 1 shows the Accuracy (Acc.) and Average

Precision (AP) of our approach compared to other methods

on the Casablanca benchmark [4]. In particular we com-

pare to Parkhi et al. [28] which is a strong baseline using

the same CNN face descriptors as in our method. We also

show the AP of classifying the background character class

(Background AP). We compare in Table 2 our approach to

other methods [28, 36] reporting results on season 5 of the

TV series “Buffy the Vampire Slayer”. Both of these meth-

ods [28, 36] use speaker detection to mine additional strong

(but possibly incorrect) labels from the script, which we

also incorporate (as additional bags) to make the compari-

son fair. Our method demonstrates significant improvement

over the previous results. It also outperforms other methods

on the task of classifying background characters. Finally,

Table 3 shows the sensitivity to hyper-parameter α from

the background constraint (13) on the Casablanca bench-

mark. Note that in contrast to other methods, our back-

ground model does not require supervision for the back-

ground class. This clearly demonstrates the advantage of

our proposed background model. For all experiments the

hyper-parameter α of the background constraint (13) was

set to 30%. Figure 5 illustrates our qualitative results for

character recognition in different movies.
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METHOD # movies Joint-Model St.U. E. S.D. Si.U. H.S. F. G.C. K. H. A. R. O.D. D. mAP

(a) Random ∅ No 0.9 0.1 0.7 0.1 0.1 0.6 0.2 0.3 0.5 0.2 1.8 0.8 0.4 0.5

(b) Script only ∅ No 3.0 4.3 5.5 2.8 4.7 2.5 1.6 11.3 4.2 1.4 13.7 3.1 3.0 4.7

(c) Fully-supervised 4 No 21.2 0.2 22.2 0.9 0.6 7.3 1.4 1.9 4.5 2.0 33.2 18.5 6.3 9.3

(d) Few training movies 5 Yes 22.6 9.6 15.6 8.1 9.7 6.1 1.0 6.0 2.1 4.2 44.0 16.2 15.9 12.4

(e) No Joint Model 66 No 10.7 7.0 17.1 7.3 18.0 12.6 2.0 14.9 3.6 5.8 24.4 14.2 24.9 12.5

(f) Full setup 66 Yes 27.0 9.8 28.2 6.7 7.8 5.9 1.0 12.9 1.7 5.7 56.3 21.3 29.7 16.4

Table 4: Average Precision of actions evaluated on 5 movies. (St.U: Stand Up, E.: Eat, S.D: Sit Down, Si.U.: Sit Up, H.S: Hand

Shake, F.: Fight, G.C.: Get out of Car, K.: Kiss, H.: Hug, A.: Answer Phone, R.: Run, O.D.: Open Door, D.: Drive)
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Figure 3: PR curves of action SitDown from Casablanca.
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Figure 4: Action recognition mAP with increasing number of

training movies.

5.2. Evaluation of action recognition

First, we compare our method to Bojanowski et al.

2013 [4]. Their evaluation uses different body tracks than

ours, we design here an algorithm-independent evaluation

setup. We compare our model using the Casablanca movie

and the Sit Down action. For the purpose of evaluation,

we have manually annotated all person tracks in the movie

and then manually labeled whether or not they contain the

Sit Down action. Given this ground truth, we assess the

two models in a similar way as typically done in object de-

tection. Figure 3 shows a precision-recall curve evaluating

recognition of the Sit Down action. We show our method

trained on Casablanca only (as done in [4]) and then on all

66 movies. Our method trained on Casablanca is already

better than [4]. The improvement becomes even more evi-

dent when training our method on all 66 movies.

To evaluate our method on all 13 action classes, we use

five movies (American Beauty, Casablanca, Double Indem-

nity, Forrest Gump and Fight Club). For each of these

movies we have manually annotated all person tracks pro-

duced by our tracker according to 13 target action classes

and the background action class. We assume that each track

corresponds to at most one target action. In rare cases where

Method R@1 R@5 R@10 Median Rank

Yu et al. [42] 3.6% 14.7% 23.9% 50

Levi et al. [24] 4.7% 15.9% 23.4% 64
Our baseline 7.3% 19.2% 27.1% 52

Table 5: Baseline comparison against winners of the LSMDC2016

movie clip retrieval challenge

this assumption is violated, we annotate the track by one of

the correct action classes.

In Table 4 we compare results of our model to different

baselines. The first baseline (a) corresponds to the random

assignment of action classes. The second baseline (b) Script

only uses information extracted from the scripts: each time

an action appears in a bag, all person tracks in this bag are

then simply annotated with this action. Baseline (c) is using

our action descriptors but trained in a fully supervised set-

up on a small subset of annotated movies. To demonstrate

the strength of this baseline we have used the same action

descriptors on the LSMDC20161 movie clip retrieval chal-

lenge. This is the largest public benchmark [31] related to

our work that considers movie data (but without person lo-

calization as we do in our work). Table 5 shows our features

employed in simple CCA method as done in [24] achieving

state-of-the-art on this benchmark. The fourth baseline (d)

is our method train only using the five evaluated movies.

The fifth baseline (e) is our model without the joint person-

action constraint (11), but still trained on all 66 movies. Fi-

nally, the last result (f) is from our model using all the 66

training movies and person-action constraints (11). Results

demonstrate that optimizing our model on more movies

brings the most significant improvement to the final results.

We confirm the idea from [4] that adding the information

of who is performing the action in general helps identify-

ing actions. However we also notice it is not always true

for actions with interacting people such as: Fight, Hand

Shake, Hug or Kiss. Knowing who is doing the action

does not seems to help for these actions. Figure 4 shows im-

provements in action recognition when gradually increas-

ing the number of training movies. Figure 6 shows qualita-

tive results of our model on different movies. The statistics

about the ground truth and constraints together with addi-

tional results are provided in Appendix [26].
1https://sites.google.com/site/describingmovies/lsmdc-2016
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Figure 5: Qualitative results for face recognition. Green bounding boxes are face tracks correctly classified as background characters.

Figure 6: Qualitative results for action recognition. P stands for for the name of the character and A for the action performed by P. Last

row (in red) shows mislabeled tracks with high confidence (e.g. hugging labeled as kissing, sitting in a car labeled as driving).

6. Conclusion
We have proposed an efficient online optimization

method based on the Block-Coordinate Frank-Wolfe algo-

rithm. We use this new algorithm to scale-up discriminative

clustering model in the context of weakly supervised person

and action recognition in feature-length movies. Moreover,

we have proposed a novel way of handling the background

class, which does not require collecting background class

data as required by the previous approaches, and leads to

better performance for person recognition. In summary, the

proposed model significantly improves action recognition

results on 66 feature-length movies. The significance of the

technical contribution goes beyond the problem of person-

action recognition as the proposed optimization algorithm

can scale-up other problems recently tackled by discrimi-

native clustering. Examples include: unsupervised learn-

ing from narrated instruction videos [1], text-to-video align-

ment [6], co-segmentation [16], co-localization in videos

and images [18] or instance-level segmentation [32], which

can be now scaled-up to an order of magnitude larger

datasets.
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